Value-Distribution of Cubic Hecke L-Functions

Alia Hamieh
(Joint work with Amir Akbary)

University of Northern British Columbia

Alberta Number Theory Days
Banff International Research Station
May 12, 2019

Some Distribution Theorems for the Riemann Zeta Function

Bohr-Jessen Theorem

Theorem (1932)

Let E be a fixed rectangle in the complex plane whose sides are parallel to the real and imaginary axes, and let $\sigma>\frac{1}{2}$ be a fixed real number. Then the limit

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \operatorname{meas}(\{-T \leq t \leq T ; \log \zeta(\sigma+i t) \in E\})
$$

exists.

Selberg Theorem

Theorem (1949, unpublished)

For $E \subset \mathbb{C}$, we have

$$
\begin{array}{r}
\lim _{T \rightarrow \infty} \frac{1}{2 T} \text { meas }\left(\left\{-T \leq t \leq T ; \frac{\log \zeta(1 / 2+i t)}{\sqrt{\frac{1}{2} \log \log T}} \in E\right\}\right)= \\
\frac{1}{2 \pi} \iint_{E} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y
\end{array}
$$

Distribution Theorems for Dirichlet and Hecke L-functions

The Case of the Fundamental Discriminant

If d is a fundamental discriminant, we set

$$
L_{d}(s)=L(s,(d / .))=\sum_{n=1}^{\infty} \frac{\left(\frac{d}{n}\right)}{n^{s}}
$$

where $\left(\frac{d}{n}\right)$ is the Kronecker symbol.

Chowla-Erdos Theorem

Theorem (1951)
If $\sigma>3 / 4$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{0<d \leq x ; d \equiv 0,1(\bmod 4) \text { and } L_{d}(\sigma) \leq z\right\}}{x / 2}=G(z)
$$

exists. Furthermore $G(0)=0, G(\infty)=1$, and $G(z)$, the distribution function, is a continuous and strictly increasing function of z.

Elliott Theorem

Theorem (1970)

There is a distribution function $F(z)$ such that

$$
\frac{\#\left\{0<-d \leq x ; d \equiv 0,1(\bmod 4) \text { and } L_{d}(1)<e^{z}\right\}}{x / 2}=F(z)+O\left(\sqrt{\frac{\log \log x}{\log x}}\right)
$$

holds uniformly for all real z, and real $x \geq 9$. $F(z)$ has a probability density, may be differentiated any number of times, and has the characteristic function

$$
\phi_{F}(y)=\prod_{p}\left(\frac{1}{p}+\frac{1}{2}\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p}\right)^{-i y}+\frac{1}{2}\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}\right)^{-i y}\right)
$$

which belongs to the Lebesgue class $L(-\infty, \infty)$.

Granville-Soundararajan Theorem

In 2003, Granville and Soundararajan investigated the distribution of values of $L_{d}(1)$ as d varies over all fundamental discriminants with $|d| \leq x$. They followed the approach of probabilistic random models.

Granville-Soundararajan Theorem

In 2003, Granville and Soundararajan investigated the distribution of values of $L_{d}(1)$ as d varies over all fundamental discriminants with $|d| \leq x$. They followed the approach of probabilistic random models.

A weaker version of their results implies that the proportion of fundamental discriminants d with $|d| \leq x$ such that $L_{d}(1) \geq e^{\gamma} \tau$ decays doubly exponentially in $\tau=\log \log x$ (i.e. is between $\exp \left(-B \frac{e^{\tau}}{\tau}\right)$ and $\exp \left(-A \frac{e^{\tau}}{\tau}\right)$ for some absolute constants $0<A<B$) and similarly for the low extreme values (i.e. $\left.L_{d}(1) \leq \frac{\zeta(2)}{e^{\gamma} \tau}\right)$.

Random Euler products

The idea of Elliott and then Granville-Soundararajan is to compare the distribution of the values $L_{d}(1)$ with the distribution of $L(1, X)=\prod_{p}\left(1-X(p) p^{-1}\right)^{-1}$ where the $X(p)$'s are independent random variables given by:

$$
X(p)= \begin{cases}0 & \text { with probability } 1 /(p+1) \\ 1 & \text { with probability } p / 2(p+1) \\ -1 & \text { with probability } p / 2(p+1)\end{cases}
$$

Then

$$
\begin{gathered}
E\left[\left(L(1, X ; x)^{z}\right]=\prod_{p \leq x} E\left[\left(1-X(p) p^{-1}\right)^{-z}\right]\right. \\
=\prod_{p \leq x}\left(\frac{1}{p+1}+\frac{1}{2}\left(1-\frac{1}{p+1}\right)\left(1-\frac{1}{p}\right)^{-z}+\frac{1}{2}\left(1-\frac{1}{p+1}\right)\left(1+\frac{1}{p}\right)^{-z}\right) .
\end{gathered}
$$

Ihara-Matsumoto's Work

Let k be \mathbb{Q} or an imaginary quadratic field, and let $\mathfrak{f} \subset \mathfrak{O}_{k}$ be an ideal.
Consider characters χ of $H_{\mathfrak{f}}=I_{\mathfrak{f}} / P_{\mathrm{f}}$.
Consider $\mathcal{L}(s, \chi)$ where \mathcal{L} is either $\frac{L^{\prime}}{L}(s, \chi)$ or $\log L(s, \chi)$.

Ihara-Matsumoto's Work

Let k be \mathbb{Q} or an imaginary quadratic field, and let $\mathfrak{f} \subset \mathfrak{O}_{k}$ be an ideal.
Consider characters χ of $H_{\mathfrak{f}}=I_{\mathfrak{f}} / P_{\mathrm{f}}$.
Consider $\mathcal{L}(s, \chi)$ where \mathcal{L} is either $\frac{L^{\prime}}{L}(s, \chi)$ or $\log L(s, \chi)$.

Theorem (2011)

Let $\sigma:=\Re(s) \geq 1 / 2+\epsilon$ be fixed, and let $|d w|=(d x d y) / 2 \pi$. Assume the GRH. Then there exists a density function $\mathcal{M}_{\sigma}(w)$ such that

$$
\lim _{\substack{\mathrm{N}(\mathrm{f}) \rightarrow \infty \\ \mathrm{f} \text { prime }}} \frac{1}{\left|\widehat{H}_{\mathfrak{f}}^{\prime}\right|} \#\left\{\chi \in \widehat{H}_{\mathfrak{f}}^{\prime}: \mathcal{L}\left(s, \chi_{\mathfrak{f}}\right) \in S\right\}=\int_{S} \mathcal{M}_{\sigma}(w)|d w|,
$$

if $S \subset \mathbb{C}$ is either compact or complement of a compact set.

Ihara-Matsumoto \mathcal{M}-Function

The density function $\mathcal{M}_{\sigma}(w)$ and the function $\tilde{\mathcal{M}}_{\sigma}(z)$ are Fourier duals:

Ihara-Matsumoto \mathcal{M}-Function

The density function $\mathcal{M}_{\sigma}(w)$ and the function $\tilde{\mathcal{M}}_{\sigma}(z)$ are Fourier duals:

$$
\tilde{\mathcal{M}}_{\sigma}(z)=\sum_{\mathfrak{a} \subset \mathfrak{O}_{k}} \lambda_{z}(\mathfrak{a}) \lambda_{\bar{z}}(\mathfrak{a}) \mathrm{N}(\mathfrak{a})^{-2 \sigma}
$$

Mourtada-Murty Theorem

Theorem (2015)

Let $\sigma \geq 1 / 2+\epsilon$, and assume $G R H$. Let $\mathcal{F}(Y)$ denote the set of the fundamental discriminants in the interval $[-Y, Y]$ and let $N(Y)=\# \mathcal{F}(Y)$. Then, there exists a probability density function M_{σ}, such that

$$
\lim _{Y \rightarrow \infty} \frac{1}{N(Y)} \#\left\{d \in \mathcal{F}(Y) ; \quad\left(L_{d}^{\prime} / L_{d}\right)(\sigma) \leq z\right\}=\int_{-\infty}^{z} M_{\sigma}(t) d t
$$

Moreover, the characteristic function $\varphi_{F_{\sigma}}(y)$ of the asymptotic distribution function $F_{\sigma}(z)=\int_{-\infty}^{z} M_{\sigma}(t) d t$ is given by

$$
\varphi_{F_{\sigma}}(y)=\prod_{p}\left(\frac{1}{p+1}+\frac{p}{2(p+1)} \exp \left(-\frac{i y \log p}{p^{\sigma}-1}\right)+\frac{p}{2(p+1)} \exp \left(\frac{i y \log p}{p^{\sigma}+1}\right)\right)
$$

A Value-Distribution Result for Cubic Hecke L-functions

The Setup

- Let $k=\mathbb{Q}\left(\zeta_{3}\right)$ and $\mathfrak{O}_{k}=\mathbb{Z}\left[\zeta_{3}\right]$ be its ring of integers.

The Setup

- Let $k=\mathbb{Q}\left(\zeta_{3}\right)$ and $\mathfrak{O}_{k}=\mathbb{Z}\left[\zeta_{3}\right]$ be its ring of integers.
- k has class number 1 , and any ideal \mathfrak{a} in \mathfrak{O}_{k} with $\left(\mathfrak{a}, 3 \mathfrak{O}_{k}\right)=1$ has a unique generator a, with $a \equiv 1(\bmod 3)$.

The Setup

- Let $k=\mathbb{Q}\left(\zeta_{3}\right)$ and $\mathfrak{O}_{k}=\mathbb{Z}\left[\zeta_{3}\right]$ be its ring of integers.
- k has class number 1 , and any ideal \mathfrak{a} in \mathfrak{O}_{k} with $\left(\mathfrak{a}, 3 \mathfrak{O}_{k}\right)=1$ has a unique generator a, with $a \equiv 1(\bmod 3)$.
- The $\langle c\rangle$-ray class group of k is denoted by $H(\langle c\rangle)=I(\langle c\rangle) / P(\langle c\rangle)$.

The Setup

- Let $k=\mathbb{Q}\left(\zeta_{3}\right)$ and $\mathfrak{O}_{k}=\mathbb{Z}\left[\zeta_{3}\right]$ be its ring of integers.
- k has class number 1 , and any ideal \mathfrak{a} in \mathfrak{O}_{k} with $\left(\mathfrak{a}, 3 \mathfrak{O}_{k}\right)=1$ has a unique generator a, with $a \equiv 1(\bmod 3)$.
- The $\langle c\rangle$-ray class group of k is denoted by $H(\langle c\rangle)=I(\langle c\rangle) / P(\langle c\rangle)$.
- For $\chi_{c} \in \hat{H}_{\langle c\rangle}$ and $\Re(s)>1$, let

$$
L\left(s, \chi_{c}\right)=\sum_{\mathfrak{a}} \frac{\chi_{c}(\mathfrak{a})}{\mathrm{N}(\mathfrak{a})^{s}},
$$

be the Hecke L-function associated with the Hecke character χ_{c}. For a non-trivial χ_{c}, this L-function has an analytic continuation to the whole complex plane.

The family \mathcal{C}

Consider the set
$\mathcal{C}:=\left\{c \in \mathfrak{O}_{k} ; c \neq 1\right.$ is square free and $\left.c \equiv 1(\bmod \langle 9\rangle)\right\}$.

The family \mathcal{C}

Consider the set

$$
\mathcal{C}:=\left\{c \in \mathfrak{O}_{k} ; c \neq 1 \text { is square free and } c \equiv 1(\bmod \langle 9\rangle)\right\} .
$$

Useful Estimate:

$$
N^{*}(Y)=\sum_{c \in \mathcal{C}} \exp \left(-\frac{\mathrm{N}(c)}{Y}\right) \sim \frac{3 \operatorname{res}_{s=1} \zeta_{k}(s)}{4\left|H_{\langle 9\rangle}\right| \zeta_{k}(2)} Y
$$

The family \mathcal{C}

Consider the set

$$
\mathcal{C}:=\left\{c \in \mathfrak{O}_{k} ; c \neq 1 \text { is square free and } c \equiv 1(\bmod \langle 9\rangle)\right\} .
$$

Useful Estimate:

$$
N^{*}(Y)=\sum_{c \in \mathcal{C}} \exp \left(-\frac{\mathrm{N}(c)}{Y}\right) \sim \frac{3 \mathrm{res}_{s=1} \zeta_{k}(s)}{4\left|H_{\langle 9\rangle}\right| \zeta_{k}(2)} Y
$$

One can show that, for $c \in \mathcal{C}$, the cubic residue symbol $\chi_{c}()=.(\dot{\bar{c}})_{3}$ is an ideal class (Hecke) character.

The Setup

- For $c \in \mathcal{C}$ and $\chi_{c}(\cdot)=\left(\frac{c}{9}\right)$, let

$$
L_{c}(s)=L\left(s, \chi_{c}\right) L\left(s, \bar{\chi}_{c}\right) .
$$

The Setup

- For $c \in \mathcal{C}$ and $\chi_{c}(\cdot)=(\stackrel{c}{\cdot})$, let

$$
L_{c}(s)=L\left(s, \chi_{c}\right) L\left(s, \bar{\chi}_{c}\right) .
$$

- For $\Re(s)>1$, we have

$$
L_{c}(s)=\frac{3^{2 s}}{\left(3^{s}-1\right)^{2}} \sum_{\substack{a, b \\ a \equiv 1 \\ b \equiv 1(\bmod \langle 3\rangle) \\(\bmod \langle 3\rangle)}} \frac{\left(\frac{c}{a}\right)_{3}\left(\frac{\bar{c}}{b}\right)_{3}}{\mathrm{~N}(a b)^{s}} .
$$

The Setup

- For $c \in \mathcal{C}$ and $\chi_{c}(\cdot)=(\stackrel{c}{\cdot})$, let

$$
L_{c}(s)=L\left(s, \chi_{c}\right) L\left(s, \bar{\chi}_{c}\right) .
$$

- For $\Re(s)>1$, we have

$$
L_{c}(s)=\frac{3^{2 s}}{\left(3^{s}-1\right)^{2}} \sum_{\substack{a, b \\ a \equiv 1(\bmod \langle 3\rangle) \\ b \equiv 1(\bmod \langle 3\rangle)}} \frac{\left(\frac{c}{a}\right)_{3}\left(\frac{\bar{c}}{b}\right)_{3}}{\mathrm{~N}(a b)^{s}} .
$$

- We set

$$
\mathcal{L}_{c}(s)= \begin{cases}\log L_{c}(s) & (\text { Case 1) } \\ \left(L_{c}^{\prime} / L_{c}\right)(s) & (\text { Case 2) }\end{cases}
$$

The function $L_{c}(s)$

Another look at $L_{c}(s)$:
The function $L_{c}(s)$ is the quotient of the Dedekind zeta functions associated with the extension $k\left(c^{1 / 3}\right) / k$. In other words,

$$
L_{c}(s)=\frac{\zeta_{k\left(c^{1 / 3}\right)}(s)}{\zeta_{k}(s)}
$$

The function $L_{c}(s)$

Another look at $L_{c}(s)$:
The function $L_{c}(s)$ is the quotient of the Dedekind zeta functions associated with the extension $k\left(c^{1 / 3}\right) / k$. In other words,

$$
L_{c}(s)=\frac{\zeta_{k\left(c^{1 / 3}\right)}(s)}{\zeta_{k}(s)}
$$

The classical $L_{d}(s)$:
The quotient of the Dedekind zeta functions associated with the extension $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$ is

$$
L_{d}(s)=\frac{\zeta_{\mathbb{Q}(\sqrt{d})}(s)}{\zeta(s)}
$$

The Problem

Let z be a real number, and let $\sigma>\frac{1}{2}$ be fixed. Does $\mathcal{L}_{c}(\sigma)$ possess an asymptotic distribution function F_{σ} ? We are interested in studying the asymptotic behaviour as $Y \rightarrow \infty$ of

$$
\frac{1}{\mathcal{N}(Y)} \#\left\{c \in \mathcal{C}: \mathrm{N}(c) \leq Y \text { and } \mathcal{L}_{c}(\sigma) \leq z\right\}
$$

The Main Result

Theorem (Akabry - H.)

Let $\sigma \geq 1 / 2+\epsilon$. Let $\mathcal{N}(Y)$ be the the number of elements $c \in \mathcal{C}$ with norm not exceeding Y. There exists a smooth density function M_{σ} such that

$$
\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}(Y)} \#\left\{c \in \mathcal{C}: \mathrm{N}(c) \leq Y \quad \text { and } \quad \mathcal{L}_{c}(\sigma) \leq z\right\}=\int_{-\infty}^{z} M_{\sigma}(t) d t
$$

The asymptotic distribution function $F_{\sigma}(z)=\int_{-\infty}^{z} M_{\sigma}(t) d t$ can be constructed as an infinite convolution over prime ideals \mathfrak{p} of k,

$$
F_{\sigma}(z)=*_{\mathfrak{p}} F_{\sigma, \mathfrak{p}}(z),
$$

The Main Result

Theorem (Continuation)

Moreover, the density function M_{σ} can be constructed as the inverse Fourier transform of the characteristic function $\varphi_{F_{\sigma}}(y)$, which in (Case 1) is given by

$$
\begin{aligned}
\varphi_{F_{\sigma}}(y) & =\exp \left(-2 i y \log \left(1-3^{-\sigma}\right)\right) \\
& \prod_{\mathfrak{p} \nmid\langle 3\rangle}\left(\frac{1}{\mathrm{~N}(\mathfrak{p})+1}+\frac{1}{3} \frac{\mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})+1} \sum_{j=0}^{2} \exp \left(-2 i y \log \left|1-\frac{\zeta_{3}^{j}}{\mathrm{~N}(\mathfrak{p})^{\sigma}}\right|\right)\right)
\end{aligned}
$$

and in (Case 2) is given by

$$
\begin{aligned}
\varphi_{F_{\sigma}}(y)= & \exp \left(-2 i y \frac{\log 3}{3^{\sigma}-1}\right) \\
& \prod_{\mathfrak{p} \nmid\langle \rangle\rangle}\left(\frac{1}{\mathrm{~N}(\mathfrak{p})+1}+\frac{1}{3} \frac{\mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})+1} \sum_{j=0}^{2} \exp \left(-2 i y \Re\left(\frac{\zeta_{3}^{j} \log \mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})^{\sigma}-\zeta_{3}^{j}}\right)\right)\right)
\end{aligned}
$$

The case $\sigma=1$

Theorem (Brauer-Siegel)

If K ranges over a sequence of number fields Galois over \mathbb{Q}, degree N_{K} and absolute value of discriminant $\left|D_{K}\right|$, such that $N_{K} / \log \left|D_{K}\right|$ tends to 0 , then we have

$$
\log \left(h_{K} R_{K}\right) \sim \log \left|D_{K}\right|^{1 / 2}
$$

where h_{K} is the class number of K, and R_{K} is the regulator of K.

The case $\sigma=1$

- By the class number formula we know that

$$
L_{c}(1)=\frac{(2 \pi)^{2} \sqrt{3} h_{c} R_{c}}{\sqrt{\left|D_{c}\right|}}
$$

where h_{c}, R_{c}, and $D_{c}=(-3)^{5}(\mathrm{~N}(c))^{2}$ are respectively the class number, the regulator, and the discriminant of the cubic extension $K_{c}=k\left(c^{1 / 3}\right)$.

- By the Brauer-Siegel theorem

$$
\log \left(h_{c} R_{c}\right) \sim \log \left|D_{c}\right|^{1 / 2}
$$

as $\mathrm{N}(c) \rightarrow \infty$.

The case $\sigma=1$

Corollary

Let $E(c)=\log \left(h_{c} R_{c}\right)-\log \left|D_{c}\right|^{1 / 2}$. Then

$$
\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}(Y)} \#\{c \in \mathcal{C}: \mathrm{N}(c) \leq Y \quad \text { and } \quad E(c) \leq z\}=\int_{-\infty}^{\bar{z}} M_{1}(t) d t
$$

where $\bar{z}=z+\log \left(4 \sqrt{3} \pi^{2}\right)$ and $M_{1}(t)$ is the smooth function described in the main result (Case 1) for $\sigma=1$.

The case $\sigma=1$

- The Euler-Kronecker constant of a number field K is defined by

$$
\gamma_{K}=\lim _{s \rightarrow 1}\left(\frac{\zeta_{K}^{\prime}(s)}{\zeta_{K}(s)}+\frac{1}{s-1}\right)
$$

- We have

$$
\frac{L_{c}^{\prime}(1)}{L_{c}(1)}=\gamma_{K_{c}}-\gamma_{k}
$$

The case $\sigma=1$

Corollary

There exists a smooth function $M_{1}(t)$ (as described in the main result (Case 2) for $\sigma=1$) such that
$\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}(Y)} \#\left\{c \in \mathcal{C}: \mathrm{N}(c) \leq Y\right.$ and $\left.\gamma_{K_{c}} \leq z\right\}=\int_{-\infty}^{\bar{z}} M_{1}(t) d t$, where $\bar{z}=z-\gamma_{k}$.

The Key Lemma

Lemma

Let f be a real arithmetic function. Suppose that

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{\infty} e^{i y f(n)} e^{-n / N}}{\sum_{n=1}^{\infty} e^{-n / N}}=\widetilde{M}(y),
$$

which is continuous at 0 . Then f possesses a distribution function F. In this case, M is the characteristic function of F.

The Key Lemma

Lemma

Let f be a real arithmetic function. Suppose that

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{\infty} e^{i y f(n)} e^{-n / N}}{\sum_{n=1}^{\infty} e^{-n / N}}=\widetilde{M}(y)
$$

which is continuous at 0 . Then f possesses a distribution function F. In this case, M is the characteristic function of F. Moreover, if

$$
|\widetilde{M}(y)| \leq \exp \left(-\eta|y|^{\gamma}\right),
$$

for some $\eta, \gamma>0$, then $F(z)=\int_{-\infty}^{z} M(t) d t$ for a smooth function M, where

$$
M(z)=(1 / 2 \pi) \int_{\mathbb{R}} \exp (-i z y) \widetilde{M}(y) d y
$$

The Steps of The Proof

- Step One: Establishing
$\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}^{*}(Y)} \sum_{c \in \mathcal{C}}^{\star} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y)=\widetilde{M}_{\sigma}(y)$,
- The method is based on the previous works of Luo and Ihara-Matsumoto.
- A version of Polya-Vinogradov inequality and a version of large sieve inequality both due to Heath-Brown are two main ingredients.
- Another ingredient is a zero density estimate proved by Blomer, Goldmakher, and Louvel.

The Steps of The Proof

- Step One: Establishing
$\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}^{*}(Y)} \sum_{c \in \mathcal{C}}^{\star} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y)=\widetilde{M}_{\sigma}(y)$,
- The method is based on the previous works of Luo and Ihara-Matsumoto.
- A version of Polya-Vinogradov inequality and a version of large sieve inequality both due to Heath-Brown are two main ingredients.
- Another ingredient is a zero density estimate proved by Blomer, Goldmakher, and Louvel.
- Step Two: Finding a product formula for $\widetilde{M}_{\sigma}(y)$.

The Steps of The Proof

- Step One: Establishing
$\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}^{*}(Y)} \sum_{c \in \mathcal{C}}^{\star} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y)=\widetilde{M}_{\sigma}(y)$,
- The method is based on the previous works of Luo and Ihara-Matsumoto.
- A version of Polya-Vinogradov inequality and a version of large sieve inequality both due to Heath-Brown are two main ingredients.
- Another ingredient is a zero density estimate proved by Blomer, Goldmakher, and Louvel.
- Step Two: Finding a product formula for $\widetilde{M}_{\sigma}(y)$.
- Step Three: Proving that $\widetilde{M}_{\sigma}(y)$ has exponential decay following a method devised by Wintner and employed by Mourtada and Murty.

Step 1

Proposition

Fix $\sigma \geq 1 / 2+\epsilon$ and $y \in \mathbb{R}$. Then

$$
\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}^{*}(Y)} \sum_{c \in \mathcal{C}}^{\star} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y)=\widetilde{M}_{\sigma}(y)
$$

where \star means that the sum is over c such that $L_{c}(\sigma) \neq 0$.

Step 1

Proposition

Fix $\sigma \geq 1 / 2+\epsilon$ and $y \in \mathbb{R}$. Then

$$
\lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}^{*}(Y)} \sum_{c \in \mathcal{C}}^{\star} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y)=\widetilde{M}_{\sigma}(y)
$$

where \star means that the sum is over c such that $L_{c}(\sigma) \neq 0$. The function $\widetilde{M}_{\sigma}(y)$ is given by

$$
\sum_{r_{1}, r_{2} \geq 0} \frac{\lambda_{y}\left(\left\langle 1-\zeta_{3}\right\rangle^{r_{1}}\right) \lambda_{y}\left(\left\langle 1-\zeta_{3}\right\rangle^{r_{2}}\right)}{3^{\left(r_{1}+r_{2}\right) \sigma}}
$$

$$
\times \sum_{\substack{\operatorname{gcd}(\mathfrak{a b m},\langle 3\rangle)=1 \\ \operatorname{gcd}(\mathfrak{a}, \mathfrak{b})=1}} \frac{\lambda_{y}\left(\mathfrak{a}^{3} \mathfrak{m}\right) \lambda_{y}\left(\mathfrak{b}^{3} \mathfrak{m}\right)}{\mathrm{N}\left(\mathfrak{a}^{3} \mathfrak{b}^{3} \mathfrak{m}^{2}\right)^{\sigma} \prod_{\substack{\mathfrak{p} \mid \mathfrak{a} \mathfrak{b w} \\ \mathfrak{p} \text { prime }}}\left(1+\mathrm{N}(\mathfrak{p})^{-1}\right)}
$$

For $\Re(s)>1$, we have

$$
L\left(s, \chi_{c}\right)=\prod_{\mathfrak{p}}\left(1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}\right)^{-1}
$$

For $\Re(s)>1$, we have

$$
\begin{gathered}
L\left(s, \chi_{c}\right)=\prod_{\mathfrak{p}}\left(1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}\right)^{-1} \\
\frac{L^{\prime}}{L}\left(s, \chi_{c}\right)=-\sum_{\mathfrak{p}} \frac{\chi_{c}(\mathfrak{p}) \log (\mathrm{N}(\mathfrak{p})) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}
\end{gathered}
$$

For $\Re(s)>1$, we have

$$
\begin{gathered}
L\left(s, \chi_{c}\right)=\prod_{\mathfrak{p}}\left(1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}\right)^{-1} \\
\frac{L^{\prime}}{L}\left(s, \chi_{c}\right)=-\sum_{\mathfrak{p}} \frac{\chi_{c}(\mathfrak{p}) \log (\mathrm{N}(\mathfrak{p})) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}} \\
\exp \left(i y \frac{L^{\prime}}{L}\left(s, \chi_{c}\right)\right)=\prod_{\mathfrak{p}} \exp \left(-\frac{i y \log (\mathrm{~N}(\mathfrak{p})) \chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}\right)
\end{gathered}
$$

For $\Re(s)>1$, we have

$$
\begin{gathered}
L\left(s, \chi_{c}\right)=\prod_{\mathfrak{p}}\left(1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}\right)^{-1} \\
\frac{L^{\prime}}{L}\left(s, \chi_{c}\right)=-\sum_{\mathfrak{p}} \frac{\chi_{c}(\mathfrak{p}) \log (\mathrm{N}(\mathfrak{p})) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}} \\
\exp \left(i y \frac{L^{\prime}}{L}\left(s, \chi_{c}\right)\right)=\prod_{\mathfrak{p}} \exp \left(-\frac{i y \log (\mathrm{~N}(\mathfrak{p})) \chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}\right)
\end{gathered}
$$

Write $\exp \left(\frac{x t}{1-t}\right)=\sum_{r=0}^{\infty} G_{r}(x) t^{r}$ for $(|t|<1)$. Hence,

For $\Re(s)>1$, we have

$$
\begin{gathered}
L\left(s, \chi_{c}\right)=\prod_{\mathfrak{p}}\left(1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}\right)^{-1} \\
\frac{L^{\prime}}{L}\left(s, \chi_{c}\right)=-\sum_{\mathfrak{p}} \frac{\chi_{c}(\mathfrak{p}) \log (\mathrm{N}(\mathfrak{p})) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}} \\
\exp \left(i y \frac{L^{\prime}}{L}\left(s, \chi_{c}\right)\right)=\prod_{\mathfrak{p}} \exp \left(-\frac{i y \log (\mathrm{~N}(\mathfrak{p})) \chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}{1-\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}}\right)
\end{gathered}
$$

Write $\exp \left(\frac{x t}{1-t}\right)=\sum_{r=0}^{\infty} G_{r}(x) t^{r}$ for $(|t|<1)$. Hence,

$$
\exp \left(i y \frac{L^{\prime}}{L}\left(s, \chi_{c}\right)\right)=\prod_{\mathfrak{p}} \sum_{r=0}^{\infty} G_{r}(-i y \log (\mathrm{~N}(\mathfrak{p})))\left(\chi_{c}(\mathfrak{p}) \mathrm{N}(\mathfrak{p})^{-s}\right)^{r}
$$

The Arithmetic Function λ_{y}

We define λ_{y} to be an arithmetic multiplicative function on \mathfrak{O}_{k} :

The Arithmetic Function λ_{y}

We define λ_{y} to be an arithmetic multiplicative function on \mathfrak{O}_{k} : In (Case 1),

$$
\begin{gathered}
\lambda_{y}\left(\mathfrak{p}^{\alpha_{\mathfrak{p}}}\right)=H_{\alpha_{\mathfrak{p}}}\left(\frac{i y}{2}\right) \\
\text { with } H_{0}(u)=1 \text { and } H_{r}(u)=\frac{1}{r!} \prod_{n=1}^{r}(u+n-1)
\end{gathered}
$$

The Arithmetic Function λ_{y}

We define λ_{y} to be an arithmetic multiplicative function on \mathfrak{D}_{k} : In (Case 1),

$$
\begin{gathered}
\lambda_{y}\left(\mathfrak{p}^{\alpha_{\mathfrak{p}}}\right)=H_{\alpha_{\mathfrak{p}}}\left(\frac{i y}{2}\right) \\
\text { with } H_{0}(u)=1 \text { and } H_{r}(u)=\frac{1}{r!} \prod_{n=1}^{r}(u+n-1)
\end{gathered}
$$

In (Case 2),

$$
\lambda_{y}\left(\mathfrak{p}^{\alpha_{\mathfrak{p}}}\right)=G_{\alpha_{\mathfrak{p}}}\left(-\frac{i y}{2} \log \mathrm{~N}(\mathfrak{p})\right)
$$

with $G_{0}(u)=1$ and $G_{r}(u)=\sum_{n=1}^{r} \frac{1}{n!}\binom{r-1}{n-1} u^{n}$.

The Arithmetic Function λ_{y}

We define λ_{y} to be an arithmetic multiplicative function on \mathfrak{D}_{k} : In (Case 1),

$$
\begin{gathered}
\lambda_{y}\left(\mathfrak{p}^{\alpha_{\mathfrak{p}}}\right)=H_{\alpha_{\mathfrak{p}}}\left(\frac{i y}{2}\right) \\
\text { with } H_{0}(u)=1 \text { and } H_{r}(u)=\frac{1}{r!} \prod_{n=1}^{r}(u+n-1) .
\end{gathered}
$$

In (Case 2),

$$
\begin{gathered}
\lambda_{y}\left(\mathfrak{p}^{\alpha_{\mathfrak{p}}}\right)=G_{\alpha_{\mathfrak{p}}}\left(-\frac{i y}{2} \log \mathrm{~N}(\mathfrak{p})\right) \\
\text { with } G_{0}(u)=1 \text { and } G_{r}(u)=\sum_{n=1}^{r} \frac{1}{n!}\binom{r-1}{n-1} u^{n}
\end{gathered}
$$

Moreover, for any $\epsilon>0$ and all $|y| \leq R$, we have

$$
\lambda_{y}(\mathfrak{a}) \ll_{\epsilon, R} \mathrm{~N}(\mathfrak{a})^{\epsilon}
$$

More on Step 1

- For $\sigma>1$ we have

$$
\exp \left(i y \mathcal{L}_{c}(\sigma)\right)=\sum_{\mathfrak{a}, \mathfrak{b} \subset \mathfrak{D}_{k}} \frac{\lambda_{y}(\mathfrak{a}) \lambda_{y}(\mathfrak{b}) \chi_{c}\left(\mathfrak{a} \mathfrak{b}^{2}\right)}{\mathrm{N}(\mathfrak{a} \mathfrak{b})^{\sigma}}
$$

More on Step 1

- For $\sigma>1$ we have

$$
\exp \left(i y \mathcal{L}_{c}(\sigma)\right)=\sum_{\mathfrak{a}, \mathfrak{b} \subset \mathfrak{D}_{k}} \frac{\lambda_{y}(\mathfrak{a}) \lambda_{y}(\mathfrak{b}) \chi_{c}\left(\mathfrak{a b}{ }^{2}\right)}{\mathrm{N}(\mathfrak{a b})^{\sigma}}
$$

- For $\frac{1}{2}<\sigma \leq 1$ and $c \in \mathcal{Z}^{\text {c }}$ we have

$$
\begin{aligned}
\exp \left(i y \mathcal{L}_{c}(\sigma)\right)= & \sum_{\mathfrak{a}, \mathfrak{b} \subset \mathfrak{G}_{k}} \frac{\lambda_{y}(\mathfrak{a}) \lambda_{y}(\mathfrak{b}) \chi_{c}\left(\mathfrak{a b}{ }^{2}\right)}{\mathrm{N}(\mathfrak{a})^{\sigma} \mathrm{N}(\mathfrak{b})^{\sigma}} \exp \left(-\frac{\mathrm{N}(\mathfrak{a b})}{X}\right) \\
& -\frac{1}{2 \pi i} \int_{L} \exp \left(i y \mathcal{L}_{c}(\sigma+u)\right) \Gamma(u) X^{u} d u
\end{aligned}
$$

for an appropriate contour L.

Figure: The rectangle $R_{Y, \epsilon, A}$

An element $c \in \mathcal{Z}^{c}$, if $L\left(s, \chi_{c}\right) \neq 0$ in $R_{Y, \epsilon, A}$. Otherwise, $c \in \mathcal{Z}$.

We prove that

$$
\begin{aligned}
& \sum_{c \in \mathcal{C}}^{\star} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y) \\
& =\sum_{c \in \mathcal{Z}^{c}} \exp \left(i y \mathcal{L}_{c}(\sigma)\right) \exp (-\mathrm{N}(c) / Y)+O\left(Y^{\delta}\right) \\
& =(I)-(I I)+(I I I)+O\left(Y^{\delta}\right)
\end{aligned}
$$

with

$$
(I)=\sum_{c \in \mathcal{C}}\left(\sum_{\mathfrak{a}, \mathfrak{b} \subset \mathfrak{D}_{k}} \frac{\lambda_{y}(\mathfrak{a}) \lambda_{y}(\mathfrak{b}) \chi_{c}\left(\mathfrak{a b} \mathfrak{b}^{2}\right)}{\mathrm{N}(\mathfrak{a})^{\sigma} \mathrm{N}(\mathfrak{b})^{\sigma}} \exp \left(-\frac{\mathrm{N}(\mathfrak{a b})}{X}\right)\right) \exp \left(-\frac{\mathrm{N}(c)}{Y}\right) .
$$

Step 2

Proposition

In (Case 1) we have

$$
\begin{aligned}
\widetilde{M}_{\sigma}(y) & =\exp \left(-2 i y \log \left(1-3^{-\sigma}\right)\right) \\
& \times \prod_{\mathfrak{p} \nmid 3\rangle}\left(\frac{1}{\mathrm{~N}(\mathfrak{p})+1}+\frac{1}{3}\left(\frac{\mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})+1}\right) \sum_{j=0}^{2} \exp \left(-2 i y \log \left|1-\frac{\zeta_{3}^{j}}{\mathrm{~N}(\mathfrak{p})^{\sigma}}\right|\right)\right) .
\end{aligned}
$$

In (Case 2) we have

$$
\begin{aligned}
\widetilde{M}_{\sigma}(y) & =\exp \left(-2 i y \frac{\log 3}{3^{\sigma}-1}\right) \\
& \times \prod_{\mathfrak{p} \not\langle 3\rangle}\left(\frac{1}{\mathrm{~N}(\mathfrak{p})+1}+\frac{1}{3}\left(\frac{\mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})+1}\right) \sum_{j=0}^{2} \exp \left(-2 i y \Re\left(\frac{\zeta_{3}^{j} \log \mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})^{\sigma}-\zeta_{3}^{j}}\right)\right)\right) .
\end{aligned}
$$

Step 3

Proposition

Let $\delta>0$ be given, and fix $\sigma>\frac{1}{2}$. For sufficiently large values of y, we have

$$
\left|\widetilde{M}_{\sigma}(y)\right| \leq \exp \left(-C|y|^{\frac{1}{\sigma}-\delta}\right)
$$

where C is a positive constant that depends only on σ and δ.

More on Step 3

Recall in (Case 2)

$$
\widetilde{M}_{\sigma}(y)=\exp \left(-2 i y \frac{\log 3}{3^{\sigma}-1}\right) \prod_{\mathfrak{p} \nmid 3\rangle} \widetilde{M}_{\sigma, \mathfrak{p}}(y),
$$

where

$$
\widetilde{M}_{\sigma, \mathfrak{p}}(y)=\frac{1}{\mathrm{~N}(\mathfrak{p})+1}+\frac{1}{3}\left(\frac{\mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})+1}\right) \sum_{j=0}^{2} \exp \left(-2 i y \log \mathrm{~N}(\mathfrak{p}) \Re\left(\frac{\zeta_{3}^{j}}{\mathrm{~N}(\mathfrak{p})^{\sigma}-\zeta_{3}^{j}}\right)\right.
$$

We prove that

$$
\left|\widetilde{M}_{\sigma, \mathfrak{p}}(y)\right| \leq \frac{1}{\mathrm{~N}(\mathfrak{p})+1}+0.3256\left(\frac{\mathrm{~N}(\mathfrak{p})}{\mathrm{N}(\mathfrak{p})+1}\right) \leq 0.8256 .
$$

for all \mathfrak{p} with

$$
\frac{2 y \log 2 y}{2.36 \sigma} \leq \mathrm{N}(\mathfrak{p})^{\sigma} \leq \frac{2 y \log 2 y}{1.8 \sigma}
$$

The number of prime ideals satisfying this inequality is

$$
\Pi_{\sigma}(y) \ggg_{\sigma} y^{\frac{1}{\sigma}} .
$$

The number of prime ideals satisfying this inequality is

$$
\Pi_{\sigma}(y) \ggg_{\sigma} y^{\frac{1}{\sigma}} .
$$

It follows that

$$
\left|\widetilde{M}_{\sigma}(y)\right|=\prod_{\mathfrak{p}}\left|\widetilde{M}_{\sigma, \mathfrak{p}}(y)\right| \leq 0.8256^{\Pi_{\sigma}(y)} \leq \exp \left(-C y^{\frac{1}{\sigma}}\right),
$$

where C is a positive constant depending only on σ.

Thank you for listening!

