#### The Euler-Kronecker constants of number fields

Amir Akbary University of Lethbridge

> ANTD XI May 2019

The Euler-Kronecker constants of number fields

# Euler-Kronecker Constant

#### Definition

#### Let

$$\zeta_K(s) = \frac{\alpha_K}{s-1} + c_0(K) + c_1(K)(s-1) + c_2(K)(s-1)^2 + \cdots$$

Then

$$\gamma_K = \frac{c_0(K)}{\alpha_K}$$

is called the Euler-Kronecker constant of K.

# Ihara's prime counting function

#### Definition

For x > 1, set

$$\Phi_K(x) = \frac{1}{x-1} \sum_{N(\mathfrak{p})^k \le x} \left( \frac{x}{N(\mathfrak{p})^k} - 1 \right) \log N(\mathfrak{p}).$$

#### Note

This is analogous to the de la Valle Poussin function

$$\sum_{n < x} \frac{\Lambda(n)}{n} - \frac{1}{x} \sum_{n < x} \Lambda(n).$$

#### The Euler-Kronecker constants of number fields

### Characteristic features of $\Phi_K(x)$

$$\Phi_K(x) = \frac{1}{x-1} \sum_{N(\mathfrak{p})^k \le x} \left( \frac{x}{N(\mathfrak{p})^k} - 1 \right) \log N(\mathfrak{p})$$

- It is a continuous function of x.
- The oscillating term in the explicit formula for  $\Phi_K(x)$  has the form

$$-\frac{1}{2(x-1)}\sum_{\rho}\frac{(x^{\rho}-1)(x^{1-\rho}-1)}{\rho(1-\rho)}$$

#### The Euler-Kronecker constants of number fields

# Ihara's Theorem



#### Theorem (Ihara, 2006)

(i) Assume the Generalized Riemann Hypothesis (GRH) for  $\zeta_K(s)$ . Then there exist positive constants  $c_1, c_2$  such that

$$-c_1 \log |d_K| < \gamma_K < c_2 \log \log |d_K|.$$

(ii) We have

$$\gamma_K = \lim_{x \to \infty} (\log x - \Phi_K(x) - 1).$$

## Ihara's Observation

$$\begin{split} \gamma_K &= \lim_{x \to \infty} (\log x - \Phi_K(x) - 1) \\ \Phi_K(x) &= \frac{1}{x - 1} \sum_{N(\mathfrak{p})^k \le x} \left( \frac{x}{N(\mathfrak{p})^k} - 1 \right) \log N(\mathfrak{p}) \end{split}$$

The function  $\Phi_K(x)$  is an "arithmetic approximation" of  $\log x$ . If the field K has many prime p with small norm, then  $\Phi_K(x)$ increases faster than  $\log x$ , at least for a while. Thus, for such K, the value of  $\gamma_K$  can be "conspicuously negative".

# Example 1: Cyclic extensions of degree p contained in $\mathbb{Q}(\zeta_{p^2})$

- For odd prime p, let K<sub>p</sub> be the unique cyclic extension of degree p over Q contained in Q(ζ<sub>p<sup>2</sup></sub>).
- $K_p$  is totally real with  $d_{K_p} = p^{2p-2}$ .
- $\ell$  splits completely in  $K_p \iff \ell^{p-1} \equiv 1 \pmod{p^2}$

 $\iff p \text{ is a Wieferich prime in base } \ell.$ 

# Example 1: Cyclic extensions of degree p contained in $\mathbb{Q}(\zeta_{p^2})$

• 
$$W(p) = \{\ell < p; \ \ell^{p-1} \equiv 1 \pmod{p^2}\}.$$

• The list of non-empty W(p) with p < 100 is

$$W(11) = \{3\}, W(43) = \{19\}, W(59) = \{53\},\$$

$$W(71) = \{11\}, W(79) = \{31\}, W(97) = \{53\}.$$

• 
$$2 \in W(1093)$$
 and  $2 \in W(3511)$ .

# Example 1: Cyclic extensions of degree p contained in $\mathbb{Q}(\zeta_{p^2})$

Euler-Kronecker constants of global fields and primes with small norms 445

Table 1.

| р    | $\gamma_p'''$ | Υp        | ερ         |
|------|---------------|-----------|------------|
| 3    | 1.76673       | 1.76741   | 0.00270354 |
| 5    | 1.6981        | 1.69927   | 0.0122214  |
| 7    | 1.84553       | 1.84723   | 0.032591   |
| 11   | -1.43302      | -1.43032  | 0.0577191  |
| 13   | 0.468641      | 0.472016  | 0.107757   |
| 17   | 3.5781        | 3.58283   | 0.210134   |
| 19   | 4.53435       | 4.53974   | 0.25948    |
| 23   | 4.47064       | 4.47731   | 0.346256   |
| 29   | 2.32308       | 2.33163   | 0.46998    |
| 31   | 4.61964       | 4.62896   | 0.540857   |
| 37   | 5.6061        | 5.6175    | 0.70755    |
| 41   | 4.2761        | 4.28883   | 0.805977   |
| 43   | -0.929757     | -0.916538 | 0.81594    |
| 47   | -2.6783       | -2.66375  | 0.91587    |
| 53   | 6.05396       | 6.071     | 1.17309    |
| 59   | 0.428977      | 0.447956  | 1.30809    |
| 61   | 4.62301       | 4.64288   | 1.40864    |
| 67   | 6.03706       | 6.05918   | 1.6139     |
| 71   | -12.8724      | -12.8496  | 1.57591    |
| 73   | 5.99832       | 6.02267   | 1.81104    |
| 79   | -3.85765      | -3.83146  | 1.92486    |
| 83   | 1.21387       | 1.24177   | 2.10718    |
| 89   | 7.51911       | 7.54953   | 2.37227    |
| 97   | -5.02725      | -4.99428  | 2.54395    |
| 101  | 2.75934       | 2.79415   | 2.75782    |
| 103  | -2.22423      | -2.18885  | 2.7859     |
| 107  | 5.75378       | 5.79103   | 3.00361    |
| 109  | 5.59505       | 5.63306   | 3.07587    |
| 1    |               |           |            |
| 1069 | -4.10435      | -3.63507  | 51.7394    |
| 1087 | -5.5176       | -5.03975  | 52.7617    |
| 1091 | -3.11201      | -2.63214  | 53.0135    |
| 1093 | -748.191      | -747.74   | 46.4644    |
| 1097 | 3.54759       | 4.03061   | 53.4188    |
| 1103 | 7.84455       | 8.33062   | 53.8033    |
| 1109 | -0.666736     | -0.178118 | 54.0736    |
|      |               |           |            |
| 3499 | 9.81761       | 11.521    | 206.78     |
| 3511 | -2423.07      | -2421.45  | 185.836    |
| 3517 | 7.66195       | 9.37476   | 207.986    |

#### The Euler-Kronecker constants of number fields

# A Problem

#### Problem

Does  $\gamma_{K(p)}$  possess an asymptotic distribution function? Is it possible to construct a certain density function M, such that $\lim_{Y \to \infty} \frac{\#\{p \le Y; \ \gamma_{K(p)} \le z\}}{\#\{p \le Y\}} = \int_{-\infty}^{z} M(t) dt?$ 

The following are due to Ihara under the assumption of GRH.

• For imaginary quadratic fields,  $0 < \gamma_K < 1$  holds for  $|d_K| \le 43$ , but  $\gamma_K < 0$  for  $d_K = -47, -56$ . For example

$$-0.072 < \gamma_{\mathbb{Q}(\sqrt{-47})} < -0.053.$$

 $\bullet\,$  For real quadratic fields,  $0<\gamma_K<2$  holds for  $d_K\leq 100,$  but

$$-0.181 < \gamma_{\mathbb{Q}(\sqrt{481})} < -0.167.$$

### Example 2: Quadratic fields

#### Theorem (Mourtada-Murty, 2015)

Assume GRH. Let  $\mathcal{F}(Y)$  denote the set of the fundamental discriminants in the interval [-Y, Y] and let  $N(Y) = \#\mathcal{F}(Y)$ . Then, there exists a probability density function M, such that

$$\lim_{Y \to \infty} \frac{1}{N(Y)} \# \{ d \in \mathcal{F}(Y); \ \gamma_{\mathbb{Q}(\sqrt{d})} \leq z \} = \int_{-\infty}^{z - \gamma} M(t) dt.$$

Moreover, the characteristic function  $\varphi_{F_{\sigma}}(y)$  of the asymptotic distribution function  $F_{\sigma}(z) = \int_{-\infty}^{z} M(t) dt$  is given by

$$\varphi_{F_{\sigma}}(y) = \prod_{p} \left( \frac{1}{p+1} + \frac{p}{2(p+1)} \exp\left(-\frac{iy\log p}{p^{\sigma}-1}\right) + \frac{p}{2(p+1)} \exp\left(\frac{iy\log p}{p^{\sigma}+1}\right) \right)$$

# Example 3: Cubic extensions of $\mathbb{Q}(\sqrt{-3})$

- $k = \mathbb{Q}(\sqrt{-3}).$
- $\mathfrak{O}_k = \mathbb{Z}[\zeta_3]$ ,  $\zeta_3 = e^{\frac{2\pi i}{3}}$ .
- Consider the set

 $\mathcal{C} := \{ c \in \mathfrak{O}_k; \ c \neq 1 \text{ is square free and } c \equiv 1 \pmod{\langle 9 \rangle} \}.$ 

• For  $c \in \mathcal{C}$  consider the extension  $k(c^{1/3})/k$ .

# Example 3: Cubic extensions of $\mathbb{Q}(\sqrt{-3})$

#### Theorem (A. - Hamieh, 2018)

Let  $\mathcal{N}(Y)$  be the the number of elements  $c \in \mathcal{C}$  with norm not exceeding Y. There exists a smooth function  $M_1(t)$  such that

$$\lim_{Y \to \infty} \frac{1}{\mathcal{N}(Y)} \# \{ c \in \mathcal{C} : \mathcal{N}(c) \le Y \text{ and } \gamma_{K_c} \le z \} = \int_{-\infty}^{\overline{z}} M_1(t) dt,$$

where  $\overline{z} = z - \gamma_k$ .

# Example 4: Cyclotomic extensions $\mathbb{Q}(\zeta_q)$

- For prime q denote  $\gamma_{\mathbb{Q}(\zeta_q)}$  by  $\gamma_q$ .
- $d_{\mathbb{Q}(\zeta_a)} = q^{q-2}$ .
- Ihara's general bounds imply that, under GRH, there exist positive integers  $c_1$  and  $c_2$  such that

$$-c_1 q \log q < \gamma_q < c_2 \log q.$$

• Since primes of small norms in a cyclotomic field have size q so for q large we expect that  $\gamma_q > 0$ . So the lower bound  $-c_1 q \log q$  appears to be far from optimal.

# Example 4: Cyclotomic extensions $\mathbb{Q}(\zeta_q)$

#### Ihara's Conjecture

1)  $\gamma_q > 0$ . 2) For fixed  $\epsilon > 0$  and q sufficiently large we have  $\frac{1}{2} - \epsilon \leq \frac{\gamma_q}{\log q} \leq \frac{3}{2} + \epsilon.$ 

#### Theorem (Ford-Luca-Moree, 2014)

1) We have  $\gamma_{964477901} = -0.1823...$ 2) Under the assumption of the Hardy-Littlewood conjecture, there are infinitely many prime q for which  $\gamma_q < 0$ . Moreover,

$$\liminf_{q \to \infty} \frac{\gamma_q}{\log q} = -\infty.$$

# Example 4: Cyclotomic extensions $\mathbb{Q}(\zeta_q)$

#### Hardy-Littlewood Conjecture

Suppose  $\mathcal{A}$  is an admissible set (i.e., there is no prime p such that  $p \mid n \prod_{i=1}^{s} (a_i n + 1)$  for every  $n \ge 1$ ). Then the number of primes  $n \le x$  such that  $n, a_1 n + 1, \cdots, a_s n + 1$  are all prime  $\gg x/(\log x)^{s+1}$ .

# An appearance of $\gamma_q$ in studying some inequalities equivalent to the GRH

#### Notation

- $\varphi(n)$  is Euler's function.
- $\bullet~\gamma$  is the Euler-Mascheroni constant.
- $p_i$  denotes the *i*-th prime
- $(N_k)$  denotes the sequence of primorials, where

$$N_k = \prod_{i=1}^k p_i$$

is the k-th primorial.

# Nicolas' Criterion for the Riemann hypothesis

#### Nicolas' Criterion (1983)

The Riemann hypothesis is true if and only if there are at most finitely  $k\in\mathbb{N}$  for which

$$\frac{N_k}{\rho(N_k)\log\log N_k} \le e^{\gamma}.$$

### Question

#### Question

Can we develop a similar theorem for the Generalized Riemann Hypothesis (i.e., all the non-trivial zeros of  $\zeta_K(s)$  are located on the critical line  $\Re(s) = 1/2$ .)?

# Joint Work With Forrest Francis (UNSW, Canberra)



#### Theorem (A. -Francis, 2018)

Let  $q \leq 10$  or q = 12, 14. The GRH for the Dedekind zeta function of  $\mathbb{Q}(\zeta_q)$  is true if and only if there are at most finitely  $k \in \mathbb{N}$  for which

$$\frac{N_k}{\varphi(\overline{N}_k)(\log(\varphi(q)\log\overline{N}_k))^{\frac{1}{\varphi(q)}}} \leq \frac{1}{C(q,1)}.$$

### The Primorials in $S_{q,a}$

- $S_{q,a} = \{n \in \mathbb{N} ; p \mid n \implies p \equiv a \pmod{q}\}$
- The k-th primorial in  $S_{q,a}$

$$\overline{N}_k \stackrel{\text{def}}{=} N_{q,a}(k) = \prod_{i=1}^k \overline{p}_i,$$

where  $\overline{p}_i$  is the *i*-th prime in the arithmetic progression  $a \pmod{q}$ .

### Mertens' Theorem in AP

Theorem (Williams/ Languasco and Zaccagnini)

Let  $x \ge 2$  and  $q, a \in \mathbb{N}$  be coprime. Then,

$$\prod_{\substack{p \le x \\ p \equiv a \pmod{q}}} \left(1 - \frac{1}{p}\right) \sim \frac{C(q, a)}{\left(\log x\right)^{\frac{1}{\varphi(q)}}},$$

as  $x \to \infty$ , where

$$C(q,a)^{\varphi(q)} = e^{-\gamma} \prod_{p} \left(1 - \frac{1}{p}\right)^{\alpha(p;q,a)}$$

and

$$\alpha(p;q,a) = \begin{cases} \varphi(q) - 1 & \text{if } p \equiv a \pmod{q}, \\ -1 & \text{otherwise.} \end{cases}$$

#### The Euler-Kronecker constants of number fields

#### Theorem (A. - Francis, 2018)

Let  $q \leq 10$  or q = 12, 14. The GRH for the Dedekind zeta function of  $\mathbb{Q}(\zeta_q)$  is true if and only if there are at most finitely  $k \in \mathbb{N}$  for which

$$\frac{N_k}{\varphi(\overline{N}_k)(\log(\varphi(q)\log\overline{N}_k))^{\frac{1}{\varphi(q)}}} \leq \frac{1}{C(q,1)}.$$

- Under the assumption of GRH, the proof uses an explicit formula involving the zeros of Dirilchlet *L*-functions for an auxiliary function.
- The proof relies on computation of

$$\mathcal{F}_q := \sum_{\chi} \sum_{\rho \in \mathcal{Z}(\chi')} \frac{1}{\rho(1-\rho)}$$

for certain values of q, which are closely related to  $\gamma_q$ .

• We have

$$\mathcal{F}_q = \sum_{\substack{d|q\\d\neq 1}} \varphi^*(d) \log \frac{d}{\pi} + 2\gamma_q - \varphi(q)(\gamma + \log 2) - \log \pi + 2.$$

#### Theorem (A. - Francis, 2018)

Assume GRH for the Dedekind zeta function of  $\mathbb{Q}(\zeta_q)$ . Then there are at most finitely  $k \in \mathbb{N}$  for which

$$\frac{\overline{N}_k}{\varphi(\overline{N}_k)(\log(\varphi(q)\log\overline{N}_k))^{\frac{1}{\varphi(q)}}} \le \frac{1}{C(q,1)}$$

is satisfied if and only if

$$\limsup_{x \to \infty} \sum_{\chi} \sum_{\rho \in \mathcal{Z}(\chi')} \frac{x^{i\Im(\rho)}}{\rho(\rho-1)} < 2\mathcal{R}_{q,1}.$$

#### Notation

- $\bullet \ \mathcal{Z}(\chi) = \{\rho \in \mathbb{C} \ ; \ L(\rho,\chi) = 0, \ \Re(\rho) \geq 0 \ \text{and} \ \rho \neq 0 \}.$
- $\chi'$  denotes the primitive Dirichlet character which induces the Dirichlet character  $\chi$ .

• 
$$\mathcal{R}_{q,1} = \#\{b \in (\mathbb{Z}/q\mathbb{Z})^{\times} \mid b^2 \equiv 1 \pmod{q}\}.$$

#### Theorem (A. - Francis, 2018)

Assume GRH for the Dedekind zeta function of  $\mathbb{Q}(\zeta_q)$ . Then there are at most finitely  $k \in \mathbb{N}$  for which

$$\frac{\overline{N}_k}{\varphi(\overline{N}_k)(\log(\varphi(q)\log\overline{N}_k))^{\frac{1}{\varphi(q)}}} \le \frac{1}{C(q,1)}$$

is satisfied if and only if

$$\limsup_{x \to \infty} \sum_{\chi} \sum_{\rho \in \mathcal{Z}(\chi')} \frac{x^{i\Im(\rho)}}{\rho(\rho-1)} < 2\mathcal{R}_{q,1}.$$

• We speculate that

$$\limsup_{x \to \infty} \sum_{\chi} \sum_{\rho \in \mathcal{Z}(\chi')} \frac{x^{i\Im(\rho)}}{\rho(\rho-1)} = \sum_{\chi} \sum_{\rho \in \mathcal{Z}(\chi')} \frac{1}{\rho(1-\rho)} := \mathcal{F}_q.$$

• We have

$$\mathcal{F}_q = \sum_{\substack{d|q\\d\neq 1}} \varphi^*(d) \log \frac{d}{\pi} + 2\gamma_q - \varphi(q)(\gamma + \log 2) - \log \pi + 2.$$

• Since  $\gamma_q$  does not get "conspicuously negative" we speculate that the number of q for which GRH is equivalent to a Nicolas type inequality is finite.