# The Euler-Kronecker constants of number fields 

Amir Akbary<br>University of Lethbridge

ANTD XI
May 2019

## Euler-Kronecker Constant

## Definition

Let

$$
\zeta_{K}(s)=\frac{\alpha_{K}}{s-1}+c_{0}(K)+c_{1}(K)(s-1)+c_{2}(K)(s-1)^{2}+\cdots
$$

Then

$$
\gamma_{K}=\frac{c_{0}(K)}{\alpha_{K}}
$$

is called the Euler-Kronecker constant of $K$.

## Ihara's prime counting function

## Definition

For $x>1$, set

$$
\Phi_{K}(x)=\frac{1}{x-1} \sum_{N(\mathfrak{p})^{k} \leq x}\left(\frac{x}{N(\mathfrak{p})^{k}}-1\right) \log N(\mathfrak{p})
$$

## Note

This is analogous to the de la Valle Poussin function

$$
\sum_{n<x} \frac{\Lambda(n)}{n}-\frac{1}{x} \sum_{n<x} \Lambda(n)
$$

## Characteristic features of $\Phi_{K}(x)$

$$
\Phi_{K}(x)=\frac{1}{x-1} \sum_{N(\mathfrak{p})^{k} \leq x}\left(\frac{x}{N(\mathfrak{p})^{k}}-1\right) \log N(\mathfrak{p})
$$

- It is a continuous function of $x$.
- The oscillating term in the explicit formula for $\Phi_{K}(x)$ has the form

$$
-\frac{1}{2(x-1)} \sum_{\rho} \frac{\left(x^{\rho}-1\right)\left(x^{1-\rho}-1\right)}{\rho(1-\rho)} .
$$

## Ihara's Theorem



## Theorem (Ihara, 2006)

(i) Assume the Generalized Riemann Hypothesis (GRH) for $\zeta_{K}(s)$. Then there exist positive constants $c_{1}, c_{2}$ such that

$$
-c_{1} \log \left|d_{K}\right|<\gamma_{K}<c_{2} \log \log \left|d_{K}\right| .
$$

(ii) We have

$$
\gamma_{K}=\lim _{x \rightarrow \infty}\left(\log x-\Phi_{K}(x)-1\right) .
$$

## Ihara's Observation

$$
\begin{gathered}
\gamma_{K}=\lim _{x \rightarrow \infty}\left(\log x-\Phi_{K}(x)-1\right) \\
\Phi_{K}(x)=\frac{1}{x-1} \sum_{N(\mathfrak{p})^{k} \leq x}\left(\frac{x}{N(\mathfrak{p})^{k}}-1\right) \log N(\mathfrak{p})
\end{gathered}
$$

The function $\Phi_{K}(x)$ is an "arithmetic approximation" of $\log x$. If the field $K$ has many prime $\mathfrak{p}$ with small norm, then $\Phi_{K}(x)$ increases faster than $\log x$, at least for a while. Thus, for such $K$, the value of $\gamma_{K}$ can be "conspicuously negative".

## Example 1: Cyclic extensions of degree $p$ contained in

 $\mathbb{Q}\left(\zeta_{p^{2}}\right)$- For odd prime $p$, let $K_{p}$ be the unique cyclic extension of degree $p$ over $\mathbb{Q}$ contained in $\mathbb{Q}\left(\zeta_{p^{2}}\right)$.
- $K_{p}$ is totally real with $d_{K_{p}}=p^{2 p-2}$.
- $\ell$ splits completely in $K_{p} \Longleftrightarrow \ell^{p-1} \equiv 1\left(\bmod p^{2}\right)$
$\Longleftrightarrow p$ is a Wieferich prime in base $\ell$.


## Example 1: Cyclic extensions of degree $p$ contained in

 $\mathbb{Q}\left(\zeta_{p^{2}}\right)$- $W(p)=\left\{\ell<p ; \ell^{p-1} \equiv 1\left(\bmod p^{2}\right)\right\}$.
- The list of non-empty $W(p)$ with $p<100$ is

$$
\begin{gathered}
W(11)=\{3\}, W(43)=\{19\}, W(59)=\{53\}, \\
W(71)=\{11\}, W(79)=\{31\}, W(97)=\{53\} .
\end{gathered}
$$

- $2 \in W(1093)$ and $2 \in W(3511)$.


## Example 1: Cyclic extensions of degree $p$ contained in $\mathbb{Q}\left(\zeta_{p^{2}}\right)$

Euler-Kronecker constants of global fields and primes with small norms

| Table 1. |  |  |  |
| :---: | :---: | :---: | :--- |
| p | $\gamma_{p}^{\prime \prime}$ | $\gamma_{p}^{\prime}$ | $\varepsilon_{p}$ |
| 3 | 1.76673 | 1.76741 | 0.00270354 |
| 5 | 1.6981 | 1.69927 | 0.0122214 |
| 7 | 1.84553 | 1.84723 | 0.032591 |
| 11 | -1.43302 | -1.43032 | 0.0577191 |
| 13 | 0.468641 | 0.472016 | 0.107757 |
| 17 | 3.5781 | 3.58283 | 0.210134 |
| 19 | 4.53435 | 4.53974 | 0.25948 |
| 23 | 4.47064 | 4.47731 | 0.346256 |
| 29 | 2.32308 | 2.33163 | 0.46998 |
| 31 | 4.61964 | 4.62896 | 0.540857 |
| 37 | 5.6061 | 5.6175 | 0.70755 |
| 41 | 4.2761 | 4.28883 | 0.805977 |
| 43 | -0.929757 | -0.916538 | 0.81594 |
| 47 | -2.6783 | -2.66375 | 0.91587 |
| 53 | 6.05396 | 6.071 | 1.17309 |
| 59 | 0.428977 | 0.447956 | 1.30809 |
| 61 | 4.62301 | 4.64288 | 1.40864 |
| 67 | 6.03706 | 6.05918 | 1.6139 |
| 71 | -12.8724 | -12.8496 | 1.57591 |
| 73 | 5.99832 | 6.02267 | 1.81104 |
| 79 | -3.85765 | -3.83146 | 1.92486 |
| 83 | 1.21387 | 1.24177 | 2.10718 |
| 89 | 7.51911 | 7.54953 | 2.37227 |
| 97 | -5.02725 | -4.99428 | 2.54395 |
| 101 | 2.75934 | 2.79415 | 2.75782 |
| 103 | -2.22423 | -2.18885 | 2.7859 |
| 107 | 5.75378 | 5.79103 | 3.00361 |
| 109 | 5.59505 | 5.63306 | 3.07587 |
| 1069 | -4.10435 | -3.63507 | 51.7394 |
| 1087 | -5.5176 | -5.03975 | 52.7617 |
| 1091 | -3.11201 | -2.63214 | 53.0135 |
| 1093 | -748.191 | -747.74 | 46.4644 |
| 1097 | 3.54759 | 4.03061 | 53.4188 |
| 1103 | 7.84455 | 8.33062 | 53.8033 |
| 1109 | -0.666736 | -0.178118 | 54.0736 |
|  |  |  |  |
| 3499 | 9.81761 | 11.521 | 206.78 |
| 3511 | -2423.07 | -2421.45 | 185.836 |
| 3517 | 7.66195 | 9.37476 | 207.986 |
|  |  |  |  |

The Euler-Kronecker constants of number fields

## A Problem

## Problem

Does $\gamma_{K(p)}$ possess an asymptotic distribution function? Is it possible to construct a certain density function $M$, such that

$$
\lim _{Y \rightarrow \infty} \frac{\#\left\{p \leq Y ; \gamma_{K(p)} \leq z\right\}}{\#\{p \leq Y\}}=\int_{-\infty}^{z} M(t) d t ?
$$

## Example 2: Quadratic fields

The following are due to Ihara under the assumption of GRH.

- For imaginary quadratic fields, $0<\gamma_{K}<1$ holds for $\left|d_{K}\right| \leq 43$, but $\gamma_{K}<0$ for $d_{K}=-47,-56$. For example

$$
-0.072<\gamma_{\mathbb{Q}(\sqrt{-47})}<-0.053
$$

- For real quadratic fields, $0<\gamma_{K}<2$ holds for $d_{K} \leq 100$, but

$$
-0.181<\gamma_{\mathbb{Q}(\sqrt{481})}<-0.167
$$

## Example 2: Quadratic fields

## Theorem (Mourtada-Murty, 2015)

Assume GRH. Let $\mathcal{F}(Y)$ denote the set of the fundamental discriminants in the interval $[-Y, Y]$ and let $N(Y)=\# \mathcal{F}(Y)$. Then, there exists a probability density function $M$, such that

$$
\lim _{Y \rightarrow \infty} \frac{1}{N(Y)} \#\left\{d \in \mathcal{F}(Y) ; \gamma_{\mathbb{Q}(\sqrt{d})} \leq z\right\}=\int_{-\infty}^{z-\gamma} M(t) d t
$$

Moreover, the characteristic function $\varphi_{F_{\sigma}}(y)$ of the asymptotic distribution function $F_{\sigma}(z)=\int_{-\infty}^{z} M(t) d t$ is given by

$$
\varphi_{F_{\sigma}}(y)=\prod_{p}\left(\frac{1}{p+1}+\frac{p}{2(p+1)} \exp \left(-\frac{i y \log p}{p^{\sigma}-1}\right)+\frac{p}{2(p+1)} \exp \left(\frac{i y \log p}{p^{\sigma}+1}\right)\right) .
$$

## Example 3: Cubic extensions of $\mathbb{Q}(\sqrt{-3})$

- $k=\mathbb{Q}(\sqrt{-3})$.
- $\mathfrak{O}_{k}=\mathbb{Z}\left[\zeta_{3}\right], \zeta_{3}=e^{\frac{2 \pi i}{3}}$.
- Consider the set

$$
\mathcal{C}:=\left\{c \in \mathfrak{O}_{k} ; c \neq 1 \text { is square free and } c \equiv 1(\bmod \langle 9\rangle)\right\} .
$$

- For $c \in \mathcal{C}$ consider the extension $k\left(c^{1 / 3}\right) / k$.


## Example 3: Cubic extensions of $\mathbb{Q}(\sqrt{-3})$

## Theorem (A. - Hamieh, 2018)

Let $\mathcal{N}(Y)$ be the the number of elements $c \in \mathcal{C}$ with norm not exceeding $Y$. There exists a smooth function $M_{1}(t)$ such that

$$
\begin{aligned}
& \lim _{Y \rightarrow \infty} \frac{1}{\mathcal{N}(Y)} \#\left\{c \in \mathcal{C}: \mathrm{N}(c) \leq Y \text { and } \gamma_{K_{c}} \leq z\right\}=\int_{-\infty}^{\bar{z}} M_{1}(t) d t, \\
& \text { where } \bar{z}=z-\gamma_{k} .
\end{aligned}
$$

## Example 4: Cyclotomic extensions $\mathbb{Q}\left(\zeta_{q}\right)$

- For prime $q$ denote $\gamma_{\mathbb{Q}\left(\zeta_{q}\right)}$ by $\gamma_{q}$.
- $d_{\mathbb{Q}\left(\zeta_{a}\right)}=q^{q-2}$.
- Ihara's general bounds imply that, under GRH, there exist positive integers $c_{1}$ and $c_{2}$ such that

$$
-c_{1} q \log q<\gamma_{q}<c_{2} \log q
$$

- Since primes of small norms in a cyclotomic field have size $q$ so for $q$ large we expect that $\gamma_{q}>0$. So the lower bound $-c_{1} q \log q$ appears to be far from optimal.


## Example 4: Cyclotomic extensions $\mathbb{Q}\left(\zeta_{q}\right)$

```
Ihara's Conjecture
1) }\mp@subsup{\gamma}{q}{}>0
2) For fixed \(\epsilon>0\) and \(q\) sufficiently large we have
```

$$
\frac{1}{2}-\epsilon \leq \frac{\gamma_{q}}{\log q} \leq \frac{3}{2}+\epsilon
$$

## Example 4: Cyclotomic extensions $\mathbb{Q}\left(\zeta_{q}\right)$

Theorem (Ford-Luca-Moree, 2014)

1) We have $\gamma_{964477901}=-0.1823 \ldots$
2) Under the assumption of the Hardy-Littlewood conjecture, there are infinitely many prime $q$ for which $\gamma_{q}<0$. Moreover,

$$
\liminf _{q \rightarrow \infty} \frac{\gamma_{q}}{\log q}=-\infty
$$

## Example 4: Cyclotomic extensions $\mathbb{Q}\left(\zeta_{q}\right)$

## Hardy-Littlewood Conjecture

Suppose $\mathcal{A}$ is an admissible set (i.e., there is no prime $p$ such that $p \mid n \prod_{i=1}^{s}\left(a_{i} n+1\right)$ for every $\left.n \geq 1\right)$. Then the number of primes $n \leq x$ such that $n, a_{1} n+1, \cdots, a_{s} n+1$ are all prime $\gg x /(\log x)^{s+1}$.

An appearance of $\gamma_{q}$ in studying some inequalities equivalent to the GRH

## Notation

- $\varphi(n)$ is Euler's function.
- $\gamma$ is the Euler-Mascheroni constant.
- $p_{i}$ denotes the $i$-th prime
- $\left(N_{k}\right)$ denotes the sequence of primorials, where

$$
N_{k}=\prod_{i=1}^{k} p_{i}
$$

is the $k$-th primorial.

## Nicolas' Criterion for the Riemann hypothesis

## Nicolas' Criterion (1983)

The Riemann hypothesis is true if and only if there are at most finitely $k \in \mathbb{N}$ for which

$$
\frac{N_{k}}{\varphi\left(N_{k}\right) \log \log N_{k}} \leq e^{\gamma} .
$$

## Question

## Question

Can we develop a similar theorem for the Generalized Riemann Hypothesis (i.e., all the non-trivial zeros of $\zeta_{K}(s)$ are located on the critical line $\Re(s)=1 / 2$.)?

## Joint Work With Forrest Francis (UNSW, Canberra)



## GRH Criterion

Theorem (A. -Francis, 2018)
Let $q \leq 10$ or $q=12,14$. The GRH for the Dedekind zeta function of $\mathbb{Q}\left(\zeta_{q}\right)$ is true if and only if there are at most finitely $k \in \mathbb{N}$ for which

$$
\frac{\bar{N}_{k}}{\varphi\left(\bar{N}_{k}\right)\left(\log \left(\varphi(q) \log \bar{N}_{k}\right)\right)^{\frac{1}{\varphi(q)}}} \leq \frac{1}{C(q, 1)} .
$$

## The Primorials in $S_{q, a}$

- $S_{q, a}=\{n \in \mathbb{N} ; p \mid n \Longrightarrow p \equiv a(\bmod q)\}$
- The $k$-th primorial in $S_{q, a}$

$$
\bar{N}_{k} \stackrel{\text { def }}{=} N_{q, a}(k)=\prod_{i=1}^{k} \bar{p}_{i},
$$

where $\bar{p}_{i}$ is the $i$-th prime in the arithmetic progression $a$ $(\bmod q)$.

## Mertens' Theorem in AP

## Theorem (Williams/ Languasco and Zaccagnini)

Let $x \geq 2$ and $q, a \in \mathbb{N}$ be coprime. Then,

$$
\prod_{\substack{p \leq x \\ p \equiv a(\bmod q)}}\left(1-\frac{1}{p}\right) \sim \frac{C(q, a)}{(\log x)^{\frac{1}{\varphi(q)}}},
$$

as $x \rightarrow \infty$, where

$$
C(q, a)^{\varphi(q)}=e^{-\gamma} \prod_{p}\left(1-\frac{1}{p}\right)^{\alpha(p ; q, a)}
$$

and

$$
\alpha(p ; q, a)= \begin{cases}\varphi(q)-1 & \text { if } p \equiv a(\bmod q) \\ -1 & \text { otherwise }\end{cases}
$$

## GRH Criterion

Theorem (A. - Francis, 2018)
Let $q \leq 10$ or $q=12,14$. The GRH for the Dedekind zeta function of $\mathbb{Q}\left(\zeta_{q}\right)$ is true if and only if there are at most finitely $k \in \mathbb{N}$ for which

$$
\frac{\bar{N}_{k}}{\varphi\left(\bar{N}_{k}\right)\left(\log \left(\varphi(q) \log \bar{N}_{k}\right)\right)^{\frac{1}{\varphi(q)}}} \leq \frac{1}{C(q, 1)} .
$$

## GRH Criterion

- Under the assumption of GRH, the proof uses an explicit formula involving the zeros of Dirilchlet $L$-functions for an auxiliary function.
- The proof relies on computation of

$$
\mathcal{F}_{q}:=\sum_{\chi} \sum_{\rho \in \mathcal{Z}\left(\chi^{\prime}\right)} \frac{1}{\rho(1-\rho)}
$$

for certain values of $q$, which are closely related to $\gamma_{q}$.

- We have

$$
\mathcal{F}_{q}=\sum_{\substack{d \mid q \\ d \neq 1}} \varphi^{*}(d) \log \frac{d}{\pi}+2 \gamma_{q}-\varphi(q)(\gamma+\log 2)-\log \pi+2
$$

## GRH Criterion

Theorem (A. - Francis, 2018)
Assume GRH for the Dedekind zeta function of $\mathbb{Q}\left(\zeta_{q}\right)$. Then there are at most finitely $k \in \mathbb{N}$ for which

$$
\frac{\bar{N}_{k}}{\varphi\left(\bar{N}_{k}\right)\left(\log \left(\varphi(q) \log \bar{N}_{k}\right)\right)^{\frac{1}{\varphi(q)}}} \leq \frac{1}{C(q, 1)}
$$

is satisfied if and only if

$$
\limsup _{x \rightarrow \infty} \sum_{\chi} \sum_{\rho \in \mathcal{Z}\left(\chi^{\prime}\right)} \frac{x^{i \Im(\rho)}}{\rho(\rho-1)}<2 \mathcal{R}_{q, 1}
$$

## GRH Criterion

## Notation

- $\mathcal{Z}(\chi)=\{\rho \in \mathbb{C} ; L(\rho, \chi)=0, \Re(\rho) \geq 0$ and $\rho \neq 0\}$.
- $\chi^{\prime}$ denotes the primitive Dirichlet character which induces the Dirichlet character $\chi$.
- $\mathcal{R}_{q, 1}=\#\left\{b \in(\mathbb{Z} / q \mathbb{Z})^{\times} \mid b^{2} \equiv 1(\bmod q)\right\}$.


## GRH Criterion

Theorem (A. - Francis, 2018)
Assume GRH for the Dedekind zeta function of $\mathbb{Q}\left(\zeta_{q}\right)$. Then there are at most finitely $k \in \mathbb{N}$ for which

$$
\frac{\bar{N}_{k}}{\varphi\left(\bar{N}_{k}\right)\left(\log \left(\varphi(q) \log \bar{N}_{k}\right)\right)^{\frac{1}{\varphi(q)}}} \leq \frac{1}{C(q, 1)}
$$

is satisfied if and only if

$$
\limsup _{x \rightarrow \infty} \sum_{\chi} \sum_{\rho \in \mathcal{Z}\left(\chi^{\prime}\right)} \frac{x^{i \Im(\rho)}}{\rho(\rho-1)}<2 \mathcal{R}_{q, 1}
$$

## GRH Criterion

- We speculate that

$$
\limsup _{x \rightarrow \infty} \sum_{\chi} \sum_{\rho \in \mathcal{Z}\left(\chi^{\prime}\right)} \frac{x^{i \Im(\rho)}}{\rho(\rho-1)}=\sum_{\chi} \sum_{\rho \in \mathcal{Z}\left(\chi^{\prime}\right)} \frac{1}{\rho(1-\rho)}:=\mathcal{F}_{q} .
$$

- We have

$$
\mathcal{F}_{q}=\sum_{\substack{d \mid q \\ d \neq 1}} \varphi^{*}(d) \log \frac{d}{\pi}+2 \gamma_{q}-\varphi(q)(\gamma+\log 2)-\log \pi+2
$$

- Since $\gamma_{q}$ does not get "conspicuously negative" we speculate that the number of $q$ for which GRH is equivalent to a Nicolas type inequality is finite.

