6D SCFTs and Group Theory

Tom Rudelius IAS

Based On

- 1502.05405/hep-th
 - with Jonathan Heckman, David Morrison, and Cumrun Vafa
- 1506.06753/hep-th
 - with Jonathan Heckman
- 1601.04078/hep-th
 - with Jonathan Heckman, Alessandro Tomasiello
- 1612.06399/hep-th
 - with Noppadol Mekareeya, Alessandro Tomasiello
- work in progress
 - with Darrin Frey

Thanks to Carl P. Feinberg for financial support of this research.

Outline

- I. Classification of 6D SCFTs
 - i. Tensor Branches/Strings
 - ii. Gauge Algebras/Particles
- II. 6D SCFTs and Homomorphisms

i.
$$\mathfrak{su}(2) \to \mathfrak{g}_{ADE}$$

ii. $\Gamma_{ADE} \to E_8$

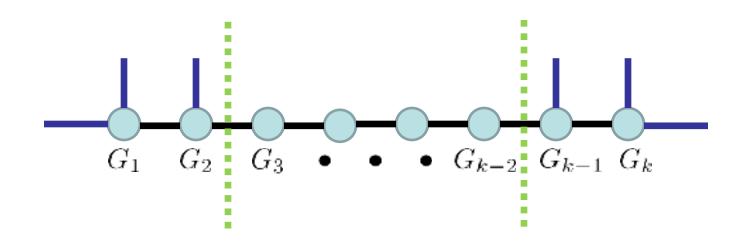
III. Implications for 6D SCFTs

- i. The a-theorem in 6D
- ii. Classification of RG Flows

Classification of 6D SCFTs

Classification of 6D SCFTs

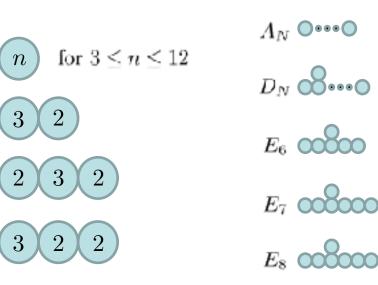
- 6D SCFTs can be classified via F-theory
- Nearly all F-theory conditions can be phrased in field theory terms
- 6D SCFTs = Generalized Quivers

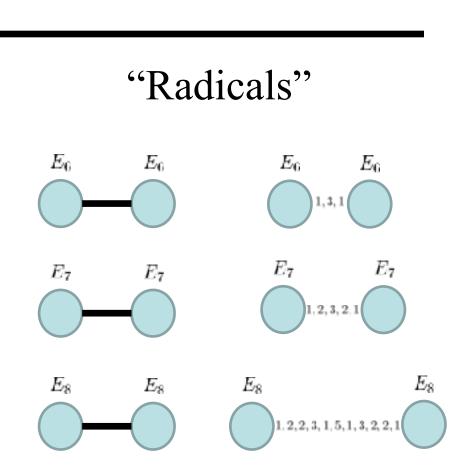


Classification of 6D SCFTs

• Looks like chemistry

"Atoms" c.f. Morrison, Taylor '12





6D Theories and F-theory

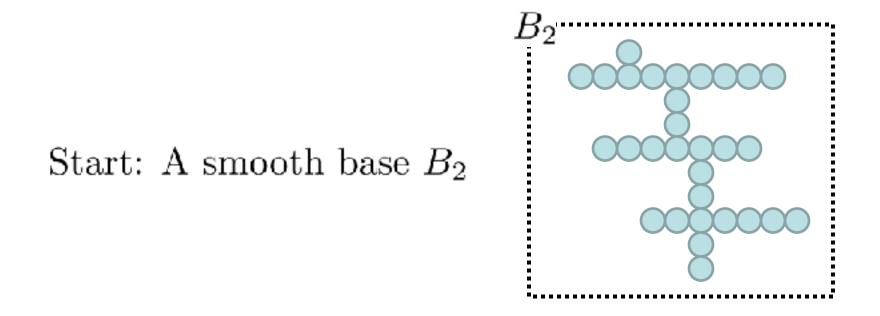
Vafa '96, Vafa Morrison, I/II '96

All known 6D theories have F-theory avatar^{*}

IIB: $\mathbb{R}^{5,1} \times B_2$ with pos. dep. coupling $\tau(z_B)$ $T^2 \to CY_3$ F-theory on $\mathbb{R}^{5,1} \times CY_3$ \downarrow B_2

*up to subtleties involving frozen singularities, see Alessandro's talk

SCFT Limit

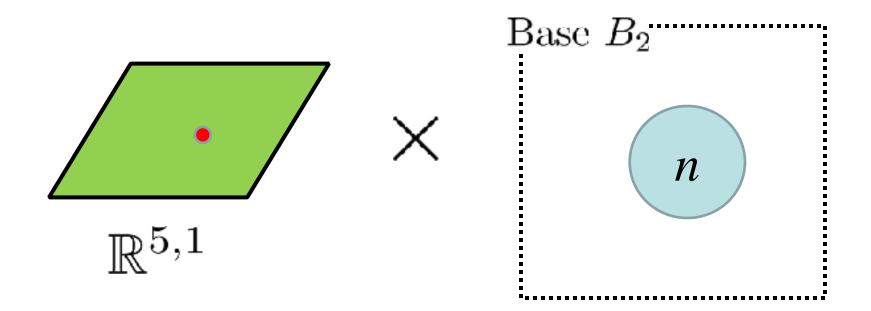


End: To get a CFT, sim. contract curves of B_2

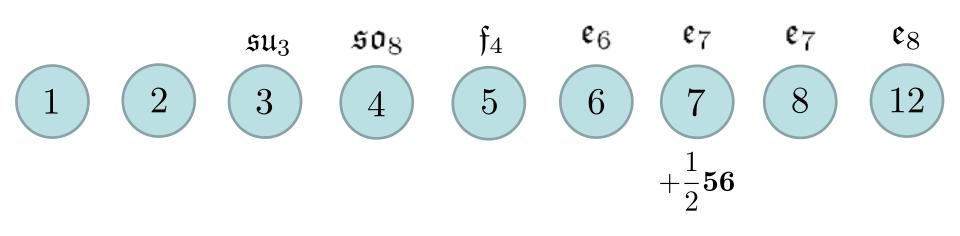


Particles from D7's on a \mathbb{P}^1

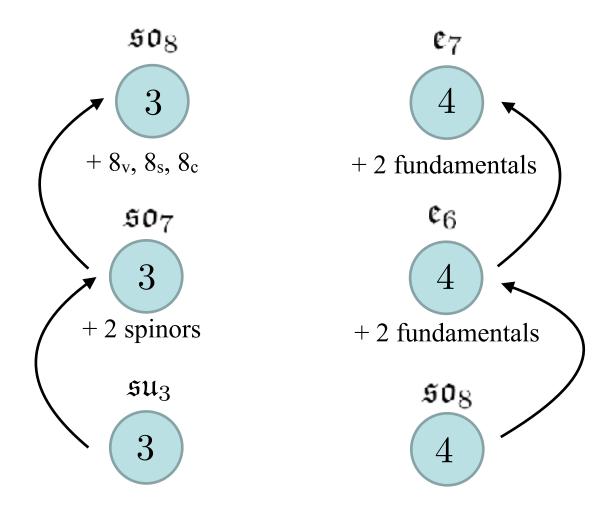
$3 \le n \le 12 \Rightarrow$ always have gauge fields (elliptic fiber is singular: Morrison Taylor '12)



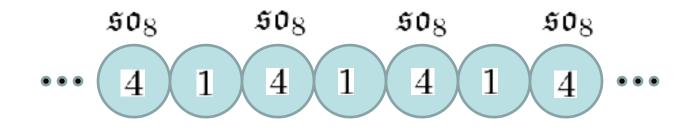
Minimal Gauge Algebras

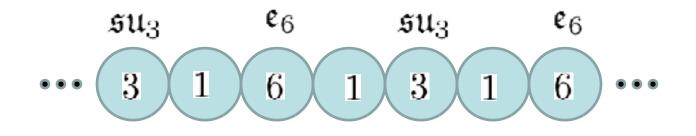


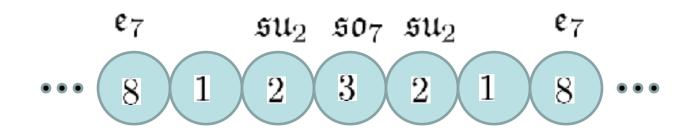
Fiber Enhancements



Examples



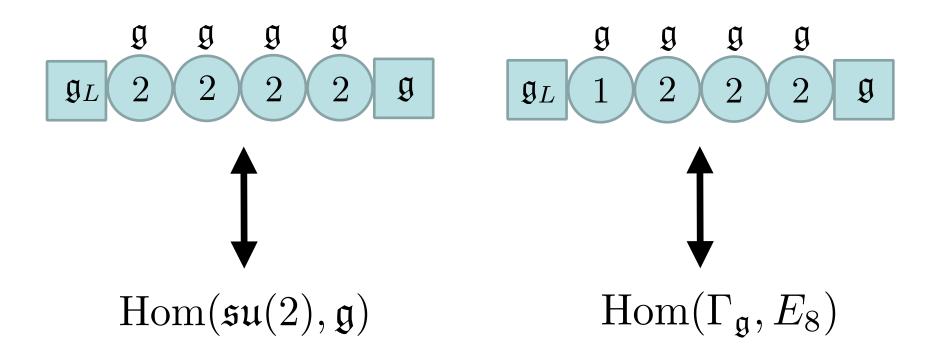


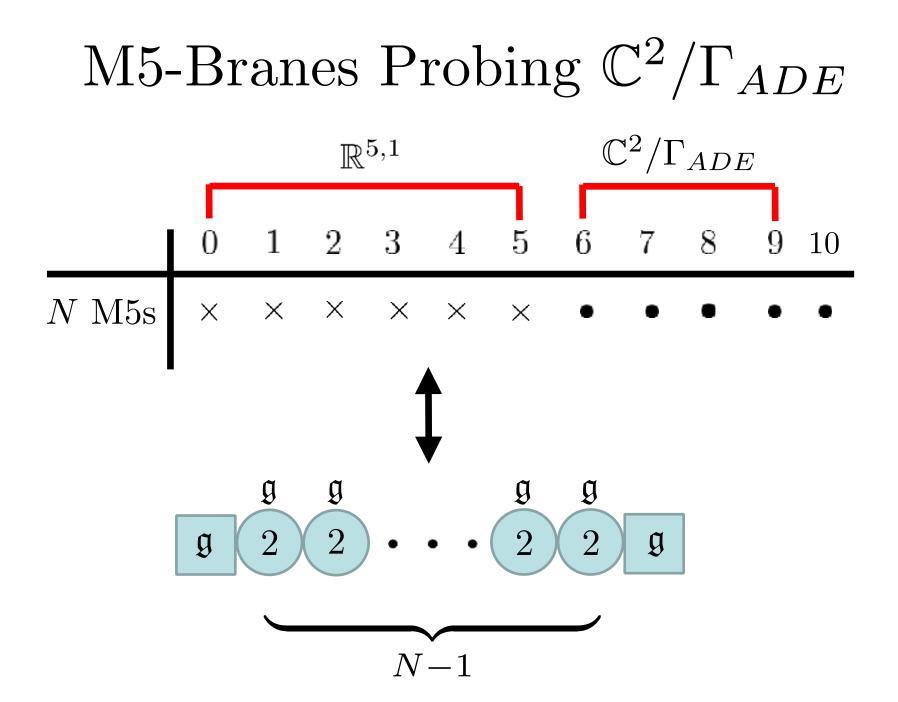


6D SCFTs and Homomorphisms

6D SCFTs and Group Theory

- Large classes of 6D SCFTs have connections to structures in group theory
- The correspondence has been verified explicitly





Nilpotent Deformations

- Matrix of normal deformations Φ characterizes positions of 7-branes
- View intersection points of \mathbb{CP}^1 in base as marked points
- Can let adjoint field Φ have singular behavior at marked points \Rightarrow Hitchin system coupled to defects:

$$\partial_A \Phi = \sum_p \mu_{\mathbb{C}}^{(p)} \delta_{(p)} \quad F + [\Phi, \Phi^{\dagger}] = \sum_p \mu_{\mathbb{R}}^{(p)} \delta_{(p)}$$

Nilpotent Deformations

Split μ_C = μ_s + μ_n, consider nilpotent part μ_n, get su₂ algebra:

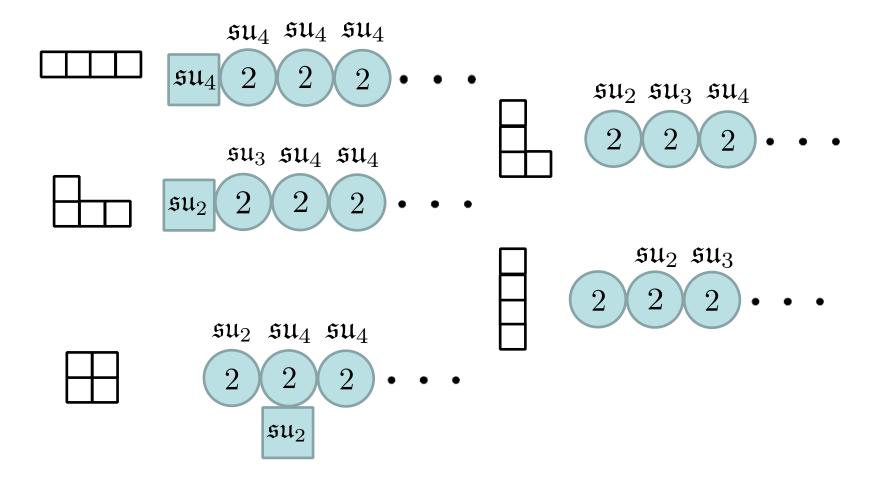
$$J_{+} = \mu_{\mathbb{C}} \qquad J_{-} = \mu_{\mathbb{C}}^{\dagger} \qquad J_{3} = \mu_{\mathbb{R}}$$

- Adjoint vevs $\Phi \sim \mu_{\mathbb{C}} \frac{dz}{z}$
 - \Rightarrow Classified by Hom $(\mathfrak{su}(2), \mathfrak{g})$

(equivalently, by nilpotent orbits J_+)

6D SCFTs and Hom($\mathfrak{su}(2), A_{k-1}$)

 $\operatorname{Hom}(\mathfrak{su}(2), A_{k-1})$ labeled by partitions of k:

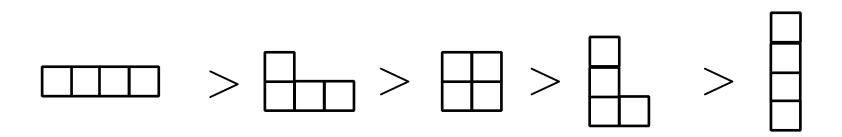


Partial Ordering of Nilpotent Orbits

 $\mathcal{O}_{\mu} \geq \mathcal{O}_{\nu} \Leftrightarrow \mathcal{O}_{\mu} \supset \mathcal{O}_{\nu}$

 $\Leftrightarrow \mu \ge \nu$

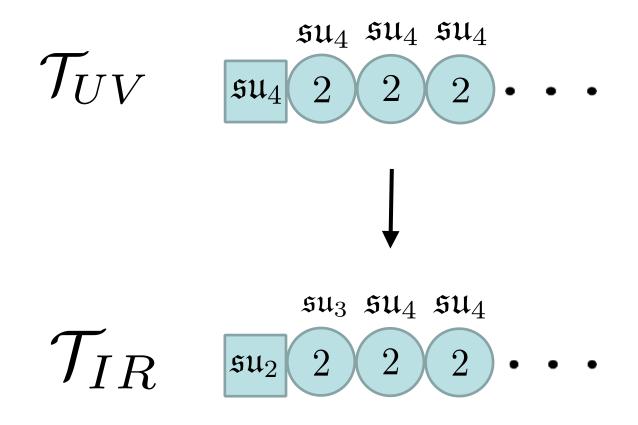
 $\Leftrightarrow \sum_{i=1}^{m} \mu_i^T \ge \sum_{i=1}^{m} \nu_i^T \forall m$



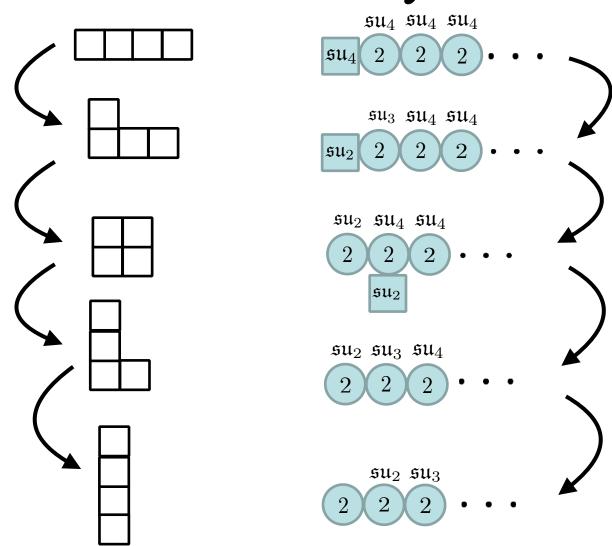
Renormalization Group Flows

Short Distance High Energy \mathcal{T}_{UV} \mathcal{T}_{IR} Low Energy Long Distance

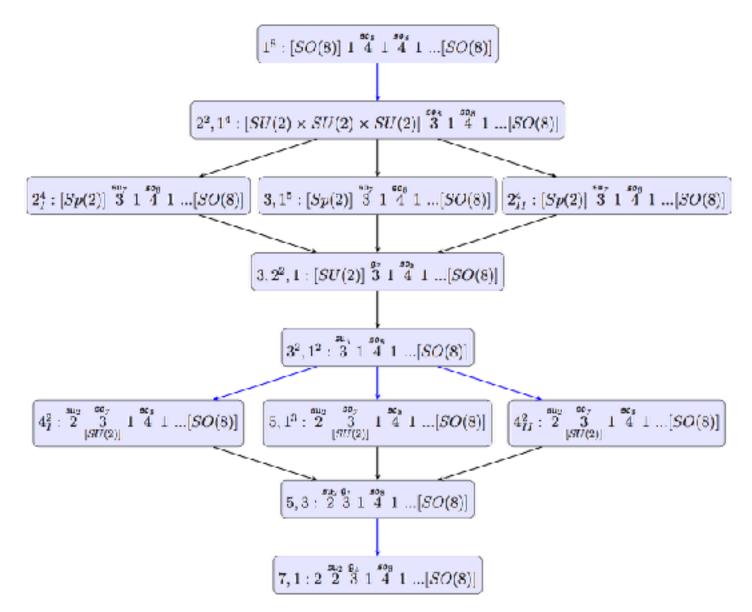
RG Flows in 6D SCFTs



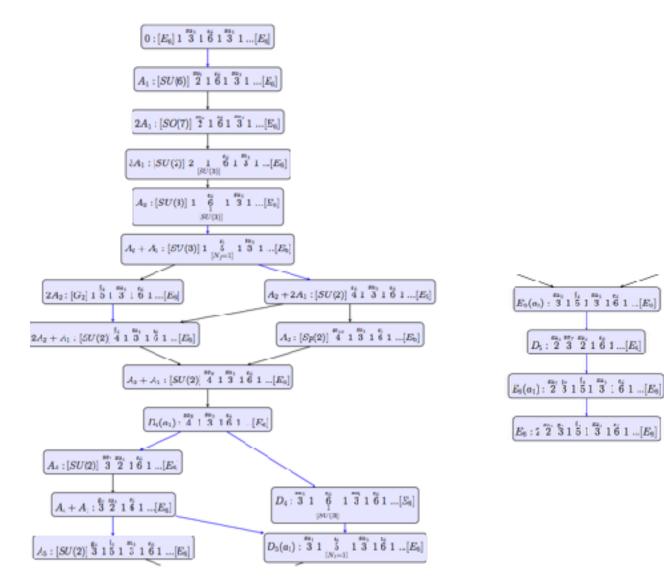
Nilpotent Hierarchy Matches RG Hierarchy!



6D SCFTs and Hom $(\mathfrak{su}(2), D_k)$

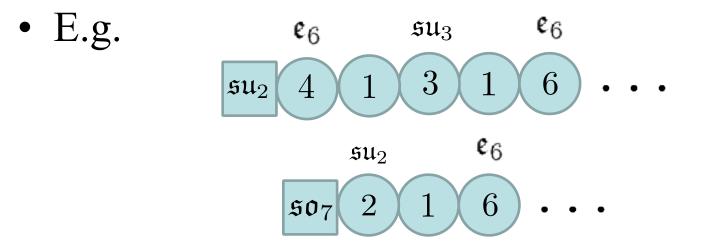


6D SCFTs and Hom $(\mathfrak{su}(2), E_6)$



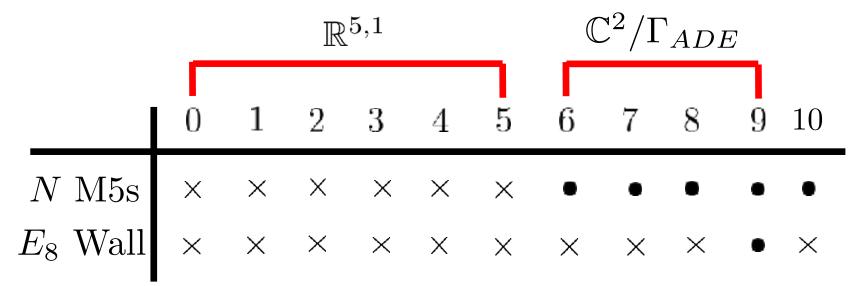
Nilpotent Orbits and Global Symmetries

- Consider nilpotent orbit $\mathcal{O}_{\mu} \in \mathfrak{g}$
- Let $F(\mu)$ be subgroup of G commuting with nilpotent element
- Claim: $F(\mu)$ is the global symmetry of the 6D SCFT associated with \mathcal{O}_{μ}



6D SCFTs and Hom (Γ_{ADE}, E_8)

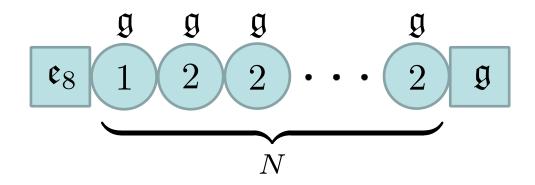
• Consider M5-branes probing Horava-Witten wall and $\mathbb{C}^2/\Gamma_{ADE}$ singularity



• Boundary data \simeq flat E_8 connections on S^3/Γ_{ADE} $\simeq \operatorname{Hom}(\Gamma_{ADE}, E_8)$

6D SCFTs and Hom (Γ_{ADE}, E_8)

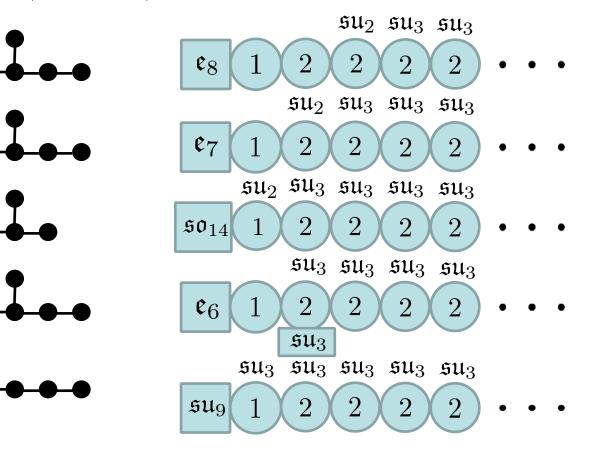
• For trivial boundary data, get 6D SCFT:



• For non-trivial boundary data, global symmetry is broken to a subgroup

6D SCFTs and Hom (Γ_{ADE}, E_8)

E.g. Γ_{A_2} , Hom (\mathbb{Z}_3, E_8) :

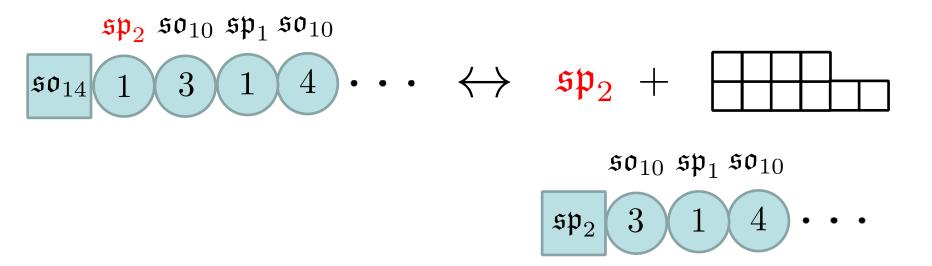


Classification of Hom (Γ_{ADE}, E_8)

- A_n case: done (Kac '83)
- E_8 case: done (Frey '98)
- D_n case: open!
- E_6 case: open!
- E_7 case: open!

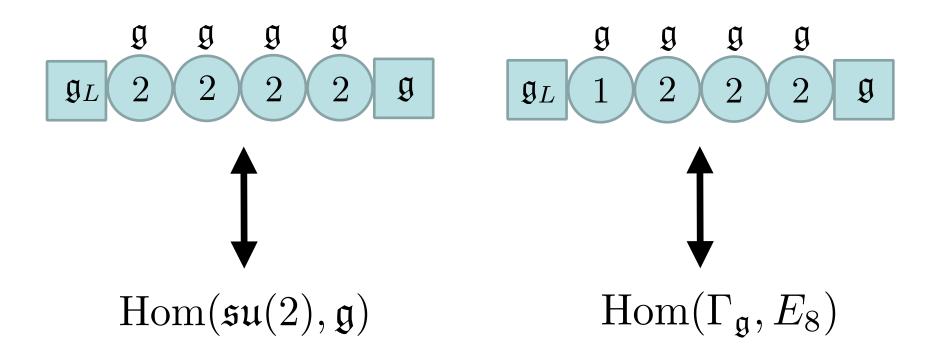
Classification of Hom (Γ_{D_n}, E_8)

- Hom $(\Gamma_{D_n} \simeq \text{Dic}_{n-2}, E_8)$ are uniquely labeled by a nilpotent orbit of D_n together with a simple Lie algebra!
- E.g. $\Gamma_{D_5} \rightarrow E_8$:

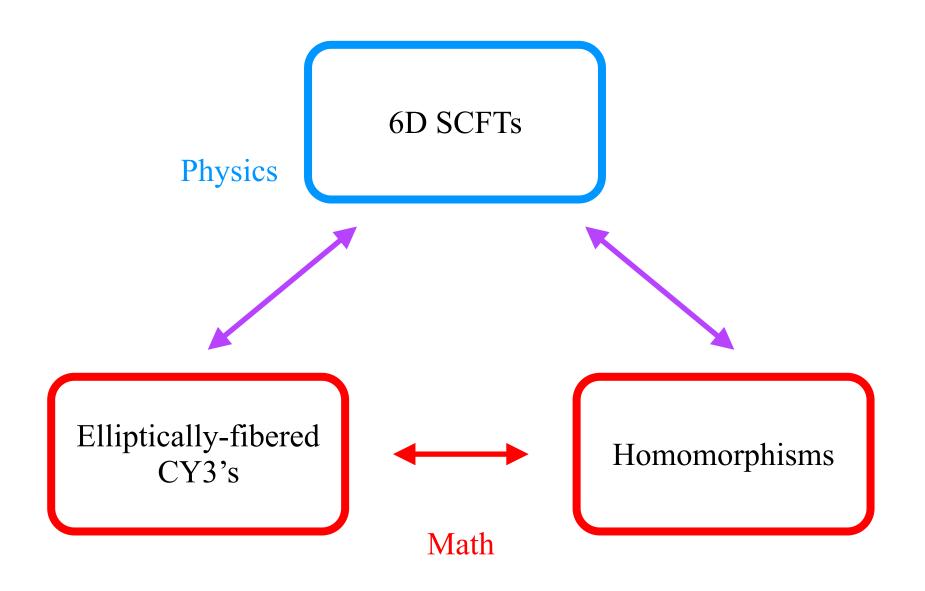


6D SCFTs and Group Theory

- Large classes of 6D SCFTs have connections to structures in group theory
- The correspondence has been verified explicitly



Geometry and Group Theory



Implications for 6D SCFTs

Implications for 6D SCFTs

- There is significant evidence for the a-theorem (and an infinite collection of other c-theorems) in 6D SCFTs
- Connections to group theory provide a proof in certain classes of RG flows
- We speculate that a full classification of RG flows among 6D SCFTs is possible through these connections to group theory

't Hooft Anomalies in 6D SCFTs

• Anomaly polynomial calculable for any 6D SCFT Ohmori, Shimizu, Tachikawa, Yonekura '14

 $I = \alpha c_2(R)^2 + \beta c_2(R)p_1(T) + \gamma p_1(T)^2 + \delta p_2(T) + \dots$

• Trace anomaly related to 6D Euler density

$$\langle T^{\mu}_{\mu} \rangle = \left(\frac{1}{4\pi}\right)^3 a E_6 + \dots$$

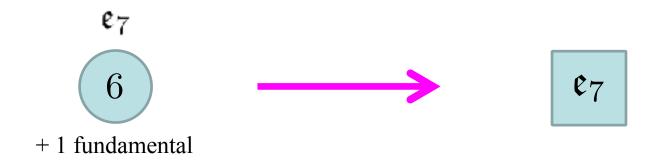
• Can be expressed in terms of anomaly polynomial:

$$a = \frac{8}{3}(\alpha - \beta + \gamma) + \delta$$

Cordova, Dumitrescu, Intriligator '15

Two Deformation Types

Expand a curve in base to large size / Tensor Branch



Complex Structure Deformation / Higgs Branch

Evidence for the a-theorem

• Tensor branch flows: a-theorem proven!

Cordova, Dumitrescu, Intriligator '15

• Higgs branch flows: numerical sweep

Heckman, T.R. '15

Nilpotent Orbit SCFTs

• Can relate anomalies to data of nilpotent orbit

$$\begin{aligned} \alpha &= 12 \sum_{i,j} C_{i,j}^{-1} r_i r_j + 2(N-1) - \sum_i r_i^2 \\ \beta &= N - 1 - \frac{1}{2} \sum_i r_i^2 \\ \gamma &= \frac{1}{240} \left(\frac{7}{2} \sum_i r_i f_i + 30(N-1) \right) \\ \delta &= -\frac{1}{120} \left(\sum_i r_i f_i + 60(N-1) \right) \end{aligned}$$

Cremonesi, Tomasiello '15

- $\Delta d_H \sim -\Delta \delta \sim -\Delta d_{\mathcal{O}}$
- Allows for proof of a-theorem for these flows

Summary and Future Research

- So far...
 - Classified 6D SCFTs in terms of CY3's
 - Found relationships between 6D SCFTs and two classes of homomorphisms
 - Found strong evidence for the a-theorem in 6D

Summary and Future Research

- In the future...
 - Can mathematics give deeper insight into the geometry-group theory correspondence?
 - Can we classify full set of 6D RG Flows in terms of group theory data?
 - Can we prove a-theorem in full generality?