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Classification of 6D SCFTs



Classification of 6D SCFTs

¥ 6D SCFTs can be classified via F-theory 
¥ Nearly all F-theory conditions can be phrased 

in field theory terms 
¥ 6D SCFTs = Generalized Quivers



ÒAtomsÓ 

Classification of 6D SCFTs

¥ Looks like chemistry

ÒRadicalsÓ 
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All known 6D theories have F-theory avatar!

*up to subtleties involving frozen singularities, see Alessandro’s talk
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Fiber Enhancements
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6D SCFTs and Homomorphisms



6D SCFTs and Group Theory

¥ Large classes of 6D SCFTs have connections to 
structures in group theory 

¥ The correspondence has been verified explicitly
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M5-Branes Probing C2/�ADE
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Nilpotent Deformations

¥ Matrix of normal deformations     characterizes 
positions of 7-branes 

¥ View intersection points of        in base as 
marked points 

¥ Can let adjoint field     have singular behavior 
at marked points      Hitchin system coupled to 
defects:
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Nilpotent Deformations

¥ Split                       , consider nilpotent part      , 
get       algebra: 

¥ Adjoint vevs                            

µn

su2

µC = µs + µn

J+ = µC J! = µ 
C J3 = µR

! ! µC
dz
z

Hom(su(2), g)! ClassiÞed by

(equivalently, by nilpotent orbits J+)



6D SCFTs and Hom(su(2), Ak! 1)
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Renormalization Group Flows

TIR

TUV

High Energy Short Distance

Long DistanceLow Energy



RG Flows in 6D SCFTs
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Nilpotent Hierarchy Matches RG 
Hierarchy!
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6D SCFTs and Hom(su(2), Dk)



6D SCFTs and Hom(su(2), E6)



Nilpotent Orbits and Global 
Symmetries

¥ Consider nilpotent orbit              
¥ Let          be subgroup of     commuting with 

nilpotent element 
¥ Claim:          is the global symmetry of the 6D 

SCFT associated with    
¥ E.g.

Oµ 2 g
F (µ) G

F (µ)
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¥ Consider M5-branes probing Horava-Witten wall 
and                 singularity 

¥  

6D SCFTs and Hom(�ADE ,E8)
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¥ For trivial boundary data, get 6D SCFT: 

¥ For non-trivial boundary data, global symmetry is 
broken to a subgroup

6D SCFTs and Hom(�ADE ,E8)
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6D SCFTs and Hom(�ADE ,E8)

E.g. ! A 2 , Hom(Z3, E8):
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¥        case: done (Kac Õ83) 
¥        case: done (Frey Õ98) 
¥        case: open! 
¥        case: open! 
¥        case: open!
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Classification of Hom(�Dn , E8)

¥                                          are uniquely labeled by a 
nilpotent orbit of       together with a simple Lie 
algebra!      

¥ E.g.                   :

Hom(�Dn ! Dicn! 2, E8)
Dn
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6D SCFTs and Group Theory

¥ Large classes of 6D SCFTs have connections to 
structures in group theory 

¥ The correspondence has been verified explicitly
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Geometry and Group Theory

Elliptically-fibered 
CY3Õs

6D SCFTs

Homomorphisms

Math

Physics



Implications for 6D SCFTs



Implications for 6D SCFTs

¥ There is significant evidence for the a-theorem 
(and an infinite collection of other c-theorems) in 
6D SCFTs 

¥ Connections to group theory provide a proof in 
certain classes of RG flows 

¥ We speculate that a full classification of RG flows 
among 6D SCFTs is possible through these 
connections to group theory



Õt Hooft Anomalies in 6D SCFTs

¥ Anomaly polynomial calculable for any 6D SCFT 

¥ Trace anomaly related to 6D Euler density 

¥ Can be expressed in terms of anomaly polynomial:

Ohmori, Shimizu, Tachikawa, Yonekura Õ14
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Evidence for the a-theorem

¥ Tensor branch flows: a-theorem proven! 

¥ Higgs branch flows: numerical sweep

Cordova, Dumitrescu, Intriligator Õ15

Heckman, T.R. Õ15
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¥ Can relate anomalies to data of nilpotent orbit 

¥   
¥ Allows for proof of a-theorem for these flows

Nilpotent Orbit SCFTs
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¥ So farÉ 
¥ Classified 6D SCFTs in terms of CY3Õs 
¥ Found relationships between 6D SCFTs and 

two classes of homomorphisms 
¥ Found strong evidence for the a-theorem in 6D

Summary and Future Research



¥ In the futureÉ 
¥ Can mathematics give deeper insight into the 

geometry-group theory correspondence? 
¥ Can we classify full set of 6D RG Flows in 

terms of group theory data? 
¥ Can we prove a-theorem in full generality?

Summary and Future Research


