Scalable algorithms for Markov process parameter
inference

Darren Wilkinson
@darrenjw
tinyurl.com/darrenjw
Newcastle University, U.K.
and
The Alan Turing Institute, U.K.

Connecting models and data in the life sciences
BIRS, Banff, Alberta, Canada
12th November 2018

@darrenjw
tinyurl.com/darrenjw

Overview

m Stochastic reaction networks, stochastic simulation and
partially observed Markov process (POMP) models

m Modularity: separating model representation from simulation
algorithm

m Well-mixed versus reaction—diffusion

m Likelihood-free MCMC for POMP models: separating
simulation from inference

m Likelihood-free PMMH pMCMC, ABC and ABC-SMC

m Functional programming approaches for scalable scientific and
statistical computing

Example — genetic auto-regulation

v I
Y p |
A '
P2 | A
v

RNAP B :

[TT T
P q 9 DNA

Simulated realisation of the auto-regulatory network

°
S
w
3
g o
g =
w
o
°
c 3
s |
3
o 8
o |
E
o 4
°
S |
3
8
NI
o i
°
s |
]
- 4
T T T T T T
0 1000 2000 3000 4000 5000
Time

Modularity: decoupling models from simulation algorithms

m For forward modelling, there are clear and considerable
benefits to separating the representation of the model from
the algorithm used to simulate realisations from it:

m There are numerous exact and approximate simulation
algorithms, as well as algorithms for static model analysis —
by decoupling the models from the algorithms, it is easy to
apply any algorithm to any model of interest — improvements
in simulation algorithms automatically apply to all models of
interest

m Modifying a model representation will typically be much easier
than modifying an algorithm to simulate that model

m When assembling large models from smaller model
components, it is often more straightforward to compose
model representations than associated simulation algorithms

m Few disadvantages: limit to flexibility of representation, slight
inefficiencies, more sophisticated programming required

Lotka—Volterra system

Trivial (familiar) example from population dynamics, but here the
“reactions” are elementary biochemical reactions taking place
inside a cell

Reactions

X —2X (prey reproduction)
X+Y —2Y (prey-predator interaction)
Y —0 (predator death)

m X — Prey, Y — Predator

m We can re-write this using matrix notation

The Lotka-Volterra model

Time 1)

300
L

v2

0 5 10 15 20 25 50 100 150 200 250 300 350

The well-mixed assumption

m The fundamental assumption underpinning the mass-action
stochastic kinetic approach to modelling chemical reactions as
a Markov jump process is that the hazard associated with any
reaction event is constant

m It is this assumption of constant hazard which leads to
exponential inter-arrival times of reaction events and all of the
other algorithms commonly used for non-spatial modelling

m However, it's pretty clear that molecules far apart will have a
lower reaction hazard than molecules which are nearby

m Mass-action kinetics assumes that molecular diffusion is rapid
relative to the time scales associated with the chemical
reactions

m Evidence that this assumption is violated for many interesting
intra-cellular processes

Stochastic kinetics of diffusion

m We can think of diffusion events as “reactions’:

X — X
X, — X1

m There are 2 reactions per sub-volume, so 2N reactions in total
(for periodic boundary conditions)

m This defines a Markov jump process which we can solve
exactly or simulate using the Gillespie algorithm

Discrete stochastic diffusion on a 2d lattice

i,j-14'; ij 4;i,j+1

i+1,j

B1 X =Xic15t, BoXiji=Xij-14
Vi=1-B;, A=ViB/'+ViB;*
So AXiju=Xi1jt+ Xiprjt + Xij—1,e + Xijr1e — 4Xi 51

Discrete stochastic reaction diffusion on a 2d lattice

Scalable algorithms for Markov process parameter inference

Lotka—Volterra SPDE dynamics (via the spatial CLE)

Scalable algorithms for Markov process parameter inference

Lotka—\Volterra reaction—diffusion SPDE

Prey Predator

1.0
0.6 0.8 1.0

0.4

0.2

0.0
0.0

00 02 04 06 08 1.0 00 02 04 06 08 1.0

X X

Scalable algorithms for Markov process parameter inference

Modularity and simulation algorithms

m Separating models from simulation algorithms has many
benefits

m Separating model parameters from models so that simulation
algorithms don't need to know about parameters is similarly
beneficial

m Models can be simulated in different ways, using different
algorithms, and under different assumptions:
exact/approximate, discrete/continuous,
stochastic/deterministic, well-mixed/spatial, ...

m Model exchange formats, such as SBML, can be useful for
understanding some of the issues

Parameter inference

m The auto-regulatory network model contains 5 species and 8
reactions

m Each reaction has an associated rate constant — these 8 rate
constants may be subject to uncertainty

m The initial state of the model (5 species levels) may also be
uncertain/unknown

m There could also be uncertainty about the structure of the
reaction network itself — eg. presence/absence of particular
reactions — this can be embedded into the parameter
inference problem, but is often considered separately, and is
not the subject of this talk

m We will focus here on using time course data on some aspect
of one (or more) realisations of the underlying stochastic
process in order to make inferences for any unknown
parameters of the model

Partial, noisy data on the auto-reg model

True species counts at 50 time points and noisy data on two species

Molecule count

50
1

Time

Classes of Bayesian Monte Carlo algorithms

In this context there are 3 main classes of MC algorithms:
m ABC algorithms (likelihood—free)

m Completely general (in principle) “global” Approximate
Bayesian Computation algorithms, so just require a forward
simulator, and don't rely on (eg.) Markov property, but
typically very inefficient and approximate

m POMP algorithms (likelihood—free)

m Typically “local” (particle) MCMC-based algorithms for
Partially Observed Markov Processes, again only requiring a
forward simulator, but using the Markov property of the
process for improved computational efficiency and “exactness”

m Likelihood-based MCMC algorithms

m More efficient (exact) MCMC algorithms for POMP models,
working directly with the model representation, not using a
forward simulator, and requiring the evaluation of likelihoods
associated with the sample paths of the stochastic process

Modularity and model decoupling for inference

m Decoupling the model from the inference algorithm is just as
important as separation of the model from a forward simulation
algorithm

m The key characteristic of likelihood-free (or “plug-and-play”)
algorithms is that they separate inference algorithms from the
forward simulator completely — this strong decoupling has many
advantages, with the main disadvantage being the relative
inefficiency of the inferential algorithms

m The likelihood-free algorithms rely heavily on forward simulation, so
can immediately benefit from improvements in exact and
approximate simulation technology

m There is no reason why efficient likelihood-based MCMC algorithms
can't also be decoupled from the model representation, but doing so
for a reasonably large and flexible class of models seems to be
beyond the programming skills of most statisticians...

Partially observed Markov process (POMP) models

m Continuous-time Markov process: X = {X,|s > 0} (for now,
we suppress dependence on parameters, 6)

m Think about integer time observations (extension to arbitrary
times is trivial): for t e N, X; ={X |t —1 < s <t}

m Sample-path likelihoods such as 7(x;|z:—1) can often (but not
always) be computed (but are often computationally difficult),

but discrete time transitions such as 7w (xz¢|z;—1) are typically
intractable

m Partial observations:) = {y|t =1,2,...,T} where
ye| Xy = ¢ ~ m(ye|me), t=1,...,T,

where we assume that 7(y¢|x;) can be evaluated directly
(simple measurement error model)

Bayesian inference for latent process models

Vector of model parameters, @, the object of inference

m Prior probability distribution on 6, denoted 7(6)

m Conditional on 6, we can simulate realisation of the stochastic
process X, with probability model 7(x|#), which may be
intractable

m Observational data), determined from x and 6 by a the
probability model 7()|x,) — for “exact” algorithms we
typically require that this model is tractable, but for ABC, we
only need to be able to simulate from it

m Joint model 7(0,x,Y) = m(0)m(x|0)m(V|x,0)

m Posterior distribution 7(6,x|Y) « 7(0,x,))

m If using Monte Carlo methods, easy to marginalise out x from
samples from the posterior to get samples from the parameter
posterior m(6]))

Likelihood-free PMMH pMCMC

m Particle Markov chain Monte Carlo (pMCMC) methods are a
powerful tool for parameter inference in POMP models

m In the variant known as particle marginal Metropolis Hastings
(PMMH), a (random walk) MH MCMC algorithm is used to
explore parameter space, but at each iteration, a (bootstrap)
particle filter (SMC algorithm) is run to calculate terms
required in the acceptance probability

m The “magic” of pMCMC is that despite the fact that the
particle filters are “approximate”, pMCMC algorithms
nevertheless have the “exact” posterior distribution of interest
(either w(0]Y) or (6,%|Y)) as their target

m If a sophisticated particle filter is used, pMCMC can be a
reasonably efficient likelihood-based MCMC method —
however, when a simple “bootstrap” particle filter is used, the
entire process is “likelihood-free”, but still “exact”

PMMH inference results

KTrans kTrans KTrans
8 @
@ b W ° z 8
R g o Z 5
3 S
ER < 3 g
° 3
ER ° m 8
T T T T 3] i i S T T T T]
0 1000 2000 3000 4000 5000 o 20 4 e 80 100 0 20 . 4 50
Iteration Lag Value
kDiss kDiss kDiss
o | 2]
g " 5 oA £ 3
ER < 3 g "
21 o L o
T T T T T T s T T T T T < T T 1
0 1000 2000 3000 4000 5000 o 2 4 6 8 100 10 15 20
Heration Lag Value
kRDeg kRDeg kRDeg
bR S o
g 4 w g
£ 39 < 3 & 3
1 ° m °
e T T T T T S T T ST—T—T—T T
0 1000 2000 3000 4000 5000 0 20 40 60 80 100 00 02 04 06 08 10 12 14
Iteration Lag Value
KkPDeg kPDeg KkPDeg
g @ 8
S =l o
g S y g
B <3 g8
2
g ° b
< ° T T T ° T T T T T 1
0 1000 2000 3000 4000 5000 o 20 4 e 80 100 0005 0010 0,015 0.020 0.025 0.030
Iteration Lag Value

Scalable algorithms for Markov process parameter inference

“Sticking” and tuning of PMMH

m As well as tuning the 0 proposal variance, it is necessary to
tune the number of particles, IV in the particle filter — need
enough to prevent the chain from sticking, but computational
cost roughly linear in N

m Number of particles necessary depends on 6, but don't know 6
a priori

m Initialising the sampler is non-trivial, since much of parameter
space is likely to lead to likelihood estimates which are
dominated by noise — how to move around when you don’t
know which way is “up" 7!

m Without careful tuning and initialisation, burn-in, convergence
and mixing can all be very problematic, making algorithms
painfully slow...

Alternative: approximate Bayesian computation (ABC)

m Since m(0,x,Y) = w(0)7(x|0)w (|0, %), it is trivial to
generate samples from 7(0,x,)) and to marginalise these
down to 7(6,))

m Exact rejection algorithm: generate (6*,Y*) from 7(6,)) and
keep provided that) = J* otherwise reject and try again

m This gives exact realisations from 7(6|)), but in practice the
acceptance rate will be very small (or zero)

m ABC: Define a metric on the sample space, p(-,-), and accept
(0%, %) if p(V,V*) <e

m This gives exact realisations from 7(60|p(Y, V*) < €), which
tends to the true posterior as ¢ — 0

m Still problematic if there is a large discrepancy between the
prior and posterior...

Summary statistics

m The choice of metric p(-,-) is very important to the overall
efficiency and performance of ABC methods

m Using a naive Euclidean distance on the raw data
p(V,V*) = ||V — Y*|| is likely to perform poorly in practice —
even with a perfect choice of parameters, it is extremely
unlikely that you will “hit” the data

m Ideally, we would use a vector of sufficient statistics, s())) of
the likelihood model associated with the process, to
summarise the important aspects of the data relevant to
parameter inference, and then define a metric on s(-)

m In practice, for complex models we don’t know the sufficient
statistics (and they probably don't exist), but we nevertheless
form a vector of summary statistics, which we hope capture
the important aspects of the process and ignore the irrelevant
noise in each realisation

Issues with simple rejection ABC

m There are two main problems with naive rejection sampling
based ABC:

m The first relates to the dimension of the data, and this is
(largely) dealt with by carefully choosing and weighting
appropriate summary statistics

m The second relates to the dimension of the parameter space...

m If the dimension of the parameter space is large, the posterior
distribution is likely to have almost all of its mass
concentrated in a tiny part of the space covered by the prior,
so the chances of hitting on good parameters when sampling
from the prior will be very small

m Might be better to gradually “zoom in” on promising parts of
the parameter space gradually over a series of iterations...

ABC-SMC

m Interest in a Bayesian posterior distribution
m(0|z) oc w(0) f (x[6)

where f(x]6) is intractable
m Observed data x

m Sequence of approximations
7Tt(9) = 7-‘-(0|/)(x71'0) < 5t>7
where co =¢9g >¢e; > -+ > ¢, >0 and p(-,-) is a suitable

metric on data space

m 7 is the prior, and for sufficiently small ¢,,, hopefully 7, not
too far from the posterior, 7(6|zg)

m Progressively reduce tolerances to improve agreement between
successive distributions and hopefully improve acceptance
rates

Pros and cons of ABC(-SMC)

All likelihood-free methods have a tendency to be very
computationally intensive and somewhat inefficient

m ABC is very general, and can be applied to arbitrary settings
(eg. not just POMP models)

m ABC methods parallelise very well, and hence can be useful
for getting reasonably good approximations to be true
posterior relatively quickly if suitable hardware is available

m ABC is becoming increasingly popular outside of statistics,
where the idea of “moment matching” is familiar and intuitive

m ABC usually results in a distribution significantly
over-dispersed relative to the true posterior

m The tuning parameters can affect the ABC posterior

m It's hard to know how well you are doing when working “blind"”

Pros and cons of pMCMC

m Most obvious application is to POMP models — less general
than ABC

m It targets the “exact” posterior distribution, irrespective of the
choices of tuning constants!

m In practice, for finite length runs, the pMCMC output tends to
be slightly under-dispersed relative to the true posterior
(“missing the tails")

m Parallelises fine over multiple cores on a single machine, but
less well over a cluster

m Although the theory underpinning pMCMC is non-trivial,
implementing likelihood-free PMMH is straightforward, and
has the advantage that it targets the “exact” posterior
distribution

Likelihood free inference

m For conducting Bayesian inference for complex simulation
models, “likelihood—free” methods are very attractive

m There are many likelihood—free algorithms, some of which are
“exact” — pMCMC algorithms being a notable example

m Likelihood-free algorithms can sometimes be very inefficient

m pMCMC is not the only option worth considering —
ABC-SMC methods, and SMC? are also worth trying; also
iterated filtering for a ML solution

m The reliance of likelihood free algorithms on forward
simulation fundamentally limits their effectiveness and utility
for many challenging problems — inference is fundamentally
about conditional simulation — other ways of modularising
models and inferential algorithms are also worth considering

Composable models and algorithms

m We want to construct models and algorithms from
composable and inter-changable pieces

m Pure, referentially transparent (mathematical) functions are
exactly the right abstraction for this purpose

m Functional programming languages encourage and support the
use of pure functions for constructing programs
m Functions encourage the separation of concerns:

m although we often parametrise models, a function for
constructing a simulation algorithm from a fully specified
model shouldn't know if or how that model is parametrised

m Similarly, a function for running a bootstrap particle filter for a
simulation model, shouldn’t need to know anything about the
model structure, let alone if or how it is parametrised

m A PMMH algorithm should just accept a noisy likelihood
function, and shouldn’t know anything about how it is
constructed

Nesting and composing algorithms

m Problems associated with parameter inference and model
selection typically involve composing many layers of algorithm
together

m For a typical LF-PMMH algorithm:

A parameter vector is drawn from a prior distribution

The parameter vector is used to fully-specify a Markov process
model

The Markov process model representation is used to generate a
transition kernel which can be forward simulated using an
appropriate algorithm

The transition kernel is embedded into a bootstap particle
filter for marginal likelihood estimation

The marginal likelihood evaluator is embedded into a
Metropolis-Hastings algorithm

m Most people working in this field aren’t trained in how to
write flexible generic software for solving these kinds of
multi-layered problems

Chapman & Hall/CRC
Mathematical and Computational Biology Series

Stochastic Modelling
for Systems Biology

THIRD EDITION

%\JHH | J

Darren]. Wilkinson

@ CRC Press

A
Scalable algorithms for Markov process parameter inference

SMfSB3e: New in the third edition

m New chapter on spatially extended systems, covering the
spatial Gillespie algorithm for reaction diffusion master
equation (RDME) models in 1- and 2-d, the next subvolume
method, spatial CLE, scaling issues, etc.

m Significantly expanded chapter on inference for stochastic
kinetic models from data, covering approximate methods of
inference (ABC), including ABC-SMC. The material relating
to particle MCMC has also been improved and extended.

m Updated R package, including code relating to all of the new
material

m New R package for parsing SBML models into simulatable
stochastic Petri net models

m New software library, written in Scala, replicating most of the
functionality of the R packages in a fast, compiled, strongly
typed, functional language

Chapman & Hall/CRC
Mathematical and Computational Biology Series

Stochastic Modelling
for Systems Biology
THIRD EDITION

;\JHH | I 11

Darren J. Wilkinson

4 r@

In the press right now

Published 29th
November

Pre-order now for Xmas!

New website/GitHub
repository

Lots of new, improved
and updated software —
all free, open source,
well-documented and
available now

https://github.com/darrenjw/smfsb

[m] = =

DA

https://github.com/darrenjw/smfsb

