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Box at each x € Z.
Ball configuration 7 € {0, 1}*
n(x) = 0 <> empty box, n(x) =1« ball at x
Carrier visits boxes from left to right.
Carrier picks balls from occupied boxes.

Carrier deposits one ball, if carried, at empty boxes.

001011000111 0100000 n
001012100123232100 0 carrier
0001001100001 011100 Tn

Tm : configuration after the carrier visited all boxes.

Ball-Box-System by Takahashi-Satsuma (1990)



Motivation: Korteweg & de Vries equation

Figure from Rendiconti di Matematica, Serie VII, 11, p.351-376, 1991

Interacting soliton solutions for KdV.



Summary

0) Soliton identification and conservation.

1) Asymptotic speed of solitons.

2) Soliton decomposition of ball configurations.

3) Evolution is a hierarchical translation of soliton components.

4) Measures with independent soliton components are invariant for 7.

5) Explicit soliton decomposition for iid Bernoulli, Ising models and
other ball distributions.

Soliton: a solitary wave that propagates with little loss of energy and
retains its shape and speed after colliding with another such wave



Conserved solitons. Motivation.
isolated k-soliton: set of k successive ones followed by k zeroes.

Isolated k-solitons travel at speed k and conserve shape and distances:

000001110000000000000000001110000000000000
000000001110000000000000000001110000000000
000000000001110000000000000000001110000000
000000000000001110000000000000000001110000

k-solitons and distances are conserved after interacting with m-solitons:

000001110000000100000000000011100000000000000000000000
000000001110000010000000000000011100000000000000000000
000000000001110001000000000000000111000000000000000000
000000000000001110100000000000000000111000000000000000
000000000000000001011100000000000000000111000000000000
000000000000000000100011100000000000000000111000000000



Conserved solitons. Motivation.
isolated k-soliton: set of k successive ones followed by &k zeroes.
Isolated k-solitons travel at speed k and conserve shape and distances:
..... 111000...............111000..........
........ 111000...............111000.......

........... 111000...............111000....
.............. 111000...............111000.

k-solitons and distances are conserved after interacting with m-solitons:

..... 111000....10........ ... 111000. .. ...t
........ 111000..10...... ... ... 111000, ..o oo
........... 11100010..............111000...............
.............. 11101000..............111000............
................. 10111000..............111000.........



Conserved solitons. Motivation.

0...1100....1100..1100.11001100...1100...1010..10...10.10.
1100..1100.11001100...1100..1010.
. 1100..1100.11001100...1100.1010. . 10
.1100....1100..1100.116011060...11601010.
..1100....1100..1100.11001100. . 110101@0 10
1010110010
. .1010. 1101@0
.11@0,.1190.11091100 1010. 101100 1@ 10.
. .1100..1100.110011601010..160.110010.10.....
..1100....1100..1100.1106011010100.10..11010010.. .
1100....1100..1100.11601010110010. ..10110100. ...
1100..1100.11010160110100..16.101100...10
.1100..1100.10101100101160.10.10.1100. .10
.1100..11001010.110100110010.16..1100.10.
1100..11010100.10116011016010. ..110010.. ..
1100..1010110016.110016110100. ..110160. .
.1100.10160.110100.1101601011060.
.11001010..101100. 101101091100
11016100.10.110010. 1911901100 10
1010110010..11610010. 1100119910
. .1016.110100. .10110100,11001101@0. .
..1100..1010..101100.10.101160.1100101160...1100
.1100...1100.1010..160.110016.16.1160.1101001160. . . 116
.1100...11001016..10..11010016..1100.1011601100. ..11060....
1100...11010100.10 10110106..110010.11001100. ..1100.
1100...101601160010...10.101100..1101660.110011060. ..1100
.1100..1010.110160..10.10.1100..101160.11001100. ..1100
.1100.1010..16011060.10.10..1160.10.1100.11001100. . .1160.
11001010..16.110010.10...110010..1160.11001100. ..1100.
110101600.10..11010010 .110100..1100.11001100. . .1100
..1010110010...10110100. ...101100..1100.11601100. ..1160...
..1010.110100..16.101100...16.1100..1100.11001100. ..1160.
.1010..101100.10.16.1100..10..1160..1100.11601100. ..1160.
1010..10.116010.10..1160.16...1100..1160.11001160...1100.
1010..10..11010010...110010. 1100..1100.11001160. . .
.1016..10...10110160...110100....1100..1160.110011060. .
1010..10...16.101100...101160....1100. .1100.11001100 B
.1010..10...10.10.1100..10.1160....1100. .1106.11001190 . .1106. .
10.10..1100.16..1100....1160..1100.11601160...1100
o .10.10...110016...1100....11600..1100.11601100. ..1160
.1016..10...10.16....110100. . . .1100..1100.11001100. . .1100.
..1010..10...10.10..... 1e11ee... ..1100..1160.11001100. . .11€




Walk representation

00000111100%111100000000

£(2) =€(z=1) =2(z) -1

Records: {z:&(z) < £(y) for all y < z}.

Excursion: configuration between two successive records



Infinite volume dynamics

Tn(x) := (1 —n(z))l{x is not a record}

X := configurations with density of particles A € [0, 1]

If A\ < 1/2 and n € X then T € X).



Takahashi-Satsuma soliton identification

Call runs the segments induced by broken lines in the walk

00000111100071111100000000

Explore runs from left to right. If a run has length k < length of the
next run, then its k£ boxes and the first k£ boxes of the next run form a
k-soliton. Remove these sites and start again exploring from the left.
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Takahashi-Satsuma soliton identification

head of k-soliton ~:= position of ones h(v) = {h1,...

tail of k-soliton ~v:= zeroes t(y) = {t1,...

Infinite configurations:

Apply TS algorithm to each excursion, pretending it is isolated.
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k-soliton conservation under T°

Proposition. For anyn € X:
n has k-soliton ~ with tail t(v) = a
if and only if

Tn has k-soliton v with head h(') = a.

We can follow solitons along time!
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k-soliton conservation under T
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Asymptotic speed of solitons
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Theorem (FNRW). Let i be a shift-ergodic T-invariant measure.
pr := mean number of k-solitons per excursion.

x(y!) := position of k-soliton ~ at time t.

Then, there exists v = (vi),>1 deterministic such that

z(7")
t

lim
t—o0

= Vg, M-a.S.

v is a solution of

v =k + Z 2mppm (Vg — vp) — Z 2k pim (Vm — V).

m<k m>k

and can be computed explicitely in function of (p)x>1.
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Asymptotic speed of solitons

Simulation for an iid configuration with density 0.25.

Deterministic red straight lines have slopes computed by the theorem.
2000 boxes x 140 T iterations, going downwards

(stretched vertically by a factor of 5)
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Asymptotic speed of solitons

Motivation of

v =k + Z 2mppm (Vg — vp) — Z 2k pim (U — Vk).

m<k m>k

Isolated k-solitons have speed k

When a k-soliton encounters an m-soliton:
e it advances 2m extra units if m < k or
e it is delayed by 2 time steps if m > k.

Pm|Vk — vm| is the frequency of such encounters as seen from a k-soliton.
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Slots
Let i configuration with finite excursions.
Will decompose 7 in soliton components.

Motivation: Insert 3-soliton in 3-slot of 5-soliton:

k-slots := Places where k-solitons can be inserted.

k-slots := records plus {h¢(y),te(7)}, € > m, m-solitons v with m > k.



N we oo 3

Slot configuration

S¢
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Enumerating the k-slots
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enumerating 3-slots

enumerating 1-slots



Soliton components

Insert 3-soliton in 3-slot number 1:

. ]

\. 1 N

hN N /N
d AV NG
] Ns

M3n(1) = 1 means that 3-component at coordinate 1 has 1 soliton.

M;n(i) :=number of k-solitons inserted in k-slot number i

Soliton decomposition: Mn = (Myn)k>1
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The map 1 +— Mn (or £ — ().

e 2e7 g0 gt
5 ololo|o ()
4 olol1]o
3 0|10 o 1]o
2 o[t 00l2000000]1
k=1 |of2100001/110020010000000O0|102
1
5 0 5 10 15

Below: Records —2 to 2 in boldface and the excursions between them.

Above: the parts of the field ¢ corresponding with excursions e 72, 71,0, ¢



Solitons!
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Theorem (FNRW).

k-soliton component of Ttn is a shift of the k-soliton component of 1:

Mthn _ eoz(n,o)Jrkth

Tty =T'n as seen from Record 0
0" = translation by x
0f(n,0) :== > 2(m — k)J}, ()
m>k
J!.(n) := Flow of m-solitons thru Record 0
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Evolution of components



Evolution of components

Ball configuration

.11111110000000..1111100000.111000.20. 4 ¢ttt ittt ittt ettt e e
Components
P
...... L e e e e
............... L e e
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Evolution of components

Ball configuration
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Evolution of components

Ball configuration
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Evolution of components

Ball configuration

...................... 11111000011100100011111110000000. .« ¢ vt v vt it i it ei e en e
Components
..................... L e
..................... Ot
........................ Y
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Evolution of components

Ball configuration
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Evolution of components

Ball configuration
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Evolution of components

Ball configuration
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Evolution of components

Ball configuration
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Evolution of components

Ball configuration

.................................... 10.111000.....1111100000........11111110000000.....
Components
1...... 1...... 1...... 1...... 1...... 1...... 1...... 1
...... 1 1 1 1....1 1 1 1. 0oL
............... 1..1..1..1. .10 0
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Independent-component invariant measures
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Theorem [FNRW]|

(x € N” independent with shift-stationary law such that

> kEG(0) < 0o
k

Let ¢ = (Cx)k>1 and fi := law of M—1¢.
Then (i is T-invariant and

= Palm ™' (j1) is shift-stationary and T-invariant.




k-components of iid Bernoulli are independent iid geometrics.
With Davide Gabrielli
Let A € (0,3) and ay, := (A(1 — A))F
Let g1 = oy and for k > 2,

Qg
- N
[ (1 — g;)209)

qr =
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Theorem (FG). If (n(z) : « € Z) iid Bernoulli(\) conditioned to have a
Record at the origin, then

(Myn(s) : s € Z) iid Geometric(1 — qi) and

(Myn : k > 1) are independent.




Other measures with independent geometric k-components.

Let oy > 0 such that Y, . ai < oo.
Let € be an excursion between Record 0 and Record 1 and

ng(g) := number of k-solitons of ¢.
weight wq (€) := H ozzk(a)
k=1

induces a measure

Concatenate independent excursions to obtain a measure i, on X.

W= Palmfl(u) has independent components geometric with parameters ¢;
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Theorem (FG).

Let fi, := independent excursions with law v, with Record 0 at the origin.
Let (n(x):x € Z) ~ fin. Then

(Mgn(s) : s € Z) iid Geometric(1 — qi) and

(Myn : k > 1) are independent.

Special cases
ear=MN1-NF < 1. Product measure with density A

o a; = e?/e*" . Ising measure with pair interaction J and external field h < 0.
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When the k-components of invariant measures are independent?

Let /2 on X° be invariant for 7" and record-mixing(?). Then,

AM = Q) M.
k>1

That is, if n has law |1,

(Mgn : k > 1) is a family of independent configurations.



