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use mean semi-variance E[X] � E [E[X] � X]2+

To account for the profit variation:
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0.45 vs. 0.59 
M/SV = 0.52

0.04 vs. 1.79 
M/SV = 0.53

-0.05 vs. 3.50 
M/SV = 0.15

-0.10 vs. 5.39 
M/SV = -1.13

-0.51 vs. 6.62 
M/SV = -3.30

�
M/SV = 0.69

Randomized decisions 
can reduce the risk:

81%

19%



Ambiguity Averse Decision-Making

1

2

Distributionally robust optimization: Optimize a  
risk measure over worst distribution in ambiguity set

In practice, the probabilities for the  
profit scenarios may only be partially known:

1

2

1

1

ambiguity set
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Ambiguity Averse Decision-Making

w.c. exp. profits  
det. choice  
w.c. exp. profits  
rand. choice

Assume we want to maximize expected profits under the  
worst probability distribution in the ambiguity set.
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L�(�0, F0, P)

We denote by       the distribution function of     under            :XF P
X P � P0

F P
X(x) = P(X � x) �x � R

that follows a uniform distribution on

An ambiguous probability space                    is non-atomic if:(�0, F0, P0)

�U0 � L�(�0, F0, P0) [0, 1]
under every probability measure            .P � P0
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Representation of Risk Measures

Proposition: Assume that                    is non-atomic and that  
     is law invariant.�0

For all            there is                                 with  
for all            . 
There exists a unique                    satisfying

F � D

�0 : D � R

(�0, F0, P0)

P � P0

X � L�(�0, F0, P0) F P
X = F

F P
X = FX �P � P0.�0(X) = �0(FX) �X � L�(�0, F0, P0) :
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Ambiguity Averse Risk Measures

Definition: A risk measure     is called ambiguity averse 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Proposition: Assume that                    is non-atomic and that  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P
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Pure Strategy Problem
We consider the abstract optimization problem

minimize
X�X0

�0(X) (PSP)

Example: Portfolio optimization

X0 =
�
r�w : w � 0, e�w = 1

�
r =

� �

with

r

r

r

r
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From Deterministic to Random Decisions
We consider the abstract optimization problem

minimize
X�X0

�0(X) (PSP)

X

X0
Y

Z
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From Deterministic to Random Decisions
We consider the abstract optimization problem

minimize
X�X0

�0(X) (PSP)

X

X0
Y

Z
How can we randomize  over decisions?

What is the risk of randomized decisions?
11/19
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Randomization Devices
We assume we have a randomization device that generates 
uniform samples from        :[0, 1]

� = �0 � [0, 1]
F = F0 � B[0,1]

pure strategy problem randomized strategy problem

 
  
 
 

with(�0, F0, P0)

(�, F , P)

P = {P � U : P � P}

X(·, u) � X0 �u � [0, 1]
�

X

X0

Y
Z

0

1

X =
�
X � L�(�, F , P) : X(·, u) � X0 �u � [0, 1]

�
X0 � L�(�0, F0, P0)
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Risk of Randomized Decisions
X

The unique extension of     to an ambiguity averse risk 
measure    on                     is given by

�0

�

Proposition: Assume that                    is non-atomic and that  
     is ambiguity averse and translation invariant.�0

(�0, F0, P0)

L�(�, F , P)

�(X) = sup
P�P

�0(F
P
X) �X � L�(�, F , P).
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X =
�
X � L�(�, F , P) : X(·, u) � X0 �u � [0, 1]

�

The feasible region contains all pure strategies:

X0 � L�(�0, F0, P0)
X(�, u) = X0(�) �u � [0, 1]

withX =
�
X � L�(�, F , P) : X(·, u) � X0 �u � [0, 1]

�
X0 � L�(�0, F0, P0)
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The Power of Randomization

Definition: The ambiguity averse risk measure      has the 
                   Lebesgue property if

lim
k��

�0(Fk) = �0(F ) Fk � Fwhenever              .

�0

Theorem: Assume that

                   is non-atomic and has a  
maximally ambiguous random variable, 

     is ambiguity averse and satisfies the 
Lebesgue property.

Then there is      such that (PSP) > (RSP).X0

(�0, F0, P0)

�0
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The Rainbow Urn Game

Consider an urn with balls of K different colors where:K

the number of balls is unknown 

the proportions of colors are unknown

A player is offered the following game:

player 
names 
color

ball is 
drawn

player 
receives:

 - $1 if ball is of stated color 
+$1 if ball is not of stated color

�

16/19
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1/K
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K
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If      has the Lebesgue property, then 
this is as attractive as receiving +$1 for 

sure as                !

�0

K � �

Randomization 
can serve as a 

cure for ambiguity



Agenda

Motivation1

Randomization under Stochastic Uncertainty2

Discussion3



Summary

Randomization
Receptive

Randomization
Proof

St
oc

ha
st

ic
 

U
nc

er
ta

in
ty

D
is

tr
ib

ut
io

na
l 

A
m

bi
gu

ity

18/19



Summary

Randomization
Receptive

Randomization
Proof

St
oc

ha
st

ic
 

U
nc

er
ta

in
ty

D
is

tr
ib

ut
io

na
l 

A
m

bi
gu

ity

Mixture quasi- 
convave RM’s

convex RM’s  
with convex X0X0

18/19



Summary

Randomization
Receptive

Randomization
Proof

St
oc

ha
st

ic
 

U
nc

er
ta

in
ty

D
is

tr
ib

ut
io

na
l 

A
m

bi
gu

ity

Mixture quasi- 
convave RM’s

convex RM’s  
with convex X0X0

Mean moment &  
mean deviation RM’s

Mean semi-moment &  
mean semi-deviation RM’s

18/19



Summary

Randomization
Receptive

Randomization
Proof

St
oc

ha
st

ic
 

U
nc

er
ta

in
ty

D
is

tr
ib

ut
io

na
l 

A
m

bi
gu

ity

Mixture quasi- 
convave RM’s

convex RM’s  
with convex X0X0

every amb. av. RM with 
Lebesque property

Mean moment &  
mean deviation RM’s

Mean semi-moment &  
mean semi-deviation RM’s

18/19



The Issue of Time Consistency

19/19



Remember the randomized strategy problem:

(RSP)minimize
X�X

�(X)

1

The Issue of Time Consistency

X

X0

Y
Z

0

1

19/19



Remember the randomized strategy problem:

(RSP)minimize
X�X

�(X)

1

The Issue of Time Consistency

X

X0

Y
Z

0

1

Once we observe the outcome of the randomization, we have  
an incentive to deviate in favour of the optimal pure choice!



Remember the randomized strategy problem:

(RSP)minimize
X�X

�(X)

1

The Issue of Time Consistency

X

X0

Y
Z

0

1

Once we observe the outcome of the randomization, we have  
an incentive to deviate in favour of the optimal pure choice!

Commitment 
device



Bibliography
Randomized decisions in economics:

[1] M. Agranov and P. Ortoleva. Stochastic choice and preferences for 
randomization. Available on SSRN, 2015.

[2] I. Golboa and D. Schmeidler. Maxmin expected utility with non-unique prior. 
Journal of Mathematical Economics 18(2):141-153, 1989.

Randomized decisions in algorithm design:
[3] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University 

Press, 1995.

Randomized decisions in Markov decision processes:
[4] Ö. Çavus and A. Ruszczyński. Risk-averse control of undiscounted transient 

Markov models. SIAM J. Control Optim. 52(6):3935-3966, 2014.
[5] Y. Le Tallec. Robust, risk-sensitive, and data-driven control of Markov decision 

processes. PhD thesis, MIT, 2007.
[6] W. Wiesemann, D. Kuhn and B. Rustem. Robust Markov decision processes. 

Math. OR 62(6):1358-1376, 2014.

Randomized decisions in SP and DRO:
[7] G. Pflug. Version-independence and nested distributions in multistage stochastic 

optimization. SIAM J. Optim. 20(3):1406-1420, 2010.
[8] E. Delage, D. Kuhn and W. Wiesemann. “Dice”-sion making under uncertainty: 

When an a random decision reduce risk? Available on Opt. Online, 2016.


