

"Dice"-sion Making under Uncertainty: When Can a Random Decision Reduce Risk?

Wolfram Wiesemann Imperial College Business School

joint work with Erick Delage and Daniel Kuhn

Tilburg University, Dec 2017

2/19

Ambiguity Averse Decision-Making

In practice, the probabilities for the profit scenarios may only be partially known:

Distributionally robust optimization: Optimize a risk measure over worst distribution in ambiguity set

Ambiguity Averse Decision-Making

Assume we want to maximize expected profits under the worst probability distribution in the ambiguity set.

Agenda

2

Randomization under Distributional Ambiguity

- **Mackground**
- Problem Setup
- Main The Power of Randomization

3 Discussion

We model uncertainty via an *ambiguous* probability space:

 $(\Omega_0,\mathcal{F}_0,\mathcal{P}_0)$

We model uncertainty via an *ambiguous* probability space:

We model uncertainty via an *ambiguous* probability space:

We model uncertainty via an *ambiguous* probability space:

We model uncertainty via an *ambiguous* probability space:

 $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$

We denote by $\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ the real-valued random variables that are essentially bounded w.r.t. all $\mathbb{P} \in \mathcal{P}_0$:

$$\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) = \bigcap_{\mathbb{P} \in \mathcal{P}_0} \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathbb{P})$$

We model uncertainty via an *ambiguous* probability space:

 $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$

We denote by $\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ the real-valued random variables that are essentially bounded w.r.t. all $\mathbb{P} \in \mathcal{P}_0$:

$$\mathcal{L}_{\infty}(\Omega_{0}, \mathcal{F}_{0}, \mathcal{P}_{0}) = \bigcap_{\mathbb{P} \in \mathcal{P}_{0}} \mathcal{L}_{\infty}(\Omega_{0}, \mathcal{F}_{0}, \mathbb{P})$$

$ \begin{array}{c} \bullet \rightarrow -10 \\ \bullet \rightarrow 10 \\ \bullet \rightarrow -10 \end{array} $	$ \begin{array}{c} \bullet & 10 \\ \bullet & -10 \\ \bullet & -10 \\ \bullet & 10 \end{array} $	we think of X as revenues
---	---	-----------------------------

We model uncertainty via an *ambiguous* probability space:

 $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$

We denote by $\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ the real-valued random variables that are essentially bounded w.r.t. all $\mathbb{P} \in \mathcal{P}_0$:

$$\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) = \bigcap_{\mathbb{P} \in \mathcal{P}_0} \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathbb{P})$$

We denote by $F_X^{\mathbb{P}}$ the distribution function of X under $\mathbb{P} \in \mathcal{P}_0$:

$$F_X^{\mathbb{P}}(x) = \mathbb{P}(X \le x) \quad \forall x \in \mathbb{R}$$

Let ${\mathcal D}$ be the set of all distribution functions

We model uncertainty via an *ambiguous* probability space:

 $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$

We denote by $\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ the real-valued random variables that are essentially bounded w.r.t. all $\mathbb{P} \in \mathcal{P}_0$:

$$\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) = \bigcap_{\mathbb{P} \in \mathcal{P}_0} \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathbb{P})$$

We denote by $F_X^{\mathbb{P}}$ the distribution function of X under $\mathbb{P} \in \mathcal{P}_0$:

$$F_X^{\mathbb{P}}(x) = \mathbb{P}(X \le x) \quad \forall x \in \mathbb{R}$$

We model uncertainty via an *ambiguous* probability space:

 $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$

We denote by $\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ the real-valued random variables that are essentially bounded w.r.t. all $\mathbb{P} \in \mathcal{P}_0$:

$$\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) = \bigcap_{\mathbb{P} \in \mathcal{P}_0} \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathbb{P})$$

We denote by $F_X^{\mathbb{P}}$ the distribution function of *X* under $\mathbb{P} \in \mathcal{P}_0$:

$$F_X^{\mathbb{P}}(x) = \mathbb{P}(X \le x) \quad \forall x \in \mathbb{R}$$

An ambiguous probability space $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic if:

 $\exists U_0 \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ that follows a uniform distribution on [0, 1] under *every* probability measure $\mathbb{P} \in \mathcal{P}_0$.

A risk measure assigns each random variable a risk index:

 $\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure assigns each random variable a risk index:

$$\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$$

$$\rho_0 \left(\begin{array}{cccccc} \bullet & -10 & \bullet & 10 \\ \bullet & -10 & \bullet & -10 \\ \bullet & -10 & \bullet & -10 \\ \bullet & -10 & \bullet & 10 \end{array} \right) = 1$$

A risk measure assigns each random variable a risk index:

 $\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure assigns each random variable a risk index:

 $\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure ρ_0 is law invariant if it satisfies:

$$\{F_X^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} = \{F_Y^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} \Rightarrow \rho_0(X) = \rho_0(Y)$$
$$\forall X, Y \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$$

A risk measure assigns each random variable a risk index:

 $\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure ρ_0 is law invariant if it satisfies:

$$\{F_X^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} = \{F_Y^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} \Rightarrow \rho_0(X) = \rho_0(Y)$$

$$\forall X, Y \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$$

$\bigcirc \rightarrow$	10	$\therefore \rightarrow -10$
\cdots -	-10	\therefore \rightarrow 10
$\left(\begin{array}{c} \bullet \end{array} \right)$	10	\therefore $\rightarrow -10$

A risk measure assigns each random variable a risk index:

 $\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure ρ_0 is law invariant if it satisfies:

$$\{F_X^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} = \{F_Y^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} \Rightarrow \rho_0(X) = \rho_0(Y)$$

$$\forall X, Y \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$$

Risk Measures

A risk measure assigns each random variable a risk index:

 $\rho_0: \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure ρ_0 is law invariant if it satisfies:

$$\{F_X^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} = \{F_Y^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\} \Rightarrow \rho_0(X) = \rho_0(Y)$$
$$\forall X, Y \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$$

Proposition: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is law invariant. $\overbrace{\mathcal{O}}$ For all $F \in \mathcal{D}$ there is $X \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ with $F_X^{\mathbb{P}} = F$ for all $\mathbb{P} \in \mathcal{P}_0$. $\overbrace{\mathcal{O}}$ There exists a unique $\rho_0 : \mathcal{D} \to \mathbb{R}$ satisfying $\rho_0(X) = \rho_0(F_X) \quad \forall X \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) : F_X^{\mathbb{P}} = F_X \quad \forall \mathbb{P} \in \mathcal{P}_0.$

Ambiguity Averse Risk Measures

Ambiguity Averse Risk Measures

Ambiguity Averse Risk Measures

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is ambiguity averse and translation invariant.

Then the risk measure satisfies

$$\rho_0(X) = \sup_{\mathbb{P}\in\mathcal{P}_0} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0).$$

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is ambiguity averse and translation invariant.

Then the risk measure satisfies

$$\rho_0(X) = \sup_{\mathbb{P}\in\mathcal{P}_0} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0).$$

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is ambiguity averse and translation invariant.

Then the risk measure satisfies

$$\rho_0(X) = \sup_{\mathbb{P}\in\mathcal{P}_0} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0).$$

Agenda

Randomization under Distributional Ambiguity

- **Dackground**
- Problem Setup
- Main The Power of Randomization

3 Discussion

Pure Strategy Problem

We consider the abstract optimization problem

$$\underset{X \in \mathcal{X}_0}{\text{minimize }} \rho_0(X)$$

(PSP)

where $\mathcal{X}_0 \subseteq \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

Pure Strategy Problem

We consider the abstract optimization problem

$$\left(\begin{array}{c} \underset{X \in \mathcal{X}_0}{\text{minimize}} \ \rho_0(X) \end{array} \right)$$

where $\mathcal{X}_0 \subseteq \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

Example: Facility location

Pure Strategy Problem

We consider the abstract optimization problem

$$\left(\underset{X \in \mathcal{X}_0}{\text{minimize }} \rho_0(X) \right)$$

where $\mathcal{X}_0 \subseteq \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

Example: Portfolio optimization

$$\mathcal{X}_0 = ig\{ m{r}^ op m{w} : m{w} \ge m{0}, m{e}^ op m{w} = 1 ig\}$$
 with $m{r} = egin{pmatrix} r_{ extsf{Walmart}} & r_{ ex$

From Deterministic to Random Decisions

We consider the abstract optimization problem

$$\left(\begin{array}{c} \underset{X \in \mathcal{X}_0}{\text{minimize}} \ \rho_0(X) \end{array} \right)$$

where $\mathcal{X}_0 \subseteq \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

From Deterministic to Random Decisions

We consider the abstract optimization problem

$$\left(\begin{array}{c} \underset{X \in \mathcal{X}_0}{\text{minimize}} \ \rho_0(X) \end{array} \right)$$

where $\mathcal{X}_0 \subseteq \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

Randomization Devices

We assume we have a randomization device that generates uniform samples from [0, 1]:

Risk of Randomized Decisions

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is ambiguity averse and translation invariant.

The unique extension of ρ_0 to an ambiguity averse risk measure ρ on $\mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P})$ is given by

 $\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$

Risk of Randomized Decisions

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is ambiguity averse and translation invariant.

The unique extension of ρ_0 to an ambiguity averse risk measure ρ on $\mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P})$ is given by

 $\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$

Risk of Randomized Decisions

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is ambiguity averse and translation invariant.

The unique extension of ρ_0 to an ambiguity averse risk measure ρ on $\mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P})$ is given by

 $\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$

Randomized Strategy Problem

We define the randomized strategy problem

$$\left[\begin{array}{c} \underset{X \in \mathcal{X}}{\text{minimize }} \rho(X) \end{array} \right]$$

(RSP)

where the extended risk measure ρ is defined via

$$\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$$

and \mathcal{X} denotes the enlarged feasible region:

$$\mathcal{X} = \left\{ X \in \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P}) : X(\cdot, u) \in \mathcal{X}_{0} \ \forall u \in [0, 1] \right\}$$

Randomized Strategy Problem

We define the randomized strategy problem

$$\left[\begin{array}{c} \underset{X \in \mathcal{X}}{\text{minimize }} \rho(X) \end{array} \right]$$

(RSP)

where the extended risk measure ρ is defined via

$$\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$$

and \mathcal{X} denotes the enlarged feasible region:

$$\mathcal{X} = \left\{ X \in \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P}) : X(\cdot, u) \in \mathcal{X}_{0} \; \forall u \in [0, 1] \right\}$$

The feasible region contains all pure strategies:

$$X_0 \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$$

$$X \in \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P}) \text{ with}$$
$$X(\omega, u) = X_0(\omega) \quad \forall u \in [0, 1]$$

Agenda

Randomization under Distributional Ambiguity

Background

Markov Markov M

3 Discussion

The Power of Randomization

The Power of Randomization

Consider an urn with balls of K different colors where:

- the number of balls is unknown
- the proportions of colors are unknown

Consider an urn with balls of K different colors where:

- the number of balls is unknown
- the proportions of colors are unknown

A player is offered the following game:

Assume the player uses an ambiguity averse risk measure ρ_0 :

Assume the player uses an ambiguity averse risk measure ρ_0 :

Assume the player uses an ambiguity averse risk measure ρ_0 :

Assume the player uses an ambiguity averse risk measure ρ_0 :

If ρ_0 has the Lebesgue property, then this is as attractive as receiving +\$1 for sure as $K \to \infty$!

Randomization can serve as a cure for ambiguity

Agenda

	Randomization Receptive	Randomization Proof	20
Stochastic Uncertainty			
Distributional Ambiguity			

The Issue of Time Consistency
The Issue of Time Consistency

Remember the randomized strategy problem:

The Issue of Time Consistency

Remember the randomized strategy problem:

Once we observe the outcome of the randomization, we have an incentive to deviate in favour of the optimal pure choice!

The Issue of Time Consistency

Remember the randomized strategy problem:

Once we observe the outcome of the randomization, we have an incentive to deviate in favour of the optimal pure choice!

Bibliography

Randomized decisions in economics:

- [1] M. Agranov and P. Ortoleva. *Stochastic choice and preferences for randomization.* Available on SSRN, 2015.
- [2] I. Golboa and D. Schmeidler. *Maxmin expected utility with non-unique prior.* Journal of Mathematical Economics 18(2):141-153, 1989.

Randomized decisions in algorithm design:

[3] R. Motwani and P. Raghavan. *Randomized algorithms.* Cambridge University Press, 1995.

Randomized decisions in Markov decision processes:

- [4] Ö. Çavus and A. Ruszczyński. Risk-averse control of undiscounted transient Markov models. SIAM J. Control Optim. 52(6):3935-3966, 2014.
- [5] Y. Le Tallec. *Robust, risk-sensitive, and data-driven control of Markov decision processes.* PhD thesis, MIT, 2007.
- [6] W. Wiesemann, D. Kuhn and B. Rustem. *Robust Markov decision processes.* Math. OR 62(6):1358-1376, 2014.

Randomized decisions in SP and DRO:

- [7] G. Pflug. Version-independence and nested distributions in multistage stochastic optimization. SIAM J. Optim. 20(3):1406-1420, 2010.
- [8] E. Delage, D. Kuhn and W. Wiesemann. *"Dice"-sion making under uncertainty: When an a random decision reduce risk?* Available on Opt. Online, 2016.