Introduction •00000 SOS polynomial

Convergence?

Conclusion 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Distributionally robust optimization with sum-of-squares polynomial density functions and moment conditions

Krzysztof Postek (EUR) Etienne de Klerk (Tilburg University & TU Delft) Daniel Kuhn (EPFL)

Workshop on Distributionally Robust Optimization

Banff, 5th March 2018

Introduction	SOS polynomials	Convergence?	Conclusion
000000	0000000		000
Distributionally	robust optimization		

Consider an optimization problem where

- x is the decision variable
- *z* is an uncertain parameter with partly known probability distribution (measure) μ ∈ P defined on a set Z

$$\min_{\mathbf{x} \in \mathbf{X}} \sup_{\mu \in \mathcal{P}} \mathbb{E}_{\mu} f_0(\mathbf{x}, \mathbf{z})$$
s.t.
$$\sup_{\mathbf{z} \in \mathbf{Z}} f_j(\mathbf{x}, \mathbf{z}) \leq 0 \qquad j = 1, \dots, J$$

Introduction	SOS polynomials	Convergence?	Conclusion
00000	0000000		000
Distributionally r	obust optimization		

• z is an uncertain parameter with partly known probability distribution (measure) $\mu \in \mathcal{P}$ defined on a set Z

 $\sup_{\mu\in\mathcal{P}}\mathbb{E}_{\mu}f_{0}(x,z)$

In this presentation, we only focus on the inner expectation-maximization problem, forget about x and set

 $f_0(\mathbf{x},\mathbf{z}) = \phi_0(\mathbf{z})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	SOS polynomials	Convergence?	Conclusion
000000	0000000		000
Set of probability	measures based or	n moments	

We assume that $\mathcal{P} \subset \mathcal{M}$ is a family of measures defined on \boldsymbol{Z} such that:

$$\mathbb{E}_{\mu}\phi_i(z)=b_i \qquad \qquad i=1,\ldots,l$$

The expectation-maximization problem is:

$$\max_{\mu \in \mathcal{M}} \int_{\mathbf{Z}} \phi_0(z) d\mu$$

s.t.
$$\int_{\mathbf{Z}} 1 d\mu = 1$$

$$\int_{\mathbf{Z}} \phi_i(z) d\mu = b_i$$
 $i = 1, \dots, I$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

a.k.a. the Generalized Problem of Moments (GPM).

Introduction	SOS polynomials	Convergence?	Conclusion
000000			
Example			

Consider
$$z = (z_1, z_2) \in [-1, 1]^2 = \mathbf{Z}$$
 such that

$$\int_{[-1,1]^2} z_1 d\mu = \int_{[-1,1]^2} z_2 d\mu = 0$$

Goal: evaluate the maximum probability $0.15 z_1 + 0.075 z_2 \leq -0.1$

$$\begin{split} \max_{\mu} & \int_{[-1,1]^2} \mathbf{1}(\{(z_1,z_2): \ 0.15z_1 + 0.075z_2 \leq -0.1\}) d\mu \\ \text{s.t.} & \int_{[-1,1]^2} 1 d\mu = 1 \\ & \int_{[-1,1]^2} z_1 d\mu = \int_{[-1,1]^2} z_2 d\mu = 0 \end{split}$$

Introduction 0000●0 SOS polynomial

Convergence?

Conclusion 000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The worst-case distribution

 $\mu((-0.44, -0.44)) \approx 0.69, \ \mu((1, 1)) \approx 0.31$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Discussion

- The worst-case distribution will always have at most *I* + 1 probability mass points (Rogosinsky, 1958)
- One does not expect this to be the case in many applications
- Therefore, distributionally robust optimization based on generalized moment problems can be over-conservative
- Need to model smooth probability density functions, e.g., polynomials

Introduction OCOCOCO Using polynomials as smooth densities Convergence? Conclusion OCOCOCO

$$\max_{h(z)} \int_{\mathbf{Z}} \phi_0(z)h(z)d\mu$$

s.t.
$$\int_{\mathbf{Z}} h(z)d\mu = 1$$
$$\int_{\mathbf{Z}} \phi_i(z)h(z)d\mu = b_i \qquad i = 1, \dots, I$$

where

- μ is some known reference measure (e.g. Lebesgue)
- h(z) is a sum-of-squares (SOS) polynomial:

$$h(z) = \sum_{k=1}^{K} (a_i(z))^2$$

where $a_i(z)$, i = 1, ..., K are polynomials in z.

Introduction SOS polynomials 000000 000000		Convergence?	Conclusion 000
Forcing a po	olynomial to be SO	S	

Some notation:

- denote $z^{\alpha} = z_1^{\alpha_1} \cdot \ldots \cdot z_n^{\alpha_n}$
- define the set of all *n*-tuples of exponents of monomials of degree at most *r*:

$$N(n,r) = \left\{ \alpha \in \mathbb{N}^n : \sum_{i=1}^n \alpha_i \le r \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	SOS polynomials	Convergence?	Conclusion
000000	oo●oooo		000
Forcing a polync	omial to be SOS		

Proposition

If a polynomial h(z) of degree at most 2r can be written as

$$\begin{aligned} h(z) &= \sum_{\substack{\alpha,\beta \in N(n,r) \\ \alpha,\beta \in N(n,r)}} H_{\alpha,\beta} z^{\alpha} z^{\beta} \\ &= \begin{bmatrix} 1 \\ z_1 \\ z_2 \\ \vdots \\ z_n^r \end{bmatrix}^\top \begin{bmatrix} H_{1,1} & H_{1,2} & \cdots & H_{1,|N(n,r)|} \\ H_{2,1} & & & \\ \vdots & \ddots & & \\ & & & H_{|N(n,r)|,|N(n,r)|} \end{bmatrix} \begin{bmatrix} 1 \\ z_1 \\ z_2 \\ \vdots \\ z_n^r \end{bmatrix} \end{aligned}$$

where $[H_{\alpha,\beta}]$ is a positive semidefinite matrix ($\forall y : y^{\top} Hy \ge 0$), then h(z) is an SOS polynomial.

Introduction	SOS polynomials	Convergence?	Conclusio
000000	000●000		000
SOS-based	problem of moments		

$$\begin{split} \sup_{H \succeq 0} & \int_{\mathbf{Z}} \phi_0(z) \sum_{\alpha, \beta \in N(m, 2r)} H_{\alpha, \beta} z^{\alpha + \beta} d\mu \\ \text{s.t.} & \int_{\mathbf{Z}} \sum_{\alpha, \beta \in N(m, 2r)} H_{\alpha, \beta} d\mu = 1 \\ & \int_{\mathbf{Z}} \phi_i(z) \sum_{\alpha, \beta \in N(m, 2r)} H_{\alpha, \beta} z^{\alpha + \beta} d\mu = b_i, \end{split} \qquad i = 1, \dots, I, \end{split}$$

equivalent to:

$$\begin{split} \sup_{\substack{H \succeq 0 \\ \alpha, \beta \in N(m, 2r)}} & \sum_{\substack{\alpha, \beta \in N(m, 2r) \\ z}} H_{\alpha, \beta} \int_{\mathbf{Z}} \phi_0(z) z^{\alpha + \beta} d\mu \\ \text{s.t.} & \sum_{\substack{\alpha, \beta \in N(m, 2r) \\ z}} \int_{\mathbf{Z}} z^{\alpha + \beta} d\mu = 1 \\ & \sum_{\substack{\alpha, \beta \in N(m, 2r) \\ z}} \int_{\mathbf{Z}} \phi_i(z) z^{\alpha + \beta} d\mu = b_i, \qquad i = 1, \dots, I, \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semidefinite	programming form	ı	
Introduction	SOS polynomials	Convergence?	Conclusion
000000	0000●00		000

This problem can be written as:

$$\max_{\substack{H \in \mathbb{S}^{|N(n,r)|}}} \langle H, \Phi^{0} \rangle$$

s.t. $\langle H, E \rangle = 1$
 $\langle H, \Phi^{i} \rangle = b_{i}$ $i = 1, \dots, I$
 $H \succeq 0$

where $\langle A, B \rangle = \text{Tr}(A^{\top}B)$ and where the matrices' entries are:

$$\Phi^{\mathbf{0}}_{\alpha,\beta} = \int_{\mathbf{Z}} \phi_{\mathbf{0}}(z) z^{\alpha+\beta} d\mu, \ E_{\alpha,\beta} = \int_{\mathbf{Z}} z^{\alpha+\beta} d\mu, \ \Phi^{i}_{\alpha,\beta} = \int_{\mathbf{Z}} \phi_{i}(z) z^{\alpha+\beta} d\mu$$

Our ability to compute these terms is crucial. Possible for several sets, e.g., when $\phi_0(z)$, $\phi_i(z)$ are polynomials.

Examples o	f known moments	of monomials	
	0000000		
Introduction	SOS polynomials	Convergence?	Conclusion

Example

For the standard simplex, we have

$$\int_{\Delta_n} z^{\alpha} = \frac{\prod_{i=1}^n \alpha_i!}{(|\alpha|+n)!},$$

Example

For the hypercube Q_n :

$$\int_{\mathcal{Q}_n} z^{\alpha} = \int_{\mathcal{Q}_n} x^{\alpha} dx = \prod_{i=1}^n \int_0^1 x_i^{\alpha_i} dx_i = \prod_{i=1}^n \frac{1}{\alpha_i + 1}.$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Introduction	SOS polynomials	Convergence?	Conclusion
000000	000000●		000
Back to our exa	ample		

Worst-case density obtained with polynomial degree 2r = 2:

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Worst-case probability: 0.3942 (compare with 0.6923)

Introd	

SOS polynomials

Convergence? ●0000

Conjecture

As $r \to +\infty$, the optimal value of

$$\max_{H \in \mathbb{S}^{|N(n,r)|}} \langle H, \Phi^0 \rangle$$

s.t. $\langle H, E \rangle = 1$
 $\langle H, \Phi^i \rangle = b_i$ $i = 1, \dots, I$
 $H \succeq 0$

converges to the optimal value of

$$\begin{aligned} \max_{\mu} & \int_{Z} \phi_{0}(z) d\mu \\ s.t. & \int_{Z} 1 d\mu = 1 \\ & \int_{Z} \phi_{i}(z) d\mu = b_{i} \end{aligned} \qquad i = 1, \dots, l. \end{aligned}$$

Introduction	SOS	05 polynomials	Convergence?	Conclusion
000000	000	000000	○●○○○	000
A reason	behind th	ne conjecture		

For continuous f(z) and convex **Z** the sequence of optimal values of

$$\min_{\substack{h(z)\in\Sigma_r(z)}} \int_{\mathbf{Z}} f(z)h(z)d\mu$$

s.t.
$$\int_{\mathbf{Z}} h(z)d\mu = 1.$$

where Σ_r is the space of SOS polynomials of degree at most 2r, converges (Lasserre, 2001) to:

 $\min_{z\in\mathbf{Z}}f(z).$

as $r \to +\infty$.

ntroduction ၁೦೦೦೦೦ SOS polynomials

Convergence? 00●00 Conclusion 000

Theory - numerical investigation

r	Probability	
0	0.1736	
1	0.3946	
2	0.4824	
3	0.4988	
4	0.5249	
5	0.5419	
6	0.5641	
7	0.5755	
8	0.5889	
9	0.5947	
10	0.6023	
11	0.6090	
12	0.6142	
∞	0.6923	

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Introduction	SOS polynomials	Convergence?	Conclusion			
000000	0000000		000			
Back to our example						

Worst-case density obtained with polynomial degree 2r = 24:

Probability: 0.6142

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

000000	0000000	00000	000				
Back to our example							

Worst-case density obtained with polynomial degree 2r = 24:

Probability: 0.6142

Introduction SOS polynomials Convergence: Conclusion 000000 000000 000000 00000	Computational houristic						
Conclusion Conclusion	Introduction 000000	SOS polynomials	Convergence?	Conclusion ●00			

Computational heuristic

Instead of optimizing over a high-degree density h(z) do:

- Optimize a low-degree density polynomial $h_1(z)$.
- Fix h
 ₁(z), set the new probability density function as h
 ₁(z)h₂(z), where h₂(z) is the same degree as h
 ₁(z), optimize over h₂(z).

- Fix $\overline{h}_2(z)$, set the new probability density function as $\overline{h}_1(z)\overline{h}_2(z)h_3(z)$, optimize over $h_3(z)$.
- **④** ...

We tested it also on several global optimization examples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion

- we propose a new way of defining uncertain smooth probability measures
- the maximum expectation problem becomes an SDP
- proved (?) the convergence to the optimal value of a general problem of moments
- computational heuristic: modelling the polynomial density as a product of polynomial densities of smaller degree, optimized one after another

SOS polynomials

Convergence?

Conclusion

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you for your attention