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Distributionally robust optimization

Consider an optimization problem where

x is the decision variable

z is an uncertain parameter with partly known probability
distribution (measure) µ ∈ P defined on a set Z

min
x∈X

sup
µ∈P

Eµf0(x , z)

s.t. sup
z∈Z

fj(x , z) ≤ 0 j = 1, . . . , J

In this presentation, we only focus on the inner
expectation-maximization problem, forget about x and set

f0(x , z) = φ0(z)
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Set of probability measures based on moments

We assume that P ⊂M is a family of measures defined on Z such
that:

Eµφi (z) = bi i = 1, . . . , I

The expectation-maximization problem is:

max
µ∈M

∫
Z
φ0(z)dµ

s.t.

∫
Z

1dµ = 1∫
Z
φi (z)dµ = bi i = 1, . . . , I

a.k.a. the Generalized Problem of Moments (GPM).
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Example

Consider z = (z1, z2) ∈ [−1, 1]2 = Z such that∫
[−1,1]2

z1dµ =

∫
[−1,1]2

z2dµ = 0

Goal: evaluate the maximum probability 0.15z1 + 0.075z2 ≤ −0.1

max
µ

∫
[−1,1]2

1({(z1, z2) : 0.15z1 + 0.075z2 ≤ −0.1})dµ

s.t.

∫
[−1,1]2

1dµ = 1∫
[−1,1]2

z1dµ =

∫
[−1,1]2

z2dµ = 0
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The worst-case distribution
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µ((−0.44,−0.44)) ≈ 0.69, µ((1, 1)) ≈ 0.31
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Discussion

The worst-case distribution will always have at most I + 1
probability mass points (Rogosinsky, 1958)

One does not expect this to be the case in many applications

Therefore, distributionally robust optimization based on
generalized moment problems can be over-conservative

Need to model smooth probability density functions, e.g.,
polynomials
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Using polynomials as smooth densities

max
h(z)

∫
Z
φ0(z)h(z)dµ

s.t.

∫
Z
h(z)dµ = 1∫

Z
φi (z)h(z)dµ = bi i = 1, . . . , I

where

µ is some known reference measure (e.g. Lebesgue)

h(z) is a sum-of-squares (SOS) polynomial:

h(z) =
K∑

k=1

(ai (z))2,

where ai (z), i = 1, . . . ,K are polynomials in z .
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Forcing a polynomial to be SOS

Some notation:

denote zα = zα1
1 · . . . · zαn

n

define the set of all n-tuples of exponents of monomials of
degree at most r :

N(n, r) =

{
α ∈ Nn :

n∑
i=1

αi ≤ r

}
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Forcing a polynomial to be SOS

Proposition

If a polynomial h(z) of degree at most 2r can be written as

h(z) =
∑

α,β∈N(n,r)

Hα,βz
αzβ

=


1
z1

z2
...
z rn


> 

H1,1 H1,2 · · · H1,|N(n,r)|
H2,1

...
. . .

H|N(n,r)|,|N(n,r)|




1
z1

z2
...
z rn


where [Hα,β] is a positive semidefinite matrix (∀y : y>Hy ≥ 0),
then h(z) is an SOS polynomial.
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SOS-based problem of moments

sup
H�0

∫
Z
φ0(z)

∑
α,β∈N(m,2r)

Hα,βz
α+βdµ

s.t.

∫
Z

∑
α,β∈N(m,2r)

Hα,βdµ = 1

∫
Z
φi (z)

∑
α,β∈N(m,2r)

Hα,βz
α+βdµ = bi , i = 1, . . . , I ,

equivalent to:

sup
H�0

∑
α,β∈N(m,2r)

Hα,β

∫
Z
φ0(z)zα+βdµ

s.t.
∑

α,β∈N(m,2r)

∫
Z
zα+βdµ = 1

∑
α,β∈N(m,2r)

∫
Z
φi (z)zα+βdµ = bi , i = 1, . . . , I ,
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Semidefinite programming form

This problem can be written as:

max
H∈S|N(n,r)|

〈H,Φ0〉

s.t. 〈H,E 〉 = 1

〈H,Φi 〉 = bi i = 1, . . . , I

H � 0

where 〈A,B〉 = Tr(A>B) and where the matrices’ entries are:

Φ0
α,β =

∫
Z
φ0(z)zα+βdµ, Eα,β =

∫
Z
zα+βdµ, Φi

α,β =

∫
Z
φi (z)zα+βdµ

Our ability to compute these terms is crucial. Possible for several
sets, e.g., when φ0(z), φi (z) are polynomials.
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Examples of known moments of monomials

Example

For the standard simplex, we have∫
∆n

zα =

∏n
i=1 αi !

(|α|+ n)!
,

Example

For the hypercube Qn:∫
Qn

zα =

∫
Qn

xαdx =
n∏

i=1

∫ 1

0
xαi
i dxi =

n∏
i=1

1

αi + 1
.
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Back to our example

Worst-case density obtained with polynomial degree 2r = 2:

Worst-case probability: 0.3942 (compare with 0.6923)



Introduction SOS polynomials Convergence? Conclusion

Conjecture

As r → +∞, the optimal value of

max
H∈S|N(n,r)|

〈H,Φ0〉

s.t. 〈H,E〉 = 1

〈H,Φi 〉 = bi i = 1, . . . , I

H � 0

converges to the optimal value of

max
µ

∫
Z

φ0(z)dµ

s.t.

∫
Z

1dµ = 1∫
Z
φi (z)dµ = bi i = 1, . . . , I .
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A reason behind the conjecture

For continuous f (z) and convex Z the sequence of optimal values
of

min
h(z)∈Σr (z)

∫
Z
f (z)h(z)dµ

s.t.

∫
Z
h(z)dµ = 1.

where Σr is the space of SOS polynomials of degree at most 2r ,
converges (Lasserre, 2001) to:

min
z∈Z

f (z).

as r → +∞.
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Theory - numerical investigation

r Probability
0 0.1736
1 0.3946
2 0.4824
3 0.4988
4 0.5249
5 0.5419
6 0.5641
7 0.5755
8 0.5889
9 0.5947

10 0.6023
11 0.6090
12 0.6142
∞ 0.6923
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Back to our example

Worst-case density obtained with polynomial degree 2r = 24:
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Computational heuristic

Instead of optimizing over a high-degree density h(z) do:

1 Optimize a low-degree density polynomial h1(z).

2 Fix h1(z), set the new probability density function as
h1(z)h2(z), where h2(z) is the same degree as h1(z), optimize
over h2(z).

3 Fix h2(z), set the new probability density function as
h1(z)h2(z)h3(z), optimize over h3(z).

4 ...

We tested it also on several global optimization examples.
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Conclusion

we propose a new way of defining uncertain smooth
probability measures

the maximum expectation problem becomes an SDP

proved (?) the convergence to the optimal value of a general
problem of moments

computational heuristic: modelling the polynomial density as
a product of polynomial densities of smaller degree, optimized
one after another
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Thank you for your attention
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