Distributionally robust optimization with sum-of-squares polynomial density functions and moment conditions

Krzysztof Postek (EUR)

Etienne de Klerk (Tilburg University \& TU Delft) Daniel Kuhn (EPFL)

Workshop on Distributionally Robust Optimization
Banff, 5th March 2018

Distributionally robust optimization

Consider an optimization problem where

- x is the decision variable
- z is an uncertain parameter with partly known probability distribution (measure) $\mu \in \mathcal{P}$ defined on a set \mathbf{Z}

$$
\begin{aligned}
& \min _{x \in \mathbf{X}} \sup _{\mu \in \mathcal{P}} \mathbb{E}_{\mu} f_{0}(x, z) \\
& \text { s.t. } \sup _{z \in \mathbb{Z}}(x, z) \leq 0 \quad j=1, \ldots, J
\end{aligned}
$$

Distributionally robust optimization

- z is an uncertain parameter with partly known probability distribution (measure) $\mu \in \mathcal{P}$ defined on a set \mathbf{Z}

$$
\sup _{\mu \in \mathcal{P}} \mathbb{E}_{\mu} f_{0}(x, z)
$$

In this presentation, we only focus on the inner expectation-maximization problem, forget about x and set

$$
f_{0}(x, z)=\phi_{0}(z)
$$

Set of probability measures based on moments

We assume that $\mathcal{P} \subset \mathcal{M}$ is a family of measures defined on \mathbf{Z} such that:

$$
\mathbb{E}_{\mu} \phi_{i}(z)=b_{i} \quad i=1, \ldots, l
$$

The expectation-maximization problem is:

$$
\begin{aligned}
\max _{\mu \in \mathcal{M}} & \int_{\mathbf{Z}} \phi_{0}(z) d \mu \\
\text { s.t. } & \int_{\mathbf{Z}} 1 d \mu=1 \\
& \int_{\mathbf{Z}} \phi_{i}(z) d \mu=b_{i} \quad i=1, \ldots, l
\end{aligned}
$$

a.k.a. the Generalized Problem of Moments (GPM).

Example

Consider $z=\left(z_{1}, z_{2}\right) \in[-1,1]^{2}=\mathbf{Z}$ such that

$$
\int_{[-1,1]^{2}} z_{1} d \mu=\int_{[-1,1]^{2}} z_{2} d \mu=0
$$

Goal: evaluate the maximum probability $0.15 z_{1}+0.075 z_{2} \leq-0.1$

$$
\begin{aligned}
\max _{\mu} & \int_{[-1,1]^{2}} 1\left(\left\{\left(z_{1}, z_{2}\right): 0.15 z_{1}+0.075 z_{2} \leq-0.1\right\}\right) d \mu \\
\text { s.t. } & \int_{[-1,1]^{2}} 1 d \mu=1 \\
& \int_{[-1,1]^{2}} z_{1} d \mu=\int_{[-1,1]^{2}} z_{2} d \mu=0
\end{aligned}
$$

The worst-case distribution

Discussion

- The worst-case distribution will always have at most $I+1$ probability mass points (Rogosinsky, 1958)
- One does not expect this to be the case in many applications
- Therefore, distributionally robust optimization based on generalized moment problems can be over-conservative
- Need to model smooth probability density functions, e.g., polynomials

Using polynomials as smooth densities

$$
\begin{aligned}
\max _{h(z)} & \int_{\mathbf{Z}} \phi_{0}(z) h(z) d \mu \\
\text { s.t. } & \int_{\mathbf{Z}} h(z) d \mu=1 \\
& \int_{\mathbf{Z}} \phi_{i}(z) h(z) d \mu=b_{i} \quad i=1, \ldots, l
\end{aligned}
$$

where

- μ is some known reference measure (e.g. Lebesgue)
- $h(z)$ is a sum-of-squares (SOS) polynomial:

$$
h(z)=\sum_{k=1}^{K}\left(a_{i}(z)\right)^{2}
$$

where $a_{i}(z), i=1, \ldots, K$ are polynomials in z.

Forcing a polynomial to be SOS

Some notation:

- denote $z^{\alpha}=z_{1}^{\alpha_{1}} \cdot \ldots \cdot z_{n}^{\alpha_{n}}$
- define the set of all n-tuples of exponents of monomials of degree at most r :

$$
N(n, r)=\left\{\alpha \in \mathbb{N}^{n}: \sum_{i=1}^{n} \alpha_{i} \leq r\right\}
$$

Forcing a polynomial to be SOS

Proposition

If a polynomial $h(z)$ of degree at most $2 r$ can be written as

$$
\begin{aligned}
h(z) & =\sum_{\alpha, \beta \in N(n, r)} H_{\alpha, \beta} z^{\alpha} z^{\beta} \\
& =\left[\begin{array}{c}
1 \\
z_{1} \\
z_{2} \\
\vdots \\
z_{n}^{r}
\end{array}\right]^{\top}\left[\begin{array}{cccc}
H_{1,1} & H_{1,2} & \cdots & H_{1,|N(n, r)|} \\
H_{2,1} & & & \\
\vdots & & \ddots & \\
& & & H_{|N(n, r)|,|N(n, r)|}
\end{array}\right]\left[\begin{array}{c}
1 \\
z_{1} \\
z_{2} \\
\vdots \\
z_{n}^{r}
\end{array}\right]
\end{aligned}
$$

where $\left[H_{\alpha, \beta}\right]$ is a positive semidefinite matrix $\left(\forall y: y^{\top} H y \geq 0\right)$, then $h(z)$ is an SOS polynomial.

SOS-based problem of moments

$$
\begin{aligned}
& \sup _{H \succeq 0} \int_{\mathbf{Z}} \phi_{0}(z) \sum_{\alpha, \beta \in N(m, 2 r)} H_{\alpha, \beta} z^{\alpha+\beta} d \mu \\
& \text { s.t. } \int_{\mathbf{Z}} \sum_{\alpha, \beta \in N(m, 2 r)} H_{\alpha, \beta} d \mu=1 \\
& \int_{\mathbf{Z}} \phi_{i}(z) \sum_{\alpha, \beta \in N(m, 2 r)} H_{\alpha, \beta} z^{\alpha+\beta} d \mu=b_{i}, \\
& i=1, \ldots, I,
\end{aligned}
$$

equivalent to:

$$
\begin{array}{rlr}
\sup _{H \succeq 0} & \sum_{\alpha, \beta \in N(m, 2 r)} H_{\alpha, \beta} \int_{\mathbf{Z}} \phi_{0}(z) z^{\alpha+\beta} d \mu & \\
\text { s.t. } & \sum_{\alpha, \beta \in N(m, 2 r)} \int_{\mathbf{Z}} z^{\alpha+\beta} d \mu=1 & \\
& \sum_{\alpha, \beta \in N(m, 2 r)} \int_{\mathbf{Z}} \phi_{i}(z) z^{\alpha+\beta} d \mu=b_{i}, & i=1, \ldots, l,
\end{array}
$$

Semidefinite programming form

This problem can be written as:

$$
\begin{aligned}
& \max _{H \in \mathbb{S}^{N}(n, r) \mid}\left\langle H, \Phi^{0}\right\rangle \\
& \text { s.t. }\langle H, E\rangle=1 \\
& \left\langle H, \Phi^{i}\right\rangle=b_{i} \quad i=1, \ldots, l \\
& H \succeq 0
\end{aligned}
$$

where $\langle A, B\rangle=\operatorname{Tr}\left(A^{\top} B\right)$ and where the matrices' entries are:

$$
\phi_{\alpha, \beta}^{0}=\int_{\mathbf{Z}} \phi_{0}(z) z^{\alpha+\beta} d \mu, E_{\alpha, \beta}=\int_{\mathbf{z}} z^{\alpha+\beta} d \mu, \Phi_{\alpha, \beta}^{i}=\int_{\mathbf{z}} \phi_{i}(z) z^{\alpha+\beta} d \mu
$$

Our ability to compute these terms is crucial. Possible for several sets, e.g., when $\phi_{0}(z), \phi_{i}(z)$ are polynomials.

Examples of known moments of monomials

Example

For the standard simplex, we have

$$
\int_{\Delta_{n}} z^{\alpha}=\frac{\prod_{i=1}^{n} \alpha_{i}!}{(|\alpha|+n)!}
$$

Example

For the hypercube \mathcal{Q}_{n} :

$$
\int_{\mathcal{Q}_{n}} z^{\alpha}=\int_{\mathcal{Q}_{n}} x^{\alpha} d x=\prod_{i=1}^{n} \int_{0}^{1} x_{i}^{\alpha_{i}} d x_{i}=\prod_{i=1}^{n} \frac{1}{\alpha_{i}+1}
$$

Back to our example

Worst-case density obtained with polynomial degree $2 r=2$:

Worst-case probability: 0.3942 (compare with 0.6923)

Conjecture

As $r \rightarrow+\infty$, the optimal value of

$$
\begin{aligned}
\max _{H \in \mathbb{S}^{|N(n, r)|}} & \left\langle H, \Phi^{0}\right\rangle \\
\text { s.t. } & \langle H, E\rangle=1 \\
& \left\langle H, \Phi^{i}\right\rangle=b_{i} \\
& H \succeq 0
\end{aligned}
$$

converges to the optimal value of

$$
\begin{aligned}
\max _{\mu} & \int_{Z} \phi_{0}(z) d \mu \\
\text { s.t. } & \int_{\mathbf{Z}} 1 d \mu=1 \\
& \int_{\mathbf{Z}} \phi_{i}(z) d \mu=b_{i}
\end{aligned} \quad i=1, \ldots, l .
$$

A reason behind the conjecture

For continuous $f(z)$ and convex \mathbf{Z} the sequence of optimal values of

$$
\begin{aligned}
\min _{h(z) \in \Sigma_{r}(z)} & \int_{\mathbf{Z}} f(z) h(z) d \mu \\
\text { s.t. } & \int_{\mathbf{Z}} h(z) d \mu=1 .
\end{aligned}
$$

where Σ_{r} is the space of SOS polynomials of degree at most $2 r$, converges (Lasserre, 2001) to:

$$
\min _{z \in Z} f(z) .
$$

as $r \rightarrow+\infty$.

Theory - numerical investigation

r	Probability
0	0.1736
1	0.3946
2	0.4824
3	0.4988
4	0.5249
5	0.5419
6	0.5641
7	0.5755
8	0.5889
9	0.5947
10	0.6023
11	0.6090
12	0.6142
∞	0.6923

Back to our example

Worst-case density obtained with polynomial degree $2 r=24$:

Probability: 0.6142

Back to our example

Worst-case density obtained with polynomial degree $2 r=24$:

Probability: 0.6142

Computational heuristic

Instead of optimizing over a high-degree density $h(z)$ do:
(1) Optimize a low-degree density polynomial $h_{1}(z)$.
(2) Fix $\bar{h}_{1}(z)$, set the new probability density function as $\bar{h}_{1}(z) h_{2}(z)$, where $h_{2}(z)$ is the same degree as $\bar{h}_{1}(z)$, optimize over $h_{2}(z)$.
(3) Fix $\bar{h}_{2}(z)$, set the new probability density function as $\bar{h}_{1}(z) \bar{h}_{2}(z) h_{3}(z)$, optimize over $h_{3}(z)$.
(c) ...

We tested it also on several global optimization examples.

Conclusion

- we propose a new way of defining uncertain smooth probability measures
- the maximum expectation problem becomes an SDP
- proved (?) the convergence to the optimal value of a general problem of moments
- computational heuristic: modelling the polynomial density as a product of polynomial densities of smaller degree, optimized one after another

Thank you for your attention

