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Inspired by SDDP

Stochastic optimization
Optimizes expected value
Requires knowledge of distribution

min
x

EP[f(x, ξ)]

Robust optimization
Optimizes for the worst case scenario
Uses only support information (uncertainty set) min

x
max
ξ∈Ξ

f(x, ξ)

Nested Benders

SDDP

RDDP
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Multistage Robust Optimization

minimize max
ξ∈Ξ

T∑
t=1

q>t xt(ξt)

subject to Tt(ξt)xt−1(ξt−1) +Wtxt(ξt) ≥Htξt

xt(ξt) ∈ Rnt , ξt = (ξ1, · · · , ξt)

}
∀ξ ∈ Ξ, ∀t

Features/Difficulties:
Optimize over decision policies xt(·)
Polyhedral uncertainty sets Ξ = Ξ1 × · · · × ΞT

Infinite number of variables and constraints
Assumptions:

Relatively complete recourse
Fixed recourse

Both assumption can be lifted
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Applications

Hydro Scheduling & 

Reservoir Management

Long Term Energy 

Storage

Path Planning 

Application with 

Long Planning Horizons
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Nested Formulation

The multistage problem can be expressed through a nested formulation

min
x1∈X1

q>
1 x1 +

[
max
ξ2∈Ξ2

min
x2∈X2(x1,ξ2)

q>
2 x2 +

[
· · · + max

ξT ∈ΞT

min
xT ∈XT (xT −1,ξT )

q>
T xT

]]

First stage problem
min
x1∈Rn1

q>1 x1 +Q2(x1)
W1x1 ≥ h1

t stage problem

Qt(xt−1) = max
ξt∈Ξt

min
xt∈Rnt

q>t xt +Qt+1(xt)

Tt xt−1 +Wtxt ≥Htξt
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Nested Formulation

Q2 Q3

· · · · · ·

QT QT +1

Cost to-go functions Qt(xt−1) are
Convex
Piecewise linear

If only we knew these functions...
This problem is still not easy (in fact is NP-hard). However,

“Practable” algorithms can address problem
inner problem convex in for each ξt

Polyhedral Ξt =⇒ replace with ext Ξt =⇒ problem decomposes
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Approximate Dynamic Programming

Cost to-go functions Qt(xt−1) are
Convex
Piecewise linear

Approximate using under-estimator Qt(xt−1)
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Nested Benders for Robust Optimization

Maintain outer approximation Qt(xt−1) per node

Forward Pass: Explore one scenario at a time
Backward Pass: Introduce Benders cuts, refine outer approximations
Exhaustive enumeration: we refine at all nodes (all scenarios) several times
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Cut Sharing and SDDP
Exploit the Markov property: Maintain one approximation Qt(xt−1) per stage

SDDP:
Small number of refinements
Good performance in practice
Stochastic termination criterion
Stochastic convergence
No distributional information for robust optimization
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Robust Dual Dynamic Programming (RDDP)

Which scenario/state do we propagate forward?

Angelos Georghiou (McGill University) Robust Dual Dynamic Programming DRO Workshop 2018 10 / 27



Robust Dual Dynamic Programming (RDDP)
Main Idea: maintain both

an outer approximation

and an inner approximation

In the forward pass:
use inner approximation to choose scenario
use outer approximation to choose decisions (points of refinement)

In the backward pass:
refine both inner and outer approximations
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Why Use an Inner Approximation?

Intuitively speaking,

Outer Approx. Inner Approx.

minimizing a convex function
3 7
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Forward Pass
We want “nature” to be optimistic in its choice, use inner approximation

ξf
t = arg max

ξt∈ext Ξt

min
xt∈Rnt

q>t xt +Qt+1(xt)

Tt x
f
t−1 +Wtxt ≥Htξt

Based on “optimistic nature”, make optimistic decision, use outer approximation

xf
t = arg min

xt∈Rnt
q>t xt +Qt+1(xt)

Tt x
f
t−1 +Wtxt ≥Htξ

f
t

Nature

Decision 

maker
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Backward Pass: Refining Approximation
Inner approximation: Starting with xf

t−1

ξb
t = arg max

ξt∈ext Ξt

min
xt∈Rnt

q>t xt +Qt+1(xt)

Tt x
f
t−1 +Wtxt ≥Htξt

with optimal solution Qt(xf
t−1)

add (xf
t−1,Qt(xf

t−1)) to approximation Qt
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Backward Pass: Refining Approximation
Outer approximation: Starting with xf

t−1, use ξb
t from inner approximation

Qt(x
f
t−1) = min

xt∈Rnt
q>t xt +Qt+1(xt)

Tt x
f
t−1 +Wtxt ≥Htξ

b
t

with πt be the optimal solution of the dual problem
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Termination Criterion
Stage-1 Problem:

using inner approximation get upper bound

J = min
x1∈Rn1

q>1 x1 +Q2(x1)
W1x1 ≥ h1

using outer approximation get lower bound

J = min
x1∈Rn1

q>1 x1 +Q2(x1)
W1x1 ≥ h1

Since Q2(x1) ≤ Q2(x1) ≤ Q2(x1) for all x1 ∈ Rn1

J ≤ J∗ ≤ J

Termination Criterion: J = J∗ = J
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RDDP v.s. Nested Benders & SDDP
Nested Benders:

Finite convergence
Deterministic bounds
No relative complete recourse

Exponential effort (to complete
every iteration)

SDDP:
Lightweight iterations
Limited memory requirements
Relative complete recourse required
Stochastic upper bounds
Stochastic convergence

RDDP: Combines best of Nested Benders & SDDP

Finite convergence
Deterministic bounds
No relative complete recourse

Lightweight iterations
Limited memory requirements

Implementable strategy at every iteration
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RDDP Extensions

minimize max
ξ∈Ξ

T∑
t=1

q>t xt(ξt)

subject to f1(x1) ≤ 0 ∀ξ ∈ Ξ
ft(xt−1(ξt−1), ξt,xt(ξt)) ≤ 0 ∀ξ ∈ Ξ, ∀t
xt(ξt) ∈ Rnt , ξ ∈ Ξ and t = 1, . . . , T,

Extensions:
Non-linear (convex) case: ft(·, ξt, ·) are jointly quasi-convex

Random recourse

Tt(ξt)xt−1(ξt−1) +Wt(ξt)xt(ξt) ≥Htξt

Random objective function
Asymptotic convergence guaranties (cost to-go convex but not piecewise
linear)
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Numerical Results: Inventory Control

time
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Numerical Results: Nested Benders Decomposition
Instance Trajectories Runtime Memory

5-4-3 256 1.3s 18MB
5-4-4 4,096 44.6s 260MB
5-4-5 65,536 924.23s 20.2GB
5-4-6 1,048,576 — —

Nested Benders Decomposition is completely impractical for T > 5
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Numerical Results: RDDP
Scalability w.r.t. horizon T = {50, 75, 100}

5 products (5 states)
4 random variables per stage (24 = 16 scenarios)
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RDDP scales better than linear decision rules w.r.t. the horizon. . .

in addition to converging to the optimal solution
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Numerical Results: RDDP
Scalability w.r.t. products = {10, 15, 20}

4 random variables per stage (24 = 16 scenarios)
horizon T = 25
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RDDP does not solve the “curse of dimensionality”
But, can address problem instances of practical interest . . .

while converging to the optimal solution
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Numerical Results: RDDP
Scalability w.r.t. random variables = {5, 7, 9}

i.e., scenarios per stage = {32, 128, 512}
products = {6, 8, 10}
horizon T = 25
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Complexity of two-stage problem can affect scalability
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Numerical Results: SDDP
Initial inventories I0p(ξ0)

Order 20% 25% 30% 35% 40%
frequency ∆ Solved Gap Solved Gap Solved Gap Solved Gap Solved Gap

5 70% 18% 60% 20% 40% 20% 20% 72% 0% 100%
7 20% 13% 50% 17% 80% 5% 10% 26% 0% 100%
10 0% 14% 0% 14% 20% 18% 10% 23% 10% 73%

SDDP can easily miss the optimal solution!

SDDP RDDP
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