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Motivation

Many body theory for Bosons: Bose fields
@ annihilation and creation operators, complex f, g € D(R?®),

[a(f),a"(9)] = (f,9) 1, [a(f),a(9)] = [a"(f),a"(9)] = 0.

@ fields (real linear)
o(f) = a*(f) + a(f) ..

@ Fock space F: generated by fields from vacuum Q

@ dynamics: (pair potentials V € Cy(R?9))

H- /dxaa x)da(x / dx [ dy a'(x)a*(y)V(x - y)a(x)a(y)

Standard framework (“bookkeeping”). Other (e.g. thermal) states
require different representations and modified Hamiltonians . ..
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Motivation

Longstanding question:

Does there exist a “kinematical” C*-algebra 2(, encoding the CCRs,
such that the solutions of the Heisenberg equation lie in 2, i.e.

Ot A(t) =i [H,A(t)], A(0) € A, implies A(t) e A,, teR?

Consequence: A(t) = a(f)(A), where «(t) are automorphisms of A, t € R.
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Motivation

Longstanding question:

Does there exist a “kinematical” C*-algebra 2(, encoding the CCRs,
such that the solutions of the Heisenberg equation lie in 2, i.e.

Ot A(t) =i [H,A(t)], A(0) € A, implies A(t) e A,, teR?

Consequence: A(t) = a(f)(A), where «(t) are automorphisms of A, t € R.

Sceptical views: [Bratteli, Robinson]

First, no global statement of the time development as a group of
*-automorphisms of an appropriate C*-algebra has been obtained and,
second, there are plausible physical reasons for believing that such a develop-
ment, if it existed, would be discontinuous in the norm topology.
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Motivation

Longstanding question:

Does there exist a “kinematical” C*-algebra 2(, encoding the CCRs,
such that the solutions of the Heisenberg equation lie in 2, i.e.

Ot A(t) =i [H,A(t)], A(0) € A, implies A(t) e A,, teR?

Consequence: A(t) = a(f)(A), where «(t) are automorphisms of A, t € R.

Sceptical views: [Narnhofer, Thirring]

The real trouble maker is p(z) which in some representation like the Fock representation is well
defined but in others, like the one based on the tracial state, is truly infinite. Though there is no
doubt that for a smooth v H from (1.2) determines a time evolution in the Fock representation,
an automorphism of the algebra of observables, which would be valid in any state, cannot be
expected in general.
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Does there exist a “kinematical” C*-algebra 2(, encoding the CCRs,
such that the solutions of the Heisenberg equation lie in 2, i.e.

Ot A(t) =i [H,A(t)], A(0) € A, implies A(t) e A,, teR?

Consequence: A(t) = a(f)(A), where «(t) are automorphisms of A, t € R.

Sceptical views: [Narnhofer, Thirring]

The real trouble maker is p(z) which in some representation like the Fock representation is well
defined but in others, like the one based on the tracial state, is truly infinite. Though there is no
doubt that for a smooth v H from (1.2) determines a time evolution in the Fock representation,
an automorphism of the algebra of observables, which would be valid in any state, cannot be
expected in general.

Conclusion: “large field problems” obstruct C*-algebraic approach ...
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Resolvent algebra

CCRs can be encoded in relations between resolvents of field,

©0 0000

R\ ) =(ix+o(f) ", XeR\{0}, fe DR

R(\,0) = (ix)~'1
R(\, f)* = R(=\, f)
R(A, f) = R(u, f) = i(n — A)R(A, f)R(w, f)

(RO 1), Rl 9)] = io(F, @) RO\ £) R, 62RO 7

v R(vA, vf) = R(\, f)

R(X, )Rk, 9)

= RO\ +p, f+9)[R(\ ) + R, 9) + io(f, g)R(X, F)?R(u, 9)]

Resolvent algebra: abstract C*-algebra 93 generated by all sums
and products of these symbols. Faithfully represented on F.



Gauge transformations

On R acts global gauge group I' ~ U(1) given by

Y(u)(R(\ £)) = R\, eVF) £ e“NR(\, Hle™™N | ue0,2x],
N particle number operator.

Action of gauge transformations discontinuous in C*-sense. Nevertheless

Let R € fR. lts Fourier components are elements of 4R, i.e.

2m )
RmZ (1/27)" ' [ due™(u)(R)e R, meZ.
0

Note: integral is defined only in the strong operator topology on F.

Observable algebra: 2 = 9" c )& (gauge invariant elements).



Gauge transformations

Outline of proof:

Let f € D(R®) and put (i) L =Cf, (ii) F(L) C F Fock space over L, (iii) D3(L) C R.
Consider

u, v — €My (v)(R(A, )" y(u)(R(A, ) = €™ R(—A, V) R(), €f) € R(L).
Underlying field operators satisfy
[6("1), p(e" )] = (e~ — e "N (F, 1) £0 it (u—v)#7Z.

Operator function has values in ideal €(L) C 93(L) of compact operators on F(L) for
almost all (u,v) € R? and it is bounded. Hence (s.o. topology)

2m . 2

/dev du (VRO D) 1RO D) = | [ due™() (RO )| € €.

Polar decomposition: foz’Tdu e™y(u)(R(\ f)) € €(L) C R.



Structure of observables

Detailed analysis necessary. Basic facts:
@ 2 acts faithfully on Fock space F = &, F, (since 2R does)
@ pp(A) = A | F, disjoint, non-faithful representations of A, n € Ny

Strategy of analysis:
@ clarify structure of each p, ()
@ understand relation between different algebras p,(21), n € Ny

Definition: ¢, compact operators on F,,. Natural embedding into F,
Cn—Cmn=€nR:s1®s---®s1, 0<m<n
N —

n—m
Kp = linear span of €yp, 0 < m<n (AF algebra).
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Structure of observables

Detailed analysis necessary. Basic facts:
@ 2 acts faithfully on Fock space F = &, F, (since 2R does)
@ pp(A) = A | F, disjoint, non-faithful representations of A, n € Ny

Strategy of analysis:
@ clarify structure of each p, ()
@ understand relation between different algebras p,(21), n € Ny

Definition: ¢, compact operators on F,,. Natural embedding into 7,
Cn—Cn=CnRs1®s---®s1, 0<m<n
N —

n—m
Kp = linear span of €yp, 0 < m<n (AF algebra).

Proposition
Let n € Ny, then pp(2) = K.




Structure of observables

Definition: {8, en}nen, Where en(8Rn) = Rp ®s 1 C Rpy1 (directed system)
Relation between K, = pp(2A), n € Ng? Use clustering properties!
P(X) = Py Qs+ Qs Pp_1 RsPp(X) € Fr, Dyq,...,0p€ Fy, X RS,
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Structure of observables

Definition: {8, en}nen, Where en(8Rn) = Rp ®s 1 C Rpy1 (directed system)

Relation between K, = pp(2A), n € Ng? Use clustering properties!

P(X) =Dy Qs+ Qs Pp_g RsPn(X) € Fp, &q,...,Pp€ Fy, X RS,

Proposition

Letne N, Aec .

() liMx—co (W(X), pn(A) @"(x)) = 0= (W1, py_4(A) @) (W, &p)

(ii) pn(A) =m0 Cmn implies pp_1(A) =Y 1o %52 Cmn 1
Recall notation: Cx) = Cxk Qs 1®s---®s1 € € C K.
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Structure of observables

Definition: {8, en}nen, Where en(8Rn) = Rp ®s 1 C Rpy1 (directed system)
Relation between K, = pp(2A), n € Ng? Use clustering properties!
P(X) =Dy Qs+ Qs Pp_g RsPn(X) € Fp, &q,...,Pp€ Fy, X RS,

¢n71

Proposition

Letne N, Aec .

() liMx—co (W(X), pn(A) @"(x)) = 0= (W1, py_4(A) @) (W, &p)

(ii) pn(A) =m0 Cmn implies pp_1(A) =Y 1o %52 Cmn 1
Recall notation: Cx) = Cxk Qs 1®s---®s1 € € C K.

I—k
v

Definition: {f,, kn}nen, Where s, : R — Rp_y homomorphism given

by kn (an:o Cmn) = anzo =M Cmpoq (inverse system)



Structure of observables

Definition: Inverse limit & = {K,, € Rn}nen, consists of all bounded
sequences satisfying the coherence condition xn(Kn) = Kn_1, n € Np.

Remark: C*-algebra, algebraic operations component-wise defined.
Proposition implies 24 C K. Extend 21 in order to obtain equality!
Definition: 2( is defined as the C*-algebra of all bounded operators A
on F satisfying A | @7 o Fm € A [ @] _oFm, ne< No.

Remark: 2( dense in 2 with regard to the locally convex topology
induced by seminorms || - ||n, n € No. Differences between algebras
only visible in states containing an infinity of particles.
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Structure of observables

Definition: Inverse limit & = {K,, € Rn}nen, consists of all bounded
sequences satisfying the coherence condition xn(Kn) = Kn_1, n € Np.

Remark: C*-algebra, algebraic operations component-wise defined.
Proposition implies 24 C K. Extend 21 in order to obtain equality!

Definition: 2( is defined as the C*-algebra of all bounded operators A
on F satisfying A | @7 o Fm € A [ @] _oFm, ne< No.

Remark: 2( dense in 2 with regard to the locally convex topology
induced by seminorms || - ||n, n € No. Differences between algebras
only visible in states containing an infinity of particles.

Map A — {A | Fn € fn}nen, defines isomorphism between 2 and K.
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Dynamics of observables and fields

Strategy:
@ establish stability of &, under action of dynamics, n € Ny
@ check consistency of dynamics with coherence condition

Analysis:
@ Consider restrictions H | 7, = H,, n € Ng, where

Ho=3 PP+ 54 V(Q—Qk), ij.ke{l,....n}.
Define automorphic action of dynamics on B(F,)
an(t) =Ade™  teR.
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Dynamics of observables and fields

Strategy:
@ establish stability of &, under action of dynamics, n € Ny
@ check consistency of dynamics with coherence condition

Analysis:
@ Consider restrictions H | 7, = H,, n € Ng, where

Ho=3 PP+ 54 V(Q—Qk), ij.ke{l,....n}.
Define automorphic action of dynamics on B(F,)
an(t) =Ade™  teR.

Proposition

Let n € Ny, then
(I) Oén(t)(ﬁn) = ﬁn, te R,
(i) t— an(t) | Ry pointwise continuous with regard to || - ||n.

Note: &, has ideals; result not true for simple subalgebras of B(Fp).
11/20



Dynamics of observables and fields

@ Stability of inverse limit & under action of dynamics: check of
coherence condition. Again: use of clustering properties.

Proposition
Hnoan(t) = Oén_‘](t)olfn on ﬁn, ne NO.

Consequence: {Kp}nen, € & implies {an(t)(Kn)}nen, € R, t€R.
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Dynamics of observables and fields

@ Stability of inverse limit & under action of dynamics: check of
coherence condition. Again: use of clustering properties.

Proposition
Hnoan(t) = Oén_‘](t) okp 0ON ﬁn, ne No.

Consequence: {Kp}nen, € & implies {an(t)(Kn)}nen, € R, t€R.

Theorem

Let a(t), t € R, be the group of automorphisms of B(F) fixed by a
Hamiltonian H with pair potential V € Cy(RR?).

(i) a(t)(RA)=2A, t R, and t — «(t) pointwise continuous (in I.c.t.)

(i) There is a dense (in l.c.t.) subalgebra 21, C 24 on which action is
pointwise norm continuous, i.e. (A, o) is a C*-dynamical system.
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Dynamics of observables and fields

Action of dynamics on non-gauge invariant operators (fields)

Definition: V; = a*(f)(1 + a*(f)a(f))~ "/, f € D(R®) normalized
Facts:

o V;Vs=1, VsV = Ef (projection onto kera(f)*)

® o¢(-) = Vi - V; defines morphism of 2( (non-unital)

o VoV, ViV € 2 (transportability of morphisms, ps — pg).
Action of dynamics (defined on F):

o a(t)(Vy) = (a(t)(V)V}) Vi, a(t)(VY)

Vi (Via(t)(VF),

13/20



Dynamics of observables and fields

Action of dynamics on non-gauge invariant operators (fields)
Definition: V; = a*(f)(1 + a*(f)a(f))~ "/, f € D(R®) normalized
Facts:

o V;Vs=1, VsV = Ef (projection onto kera(f)*)

@ of(-) = Vi - V7 defines morphism of 2 (non-unital)

o VoV, ViV € 2 (transportability of morphisms, ps — pg).

Action of dynamics (defined on F):
o a(t)(V)) = (a(O(V)V;) Vi a(t)(V) = Vi (Vi t)(V)),

Proposition

Let a(t), t € R, be defined as above and pick normalized f € D(RR?).
() a(t) (V)V}, Via(t) (V) eA, teR.

(i) C*-algebra R generated by 2 and V;, V} is stable under the
automorphic action of «a(t), t € R.
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Applications

@ AQuasi local structure of observables

© (Approximate) ground states and condensates
© Particle properties and collision theory

© Equilibrium states
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Applications

(1) Quasi local structure of observables

Consider spatial translations, fixed by ax(R(), f)) = R(A, fx), and put
a(t,x) = a(t)ca(x) = a(x)-a(t) for (t,x) € R x R®

Let ALBc® and t € R. Then
Jm [[{a(t, x)(A), Bllln =0, neNo.

Question: Do there hold more specific bounds for given potential V?
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Applications

(2) (Approximate) ground states and condensates

(a) Ground state: Q for (renormalized) Hamiltonian H, = H + E(N).
(b) Approximate (non-Fock) ground states and condensates:
Y, =(n)"12¢, @ ®s®, €Fp, NneN
where x — &, (x) = L=5/2d(x/L) € Fy is normalized.
Let V >0, ﬁn outgoing Mgller operator, lTJL,n = ﬁ,,wm, then
0 < (Wpp HaW L) = (W, HonWi ) = nL72 [dx |9 (x)[?

Consider states wp () = (W, p, - W, ) for n— oo, nL=2 = c.

16/20



Applications

(2) (Approximate) ground states and condensates

(a) Ground state: Q for (renormalized) Hamiltonian H, = H + E(N).
(b) Approximate (non-Fock) ground states and condensates:

Y, =(n)"12¢, @ ®s®, €Fp, NneN
where x — &, (x) = L=5/2d(x/L) € F; is normalized.
Let V >0, ﬁn outgoing Mgller operator, lTJL,n = ﬁ,,wm, then

0 < (W p HaWpp) = (Wi HonWe ) = nl=2 [dx [9(x)?

Consider states wp () = (W, p, - W, ) for n— oo, nL=2 = c.

Proposition

All limit points lead to positive energy representations of (2, ).
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Applications

(3) Particle properties and collision theory

“Particle observables” are uncovered at asymptotic times.

Lemma

Let V > 0 be short ranged, and let A c 21 be localized. Then (weakly)
lim; oo a(t)(A) = (Q, AQ) 1
im0 [dX h(x/t)a(t, X)(Ao) = cs [dp h(2p)(p. Ao P) & (P)a(P).-

Here Ay = (A— (Q,AQ)1) and ~ indicates "outgoing” operators.

Similarly for “incoming”, collision cross sections etc

Collision theory for observables works [Araki, Haag]
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Applications

(4) Equilibrium states
Theory defined on R® (no boxes). Introduce trapping forces, L > 0,

H =H+ /dx (x2/L*) a*(x)a(x) .

Automorphic action «a;(t) = Ade™. on B(F), teR.

A stable under action of a;(t), and one has pointwise (in I.c.t.)
lim o (t) =at) ,teR.
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Applications

(4) Equilibrium states
Theory defined on R® (no boxes). Introduce trapping forces, L > 0,

H =H+ /dx (x2/L*) a*(x)a(x) .

Automorphic action «a;(t) = Ade™. on B(F), teR.

A stable under action of a;(t), and one has pointwise (in I.c.t.)
lim o (t) =at) ,teR.

V of positive type: Trr e #H—1N) < oo for 3> 0, u < —V(0).
wﬁ,,u,L( . ) =Tr (e—ﬁ(HL—MN) . )/Tr e—ﬁ(HL—MN)
KMS-state with regard to «(t), t € R. Limit states exist (Alaoglu).
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Summary

Results:
@ resolvent algebra R cures “large field problems”
@ observable algebra 2 composed of AF algebras
@ automorphic action of dynamics established for 2( and 2’
@ dense C*-dynamical systems exist
@ quasi local structure of 2 stable under time evolution
@ formalism useful for analysis of finite and infinite bosonic systems
@ similar results hold for fermionic systems [Bratteli]
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Summary

Results:
@ resolvent algebra R cures “large field problems”
@ observable algebra 2 composed of AF algebras
@ automorphic action of dynamics established for 2( and 2’
@ dense C*-dynamical systems exist
@ quasi local structure of 2 stable under time evolution
@ formalism useful for analysis of finite and infinite bosonic systems
@ similar results hold for fermionic systems [Bratteli]

Challenges: treatment of
@ non-relativistic dynamics changing particle number
@ relativistic (canonical) theories in d = 2
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Thank you for your
attention!
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