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Main Question

How many compact Riemann surfaces X admit a conformal cyclic group
action of order n, if we assume X = H/I" with I < A(ny, n2, n3) and
A(nl, np, n3)/r = Cn?
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Main Question

How many compact Riemann surfaces X admit a conformal cyclic group
action of order n, if we assume X = H/I" with I < A(ny, n2, n3) and

A(nl, np, n3)/r & Cn?

These surfaces are called quasiplatonic cyclic n-gonal surfaces.
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Related Question

We will apply results of Benim and Wootton to count all topological
cyclic group actions of order n on quasiplatonic surfaces (this is
different from counting n-gonal surfaces).
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Group Acting on a Surface

A group G acts topologically on a surface X of genus g > 2 if there is a
monomorphism ¢ : G — Homeo™ (X).

Two actions €1 and e, are equivalent if €1(G) and e;(G) are conjugate in
Homeo™ (X).



Regular Cyclic Dessins

A regular dessin (D, X) will be called a regular cyclic dessin of order n if

Aut(D) = C,.
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Regular Cyclic Dessins

A regular dessin (D, X) will be called a regular cyclic dessin of order n if
Aut(D) = C,.

The number R(C,) of regular cyclic dessins of order n > 7 having genus at
least two is given by

R(C,) = n]pg <1+ ;) - 3.

(G. Jones, 2014)
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Example

There are two quasiplatonic cyclic 7-gonal surfaces, both of genus three:
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Example

There are two quasiplatonic cyclic 7-gonal surfaces, both of genus three:
Q y?=x®—x,
Q@ y’ = x(x — 1)? (Klein's Quartic).
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Example

There are five regular cyclic dessins on quasiplatonic cyclic 7-gonal
surfaces.
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Main Questions

Let QC(n) denote the number of distinct topological actions of C, on
quasiplatonic surfaces.
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Main Questions

Let QC(n) denote the number of distinct topological actions of C, on
quasiplatonic surfaces.

© Is there a closed form for QC(n)?
@ What is the relationship between QC(n) and R(C,)?

@ Can QC(n) be determined combinatorially, by using dessins for
instance?



Method - Harvey's Theorem for the Quasiplatonic Case
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Method - Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)

Let n = lem(n1, n2, n3). Then the cyclic group of order n acts on X of
genus g with signature (n1, na, n3) if and only if
©Q n=lem(ny, ny) = lem(ny, n3) = lem(nz, n3);

@ for n even, exactly two of ni, np, n3 must be divisible by the maximum
power of two dividing n;

@ the Riemann-Hurwitz formula holds:
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Method - Signatures

Fix an equivalence class of (n1, n2, n3)-generating vectors for C,. This
determines a triangle group A(ni, nz, n3) and a torsion-free Fuchsian
group I with A(ny, np, n3)/T = C,.
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Method - Signatures

Fix an equivalence class of (n1, n2, n3)-generating vectors for C,. This
determines a triangle group A(ni, nz, n3) and a torsion-free Fuchsian
group I with A(ny, np, n3)/T = C,.
There are three cases for possible signatures (ny, na, n3):

@ all n; are distinct;

@ exactly two of n; are equal,

@ all n; are equal.
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Method - Benim/Wootton Formulas
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Method - Benim/Wootton Formulas

Let n=[];_; p" be the prime factorization of n.

’ Signature ‘ T = number of distinct topological actions‘

(m.maims)| T = g(ged(m. ma. my)) (T2 255
(n1, n, n) T = % (7’1(”, n) + ¢(n) (H;"’Zl g;j))
(n,nn) | T =3 (3+2m(n) +o(n) (T 22) )
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Method - Benim/Wootton Formulas

Let n=[];_; p" be the prime factorization of n.

’ Signature ‘ T = number of distinct topological actions‘

(v ma, )| T = olaed(on, o, ms)) (T2 52

i=1 p—1

(n,n,n) | T=13 (7'1(”, n1) + ¢(n) (lezl ij>>

(n,n,n) | T= % (3 +27m2(n) + ¢(n) <H;:1 ﬁﬁif))

Here,

e 71(n, n1) = number of noncongruent, nonzero solutions to
x? 4 2x = 0mod n where gcd(x, n) = n/ny;

@ m(n) = number of noncongruent solutions to x? + x + 1 = 0 mod n;

@ w > 0 is an integer representing the number of primes (including
multiplicity) shared in common.
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Method - QC(n)

Compute QC(n) via the following procedure:
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Method - QC(n)

Compute QC(n) via the following procedure:

@ find all admissible signatures for a given n;
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Method - QC(n)

Compute QC(n) via the following procedure:
@ find all admissible signatures for a given n;

@ for each signature, use one of three different Benim/Wootton
formulas giving the number of nonequivalent quasiplatonic cyclic
actions on surfaces of that signature;
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Method - QC(n)

Compute QC(n) via the following procedure:
@ find all admissible signatures for a given n;

@ for each signature, use one of three different Benim/Wootton
formulas giving the number of nonequivalent quasiplatonic cyclic
actions on surfaces of that signature;

© add up all values given by the formulas from all possible signatures for
n. This number will be QC(n).
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Let n = 20.
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Example

Let n = 20.

] Signature \ T ‘
(4,5,20) | T
(4,10,20) | T
(2,20,20) | T
)| T

T

(5,20, 20
(10, 20, 20)

Il
NN R R
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Example

Let n = 20.

] Signature \ T ‘
(4,5,20) | T
(4,10,20) | T
(2,20,20) | T
)| T

T

(5,20, 20
(10, 20, 20)

Il
NN R R

Then QC(20) =1+1+1+2+2=7.
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Example

For n = p > 5 a prime, there is only one admissible signature: (p, p, p).
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Example

For n = p > 5 a prime, there is only one admissible signature: (p, p, p).

Then
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Current Research

QC(n) is known for some values of n (e.q., n is a prime power). The
general case is still being investigated.
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Current Research

QC(n) is known for some values of n (e.q., n is a prime power). The
general case is still being investigated.

Let QCr(n) :=6- QC(n) — R(C,). Computations with Sage suggest that,
for certain families of positive integers, QCg(n) is a constant.
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Data - Table of Values

‘n ‘QC(n)‘R(Cn)‘QCR(n)‘ ‘n ‘QC ‘R )‘QCR(n)‘
7 12 5 7 2117 29 13
8 |3 9 9 2216 33 3
9 (2 9 3 234 21 3
10(3 15 3 24111 45 21
112 9 3 2515 27 3
12|5 21 9 26 |7 39 3
133 11 7 2716 33 3
14 |4 21 3 289 45 9
15|5 21 9 295 27 3
16|5 21 9 30|13 69 9
173 15 3

186 33 3

194 17 7

207 33 9
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Data - Graph of QC(n)

QC(n)

800 |

n
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Data - Graph of QCr(n)

QCRr(n)
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Future Directions

@ Generalize methods to any quasiplatonic group; i.e., find all
topological actions of G = A/I" on surfaces X = H/T, for A a
triangle group and I a surface group.

19/20



Future Directions

@ Generalize methods to any quasiplatonic group; i.e., find all
topological actions of G = A/I" on surfaces X = H/T, for A a
triangle group and I a surface group.

e Compute QC(n) using combinatorial information from the regular
cyclic dessins.
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Future Directions

@ Generalize methods to any quasiplatonic group; i.e., find all
topological actions of G = A/I" on surfaces X = H/T, for A a
triangle group and I a surface group.

e Compute QC(n) using combinatorial information from the regular
cyclic dessins.

@ Relate topological actions to conformal actions.
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Questions? Thank you!
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