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Motivation

3s maximum wind gust of the storm Lothar during winter 1999

I 169 km/h maximum observed windspeed in Paris (Parc Montsouris).

I Estimated loss around 8 billion dollars.
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Motivation

I Classical techniques for risk estimation rely on historical catalogues and climate
models:

⇒ Cannot generate completely new extreme events.

I Aim to develop a windstorm generator producing storms with
I unobserved intensities, i.e., extrapolation above known levels;
I unobserved patterns, i.e., new storm tracks and shapes.
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Motivation: geostatistical tools?
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I Gaussian (red) and t20 (blue) density functions matched to have probabilities
0.05 for |X | > 1.96.

I Ratio of t20/Gaussian probabilities for |X | > x :

x 2 3 4 5 6 7
Ratio of probabilities 1.01 1.7 6.1 58 1589 1.7e5

I Gaussian distribution has a quick tale decay which may strongly underestimate
rare events:

⇒ Not suitable for extrapolation!
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Motivation: geostatistical tools?

I For a threshold u > 0 and a bivariate vector with Fréchet margins and Gaussian
copula,

Pr(X1 > u | X2 > u) ∼ C × u−(1−ρ)/(ρ+1)(log u)−ρ/(1+ρ),

and
lim

u→∞
Pr(X1 > u | X2 > u) = 0.

where −1 < ρ < 1 is the correlation coe�cient.

I With a Gaussian spatial model, the extent of an extreme event decreases as u
increases:

⇒ Strength of dependence should not depend on the intensity.
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Extreme value theory (EVT)

I Extreme value theory describes the tail of the distribution.

I Historically it was developped for "block maxima", i.e., to model annual/monthly
maxima with the Genralized Extreme Value (GEV) distribution.

I Max-stable processes, the functional equivalent of GEV, are mathematically very
complex and thus limited application to few dozens of locations.

I To model single events, an alternative is the peaks-over-threshold analysis.

Generalized peaks-over-thresholds modelling 6 / 29



Univariate extreme value theory (EVT)

Peaks-over-threshold models
For any random variable X , there exist sequences an > 0 and bn such that

n Pr
[
{X−bn}+

an
> x

]
n Pr

[
{bn−X}+

an
> x

] → νξ(x), n→∞,

and νξ is either degenerate or

νξ(x) =


(
1 + ξ x−µ

σ

)−1/ξ
, 1 + ξ(x − µ)/σ ≥ 0, ξ 6= 0;

exp
(
− x−µ

σ

)
, x ≥ 0, ξ = 0.

with, µ ∈ R, σ > 0.

ξ, the tail index, determines the strength of the tail and its support:

I ξ > 0: Fréchet type with x ≥ µ,
I ξ = 0: Gumbel type with x ≥ µ,
I ξ < 0: Weilbull type with x ∈ (µ;µ− σ/1/ξ);
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Univariate results for threshold exceedances

For a large enough threshold u < inf{x : F (x) = 1}, we can use the approximation

Pr (X− u > x | X > u) ≈
{

(1 + ξx/σ)
−1/ξ
+ , ξ 6= 0,

exp (−x/σ) , ξ = 0,

where σ = σ(u) > 0 and a+ = max(a, 0):

⇒ The conditional distributions of exceedances over a high threshold can be
approximated by a GP distribution.
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(Generalized) functional regular variation

I Let {X (s)}s∈S be a stochastic process with sample paths in the space of
continuous functions C(S), where S ⊂ Rd .

I Suppose there exist ξ ∈ R, sequences an > 0 and bn with limn→∞ an(s) =∞ for
all s ∈ S , such that

n Pr

[{
1 + ξ

(
X−bn
an

)}1/ξ
∈ ·
]

n Pr
{

exp
(

X−bn
an

)
∈ ·
}

→ Λ(·), n→∞. (1)

I Λ is a measure on C+(S) \ {0} satsifying

Λ{x ∈ tA} = t−1Λ{x ∈ A}, t > 0, A ∈ C(S) \ {0}.

I Condition (1), which we write X ∈ GRV(Λ), is a form of functional regular
variation (Hult and Lindskog, 2005).
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Risk functional and r-exceedances

I For a monotonic increasing functional r, an r-exceedance over a threshold u > 0
is an event {r(x) > u}.

I r is called a risk functional. Common examples are

� sups∈S X (s) for events where X exceeds a threshold at least one location;

�
∑T

t=1

∫
S Xt(s)ds for spatio-temporal accumulation;

�
√∫

S X (s)2ds when the risk is determined by the energy inside a system;

� X (s0), with s0 ∈ S for risks at a speci�c location, for instance a dam or a
power plant.

I For simplicity of exposure, we now further suppose that r is linear.
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Limiting distribution of r-exceedances

Theorem (de Fondeville and Davison, 2018)

Let r be a risk functional and let X ∈ GRV(Λ). Then there exist ξ ∈ R and a measure
σang on

Sang = {x ∈ C(S) : ‖x ||1 = 1},

such that for any W ⊂ Sang, and ρ > 0,

nPr

[
r(X)− r(bn)

r(an)
> ρ,

X− r(bn)

‖X− r(bn)‖ang
∈ W

]
→
(
1 + ξ

x− µ
σ

)−1/ξ
σang(W),

as n→∞, for ξ 6= 0, and

nPr

[
r(X)− r(bn)

r(an)
> ρ, exp

X− r(X)

r(an)
∈ W

]
→ exp

(
−
x− µ
σ

)
σang(W),

for ξ = 0.
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r-Pareto processes

Generalized r-Pareto process (de Fondeville and Davison, 2018)

A generalized r-Pareto process P is de�ned by

P =

{
R W
r(W )

, ξ 6= 0,

R + log W − r(log W ), ξ = 0,
(2)

where

I R is a univariate generalized Pareto variable with tail parameter ξ, and
distribution function

Pr(R > ρ) =

{
1 + ξ

ρ− u

σ

}−1/ξ
, ρ > u > 0,

with σ > 0;

I W is the stochastic process

W = A{R1Q}ξ + B.

where A > 0,B ∈ C(S) with r(A) = 1 and r(B) = 0, R1 is a unit Pareto
distribution and Q is a stochastic process on {x ∈ C+(S) : ‖x ||1 = 1} with
probability measure σang.

Generalized peaks-over-thresholds modelling 12 / 29



Properties of generalized r-Pareto processes

I r-Pareto processes are the only possible limits of rescaled threshold exceedances
for a regularly varying stochastic process. This means for a large enough
threshold u > 0,

Pr (X− u ∈ · | r(X) > u) ≈ Pr (P ∈ ·) .

I The r-exceedance distribution of P is

Pr {r(P) > ρ} =

{
1 + ξ

ρ− u

σ

}−1/ξ
, ρ > u.

I The generalized r-Pareto process has generalized Pareto marignals above a
su�ciently high threshold u0 > 0:

Pr {P(s0) > ρ | P(s0) > u0} =

{
1 + ξ

ρ− µ(s0)

σ(u0)

}−1/ξ
, ρ > u0,

with σ(u0) > 0 and µ(s0) ∈ R.

Generalized peaks-over-thresholds modelling 13 / 29



Density function of exceedances

I In practice, choose a high threshold vector u > 0 such that the density function
of the r-exceedances f rθ can be approximated by its limit

f rθ (x) ≈
λrθ(x)

Λθ{Ar(u)}
, x ∈ Ar(u),

with Ar(u) = {x ∈ C(S) : r(x) > u} and where

Λθ{Ar(u)} =

∫
Ar(u)

λrθ(x)dx , u > 0.

I For most models, the limiting measure Λ and its partial derivatives are known in
Cartesian coordinates.

I Direct maximum likelihood estimation is in general not recommended and
dimensionally limited because it requires Λθ{Ar(u)}.

I Model estimation in "moderately high" dimensions is possible within the
framework of proper scoring rules (de Fondeville and Davison, 2017).
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The gradient scoring rule

I An adaptation of the gradient scoring rule (de Fondeville and Davison, 2017)
allows statistical inference using partial derivatives, with respect to x1, . . . , x`, of
the log-density function,

δw(λrθ,u , x) =
∑̀
i=1

(
2wi (x)

∂wi (x)

∂xi

∂ log λrθ,u(x)

∂xi
+

wi (x)2

∂2 log λrθ,u(x)

∂x2i
+

1

2

{
∂ log λrθ,u(x)

∂xi

}2
 ,

where w : Ar(u)→ r`+ is a weighting function di�erentiable on Ar(u) and
vanishing on the boundaries of Ar(u).

I Maximization of δw gives an asymptotically unbiased and normal estimator.
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Brown�Resnick model

I Recall that for ξ 6= 0, P is

P = R
A(R1Q)ξ + B

r{A(R1Q)ξ + B}

I Suppose W follows a log-Gaussian distribution with stationary increments and
semi-variogram γ.

I The `-dimensional intensity function is

λrθ(x) =
|Σθ|−1/2

x21 x2 · · · x`(2π)(`−1)/2
exp

(
−
1

2
x̃T Σ−1θ x̃

)
, x ∈ R`+ \ {0},

where x̃ is the (`− 1)-dimensional vector

{log(xj/x1) + γθ(sj − s1) : j = 2, . . . , `}T ,

and Σθ is the (`− 1)× (`− 1) matrix

{γθ(si − s1) + γθ(sj − s1)− γθ(si − sj )}i,j∈{2,...,`}.
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Measure of extremal dependence

I The extremogram π(h) is a tool to measure the strength of dependence (∼
variogram for extremes);

π(h) = Pr

[
X(s + h) > u

∣∣∣∣{X(s) > u} ∩
{
r

(
X

u

)
> 1

}]
.

I For the Brown�Resnick model,

π(h) = 2

[
1− Φ

{(
γ(h)

2

)1/2
}]

,

where γ is a valid semi-variogram and Φ is the cumulative distribution function of
a Gaussian random variable.
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Variogram and extremogram

Simulation of generalized r-Pareto process with
∫
S X (s)ds > 100.

γ(h) = σ
[
1− exp

{
−
(

h
τ

)α}]
γ(h) =

(
h
τ

)α
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0 25 50 75 100
Distance

Power

Power Exp

Theoretical π(h) for two di�erent variograms
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Application: Extreme European winter storms

I 3s maximum windgust every 3 hours for the period 1979 to 2016 from
ERA-Interim reanalysis model.

I Storms are de�ned as an exceedance of an 24 hours temporal aggregation of the
spatial mean:

r(X ) =
8∑

i=1

∫
S
X (s)ds.

I Time frame is centered on the 24 hour maximum of the spatial mean.

I 200 events are used to �t a Pareto process.
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Application: Extreme European winter storms

Estimated π(h) for two di�erent locations
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Extreme European winter storms: Marginal model
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Application: Extreme European winter storms

I Variogram model:

γ(si , sj , ti , tj ) =

∥∥∥∥Ω{si − sj + V (ti − tj )}
τ

∥∥∥∥κ
2

, si , sj ∈ S, ti , tj ∈ {0, . . . , 21},

with 0 < κ 6 2, τ > 0, wind vector V ∈ R2 and anisotropy matrix

Ω =

[
cos η − sin η
a sin η a cos η

]
, η ∈

(
−
π

4
;
π

4

]
, a > 0.

I Estimated parameters

κ τ a η V1 V2

1.17 348.6 1.25 −0.02 0.25 −0.01
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Application: European extra-tropical cyclones

Simulated extreme windstorm over Europe
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Summary and discussion

I Classical geostatistics should be avoided when modelling extreme events.

I Generalized r-Pareto process is the functional equivalent of the generalized Pareto
distribution and allows one to model r-exceedances.

I The Brown�Resnick model uses classical variogram models, while the
corresponding stochastic process is heavy-tailed.

I Inference using the gradient scoring rule enables inference in "moderately high"
dimensions and is limited by matrix inversion.

I We developed a (too) simple spatio-temporal generator for extreme windstorms in
Europe.

I Ongoing work:
I Marginal modelling;
I Complex dependence structure to better capture the characteristics of the

dependence structure.
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Risk functional

Risk functional
A monotonic increasing functional r : C(S)→ R satisfying

r continuous at {B − Aξ−1} and r(B − Aξ−1) < 0, ξ > 0
r(x)→ −∞, x → −∞ ξ 6 0,

and for which there are functions A > 0 and B such that

lim
n→∞

sup
s∈S

∣∣∣∣an(s)

r(an)
− A(s)

∣∣∣∣ = 0, lim
n→∞

sup
s∈S

∣∣∣∣bn(s)− r(bn)

r(an)
− B(s)

∣∣∣∣ = 0,

is called a risk functional.
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Properties of generalized r-Pareto processes

I The r-exceedance distribution of P is

Pr {r(P) > ρ} =

{
1 + ξ

ρ− u

σ

}−1/ξ
, ρ > u.

I The generalized r-Pareto process has generalized Pareto marignals above a
su�ciently high threshold u0 > 0:

Pr {P(s0) > ρ | P(s0) > u0} =

{
1 + ξ

ρ− u0A(s0)− B(s0)

σ(u0)

}−1/ξ
, ρ > u0,

with σ(u0) = σA(s0) + ξ {u0 − A(s0)u − B(s0)}.
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The gradient score

Proposition (de Fondeville and Davison, 2017)

The scoring rule δw(λrθ,u , ·) is strictly proper, i.e., the estimator

θ̂rδ{x
1, . . . , xn} = argmax

θ∈Θ

n∑
m=1

ε

{
r

(
xm

un

)
> 1

}
δ(λrθ,un , x

m), (3)

where ε{·} is the indicator function and x1, . . . , xn are sampled from the random
vector X with normalized marginals, is consistent and asymptotically normal as
n→∞ and un →∞ with Nun = o(n).

In a simulation study, we compared the gradient scoring rule with spectral likelihood
and censored likelihood.
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Extreme European winter storms: Marginal model
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