Density Tracking by Quadrature for SDE Inference

Harish S. Bhat*, R. W. M. A. Madushani*, Shagun Rawat*
*Applied Mathematics Unit, University of California, Merced

Motivation (starting from the data)

Let’s say you have many time series observations.

Perhaps the observations are at non-equispaced,
irregular times.

Perhaps there are multiple time series, I.e.,
independent observations of the same process.

- How can we use this data to infer both predictive and
explanatory SDE models?

Motivation (starting from the model)

- Stochastic differential equations (SDE) are widely used
to model time-dependent phenomena.

- Such models often have coefficients or parameters
that must be determined from data.

- Typically we only have noisy, imprecise observations
of the states.

- We seek methods for jointly inferring states and
parameters in SDE models.

Motivation (even more!)

For most SDE of interest, the likelihood function cannot
be computed analytically.

How can we efficiently compute a convergent
approximation to the likelihood function?

How do we incorporate this computation into a
Metropolis algorithm?

Stochastic Differential Equation (SDE) Notation:

- We consider models of the form:
dX (t) = f(X(t),0)dt + g(X(t),0)dW;
- X (t) is the solution of the SDE at time t.
- W is Brownian motion (Wiener process).
- 6 Is a vector of parameters, x is the data

- Goal: sample from posterior p(6|x)

Bayes

p(x[0)p(6)
p(0|x) =
(0]x) ()
, likelihood - prior
posterior =

normalization constant

Pictorial Representation (why is the problem hard?)

Xt
\| [solution of SDE SUppPOse we have one time series,
| attimet with At=1
o ,CCS
® CI;‘2 ° ’

gl | | | | | b ’

| | | | | | | :

Likelihood, using Markov property:

p(x|0) = p(X(0) = z0|0) HP(X(j) = 2| X(j —1) =2;-1,0)

Pictorial Representation Let's zoominon2 <t < 3.

Piece of the likelihood: p(X (3) = 23| X (2) = x5, 0)
transition density:
no analytical formula (for most SDE)

Context

There Is a large literature
on inference for SDEs.

Two main strategies:

/\

Deterministic Stochastic

Context

- Large literature on Bayesian inference for SDEs, with two
main lines of attack:

1. Deterministic: use series expansions to analytically
approximate transition density—lacus [2008, 2014]. Or,
use Fokker-Planck/Kolmogorov PDE.

2. Stochastic: construct sample paths at intermediate
time points, using concepts like the Brownian bridge,
and numerically evaluate transition density. See Fuchs

[2013].

»+ Qur approach is deterministic and numerical.

Comparison

- Hurn, Jeisman, and Lindsay [2007] compared many
methods for SDE inference and found:

- Solving the Fokker-Planck PDE to compute
transition densities yields most accurate inference.

- The only drawback is speed.

Density Tracking by Quadrature (DTQ)

-+ This is how we step forward in time.
- Start with the SDE:

dX(t) = F(X(t),0)dt + g(X (t),0)dW;

independent

- Euler-Maruyama approximation of SDE: standard norma

<
X(tip1) = X(t:) + f(X(ti))h,ir g(X (t:))h'/? Zi

tit1 — 14

- This approximation implies:

X(tir)| X)) =y ~ N(p=y+ f(y)h,0° = g°(y)h)

Density Tracking by Quadrature (DTQ)

X(tir)| X (i) =y ~ Nu=y+ f(y)h,0® = g°(y)h)
X(tiv1) = X(t;) + F(X ()b + g(X (t:))h' 2 Z; 11

- Above two equations imply (Chapman-Kolmogorov)
p(x,tiy1) = /pX(ti+1)|X(ti):y(x)p(yatz’)dy
R

- If computers could compute in continuous space, this
would be a method to step the PDF forward in time.

Density Tracking by Quadrature (DTQ): Missing Pieces

- Fix a spatial grid x,,, = y,, = mAx
- Represent p(y, t;) as a finite-dimensional vector

m=NM
P: = {p(ymvti)}m:_M

- Truncate integral, apply trapezoidal rule to Chapman-Kolmogorov:
p(xv ti—l—l) — / PX(tit1)| X (t:)=y (ZIZ‘) p(ya ti) dy
R

- Whole thing reduces to iterated matrix multiplication!
Pi+1 = Ap;

DTQ Preprint and Code

- For more information

on DTQ itself, consuilt:

- Bhat and Madushani [2016],
Density tracking by quadrature for stochastic
differential equations, arXiv:1610.09572.

- To try DTQ, see the K

' package on CRAN:

- Rdtq (https://cran.r-project.org/package=Rdtq)

- For the source code,

S€Ee.

- https://qgithub.com/hbhat4000/Rdtg

https://cran.r-project.org/package=Rdtq
https://github.com/hbhat4000/Rdtq

DTQ Theoretical Results

- p(x,t) exact PDF of the SDE
- p(x,t) exact PDF of the Euler-Maruyama approximation
- p(x,t) what DTQ computes

We have proved
15(-,T) = (-, T)ll 1 = O(h™ " exp(—rh™"))
Bally and Talay [1996] proved
1p(,T) = p(-, T)||Lr = O(h)

DTQ Numerical Comparison

ym o h~3/4 ym o —log(h)
16402 -
0.300 -
1e+01 -
0.100 -
method
1e+00 - FP
o © 0.030 -
£ = —o— DTQ-Naive
- - ~o- DTQ-CPP
1e-01 0.010 -
DTQ-Sparse
1e-02 1 0.003 -
\.\"
1603 - 0.001 -
0.003 0.010 0.030 0.100 0.003 0.010 0.030 0.100
error error

At the finest error level, DTQ-Sparse is
10-100x faster than Fokker-Planck

Our Approach (One Sample Path)

eI We use a fine grid of intermediate times.

{

1 2 t; 3
How do we think about p(X(3) = 23| X (2) = 22,60)7?
Let p(z,t) denote the p.d.f. of X (¢), for fixed 6
Start with p(z,2) = 6(x — z2)
Step forward in time to solve for p(x, ;)
Evaluate p(z3,3) ~ p(X(3) = 23| X (2) = x2,0)

Our Approach (Many Sample Paths)

X(t) -
’ X9 X3
[¢ : We use a fine grid of intermediate times.
CIZ‘()I
1 2 t, 3
When we have M sample paths only one change:
Start with p(z Z 5(x —)

Step forward in time to solve for p(x,t;)

M
Evaluate [p(2%.3) = p(X(3) = @5/ X (2) = 25, 0)

m=1

Metropolis Algorithm

. Start with initial §(9
. Proposal: * = 819 + 7
p(01x) b (xI6*) p(6%)

p (001x) p (xI60) p(dt)

}
Likelihoods computed via DTQ method

- Ratio: p =

- Let u ~U(0,1). Accept if p > u; then U+ = §*
. Else reject; then 6U+1) = (¥

Example

Consider nonlinear SDE:
dX(t) = 01X (t) (02 — X (t)?) dt + e dW,
We generate simulated data using
6, =1, 60,=4, " =05
Simulation parameters:

100 sample paths from t=0 to T=25.
Euler-Maruyama method with internal time step of h=0.0001.
However, data is only recorded at times O, 1, 2, ..., 25.

Inference Test

Consider 4 competing methods to compute likelihood:

Kessler, Ozaki, Shoji, Elerian (deterministic methods, CRAN “sde” package)
Normal prior with ¢ = 0.5,0.5,0; 0 =4
not very close to ground truth

Normal proposal with © = 0; o = 0.02,0.02,0.01

Acceptance rates between 20.5% and 43%

Initialize Metropolis at MLE: (%) = (0.925, 3.99, 0.43)

Generate 10000 samples of posterior, discard first 100. No thinning.

Results: [1/3]

100 -

method

density

50 -

075 1.0
theta1

Results: [2/3]

30 -
W method

> [o
. || Elerian
s \ []shoji
| Ozaki
fo- |
0 U
3.8 3.9 4.0 4.1 4.2

the.ta2

Results: [3/3]

300 -

density

100 -

L

0.1

0.2

0.3 0.4
exp(theta3)

0.5

method

Natural Parallelization: Part | (Scala, Breeze, MKL)

Pi+1 = APz‘

-M row

v

PDF vector

M row

-M window

v

Matrix formed with rows of

L 4

M

Propagator matrix

M window

L J

M

Matrix formed with
windows of PDF values

/

Dot product

2N

Natural Parallelization: Part Il (Spark)

X(tig)|X(t)) =y ~ Np=y+ f(y)h,o = g°(y)h)
implies that the transition kernel is time-independent.

Aab — pX(ti+1)|X(ti):yb (xa)

Therefore, can compute in parallel all terms
p(X(j) =2;|X(j —1) =2;-1,0)

We do this in Spark using sc.parallelize and map.

Extensions: Filtering and Inference

- Consider model;
dX (t) = f(X(t),0)dt + g(X(t),0)dW,
Y(t) = X(t) + ¢ e ~ N(u=0,0"=0o7)
- Y(t) = observations = SDE solution (or state) + noise.

- Data y = Y(t), sampled at irregular times.
- QGoals: infer both parameters and states.

- Sample from joint posterior p(x,ﬁ,afb’)

For more details, see our KDD BigMine 16 paper.

Results: Posterior Densities of Parameters

density

0.00 0.25 0.50 0.75
0,

DTQ step — h=0.02 — h=0.01

W
1

N
1

AN

1.5

density

2.0 -

1.5

1.0 -

0.5-

0.0 -

-2.0-15-1.0-0.5 0.0
Iog10(082)

dX (1) = 61(0 — X (t))dt + 0.25dW,

Y(t) = X(t) +

Results: Inference of States X(t) from Observations Y(t)

—
6))
1

—
o
1

o
o

observations and inferred states
o
o

0 10 20 30 40 50
t

Results: Scaling

400 - ®
300 -
200 - 10 -
— o
N —
D 100 - 2 N
Z *é 5 o DTQ step
£ = -8~ h=0.02
= £
o
o
1 1 1 1 1 .
o o o OO
3 8 83883 - P

L (length of observation series) number of Spark processors

Nonparametric Inference

Hermite functions form orthonormal basis for L=2:

0y() = (—17 (@ jly/m) V22 L s

dxJ
- We write our unknown functions as linear combinations
of these basis functions l.e.,

Z ezwz —)

Z 9Nf‘|‘1—|—7,¢’1,() — §(£IZ 9)

+ Then the problem |s to find the parameter vector @

2

Adjoint Method: Problem

In nonparametric inference, # of parameters is
Ny+ Ng+2

- To compute gradient of likelihood w.r.t. parameters via

“direct method,” we take dcé‘ of the DTQ equation

Ym
p(z,tit1) = / DX (t;0)X)=y (2)P(Y, ;) dy
—YM
- This will give us one evolution equation per parameter.
- We have tried this: resulting optimization of log
likelihood is too slow to be practical.

Adjoint Method: Solution

How do we compute gradient of likelihood w.r.t.
parameters via the adjoint method?

First, introduce u, a variable that is adjoint or dual to p
- Then derive from DTQ an evolution equation for u

- This evolution equation proceeds backwards in time. |f
we solve it once, we get the entire gradient.

- This huge cost-savings is the key technical innovation
of our work that enables practical inference.

First Set of Results

+ Consider SDE with constant diffusion g(z) =1
and drift function equal to a Hermite basis function,

f(x) = vi(x)

- We simulate 10000 sample paths of this SDE from t=0
to t=4, using a small internal time step of 10

- Solution is retained only at 1=0,1,2,3,4.
- We then take N; =4 and proceed with inference.

- Ground truth: for f(z) = ¢i(x), 6, =6, ;
glx)=1 65=1

- Initialize trust region optimizer with 8 = (1,1,...,1)

First Set of Results

=2

1

0
0.0

-2.5

S
s
® © <+ o 9
o o o o o
SUOIoUNy JIP paJiajul ¥ anl)

— t{rue
— inferred

label

1 1 1
< Q <
o o ﬂ_u

SUOIoUN} JLP patisjul g anuy

Model Selection/Regularization

- Two main approaches:

1.Find the best # of basis functions for f and g

2.Choose a really large # of basis functions; regularize
using a penalty term

B- |

2

f’(x)‘ dx

J(8) = —log L£(8) + vE(8)

Quadratic pena

For Hermite basi

ty, similar to ridge regression.

S, can evaluate penalty easily.

Can use cross-validation to select ~.

Other Results (ask me later)

1.

Replace Euler-Maruyama with higher-order method to
obtain overall second-order convergence

Levy SDE; track characteristic fn instead of density
Online inference

Details of fast adjoint method to compute gradient of
log likelihood w.r.t. theta

Expectation maximization
Higher-dimensional version + spatial tracking data

Thank Youl!

Code and Papers

All of our code is open source:
https://github.com/hbhat4000/sdeinference/

Papers available here:
http://faculty.ucmerced.edu/hbhat/publications.html

Email: hbhatQucmerced.edu

https://github.com/hbhat4000/sdeinference/
http://faculty.ucmerced.edu/hbhat/publications.html
mailto:hbhat@ucmerced.edu

