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Motivation (starting from the data)

• Let’s say you have many time series observations.


• Perhaps the observations are at non-equispaced, 
irregular times.


• Perhaps there are multiple time series, i.e., 
independent observations of the same process.


• How can we use this data to infer both predictive and 
explanatory SDE models?



Motivation (starting from the model)

• Stochastic differential equations (SDE) are widely used 
to model time-dependent phenomena.


• Such models often have coefficients or parameters 
that must be determined from data.


• Typically we only have noisy, imprecise observations 
of the states.


• We seek methods for jointly inferring states and 
parameters in SDE models.



Motivation (even more!)

• For most SDE of interest, the likelihood function cannot 
be computed analytically.


• How can we efficiently compute a convergent 
approximation to the likelihood function?


• How do we incorporate this computation into a 
Metropolis algorithm?



Stochastic Differential Equation (SDE) Notation:

• We consider models of the form:


•         is the solution of the SDE at time t.


•       is Brownian motion (Wiener process).


•    is a vector of parameters,     is the data


• Goal: sample from posterior 

dX(t) = f(X(t), ✓)dt+ g(X(t), ✓)dWt

X(t)

✓

Wt

p(✓|x)

x



Bayes

p(✓|x) = p(x|✓)p(✓)
p(x)

posterior =

likelihood · prior
normalization constant



Pictorial Representation (why is the problem hard?)

t

X(t)

1 2 3 4 5 6 T=7

Suppose we have one time series, 
with △t=1

Likelihood, using Markov property:

solution of SDE 
at time t

x0

x3

x2

p(x|✓) = p(X(0) = x0|✓)
7Y

j=1

p(X(j) = xj |X(j � 1) = xj�1, ✓)



Pictorial Representation

t

X(t)

1 2 3

Let’s zoom in on 2 ≤ t ≤ 3.

Piece of the likelihood:

x0

x3

x2

p(X(3) = x3|X(2) = x2, ✓)

transition density: 
no analytical formula (for most SDE)



Context

There is a large literature 
on inference for SDEs.

Two main strategies:

Deterministic Stochastic



Context

• Large literature on Bayesian inference for SDEs, with two 
main lines of attack:


1. Deterministic: use series expansions to analytically 
approximate transition density—Iacus [2008, 2014].  Or, 
use Fokker-Planck/Kolmogorov PDE.


2. Stochastic: construct sample paths at intermediate 
time points, using concepts like the Brownian bridge, 
and numerically evaluate transition density.  See Fuchs 
[2013].


• Our approach is deterministic and numerical.



Comparison

• Hurn, Jeisman, and Lindsay [2007] compared many 
methods for SDE inference and found:


• Solving the Fokker-Planck PDE to compute 
transition densities yields most accurate inference.


• The only drawback is speed.



Density Tracking by Quadrature (DTQ)

• This is how we step forward in time.

• Start with the SDE:


• Euler-Maruyama approximation of SDE:


• This approximation implies:
X(ti+1) = X(ti) + f(X(ti))h+ g(X(ti))h

1/2Zi+1

X(ti+1)|X(ti) = y ⇠ N (µ = y + f(y)h,�2 = g2(y)h)

independent 
standard normal

ti+1 � ti

dX(t) = f(X(t), ✓)dt+ g(X(t), ✓)dWt



Density Tracking by Quadrature (DTQ)

• Above two equations imply (Chapman-Kolmogorov) 
 

• If computers could compute in continuous space, this 
would be a method to step the PDF forward in time.

X(ti+1) = X(ti) + f(X(ti))h+ g(X(ti))h
1/2Zi+1

p(x, ti+1) =

Z

R
pX(ti+1)|X(ti)=y(x) p(y, ti) dy

X(ti+1)|X(ti) = y ⇠ N (µ = y + f(y)h,�2 = g2(y)h)



Density Tracking by Quadrature (DTQ): Missing Pieces

• Fix a spatial grid

• Represent             as a finite-dimensional vector 
 

• Truncate integral, apply trapezoidal rule to Chapman-Kolmogorov: 

• Whole thing reduces to iterated matrix multiplication!

p(x, ti+1) =

Z

R
pX(ti+1)|X(ti)=y(x) p(y, ti) dy

xm = ym = m�x

p(y, ti)

pi = {p(ym, ti)}m=M
m=�M

pi+1 = Api



DTQ Preprint and Code

• For more information on DTQ itself, consult:

• Bhat and Madushani [2016], 

Density tracking by quadrature for stochastic 
differential equations, arXiv:1610.09572.


• To try DTQ, see the R package on CRAN:

• Rdtq (https://cran.r-project.org/package=Rdtq)


• For the source code, see:

• https://github.com/hbhat4000/Rdtq

https://cran.r-project.org/package=Rdtq
https://github.com/hbhat4000/Rdtq


DTQ Theoretical Results

•          exact PDF of the SDE

•          exact PDF of the Euler-Maruyama approximation

•          what DTQ computes 
 
We have proved 
 
 
Bally and Talay [1996] proved

p(x, t)

p̃(x, t)

p̂(x, t)

kp̂(·, T )� p̃(·, T )kL1
= O(h�1

exp(�rh�
))

kp̃(·, T )� p(·, T )kL1 = O(h)



DTQ Numerical Comparison
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Our Approach (One Sample Path)

t

X(t)

1 2 3

We use a fine grid of intermediate times.
x0

x3

x2

How do we think about                                           ?p(X(3) = x3|X(2) = x2, ✓)

Let            denote the p.d.f. of        , for fixed p(x, t) X(t)

Start with p(x, 2) = �(x� x2)

✓

Step forward in time to solve for 

ti

p(x, ti)

Evaluate p(x3, 3) ⇡ p(X(3) = x3|X(2) = x2, ✓)



Our Approach (Many Sample Paths)

t

X(t)

1 2 3

We use a fine grid of intermediate times.
x0

When we have M sample paths, only one change:

Start with 

Step forward in time to solve for 

ti

p(x, ti)

Evaluate

p(x, 2) =
1

M

MX

m=1

�(x� x

m
2 )

MY

m=1

p(xm
3 , 3) ⇡ p( ~X(3) = ~x3| ~X(2) = ~x2, ✓)

~x2 ~x3



Metropolis Algorithm

• Start with initial

• Proposal: 


• Ratio:


• Let                   .  Accept if          ; then 

• Else reject; then 

~✓(i)

~✓⇤ = ~✓(i) + ~Z

⇢ =
p
⇣
~✓⇤|x

⌘

p
⇣
~✓(i)|x

⌘ =
p
⇣
x|~✓⇤

⌘
p(~✓⇤)

p
⇣
x|~✓(i)

⌘
p(~✓(i))

Likelihoods computed via DTQ method

u ⇠ U(0, 1) ⇢ > u ~✓(i+1) = ~✓⇤

~✓(i+1) = ~✓(i)



Example

• Consider nonlinear SDE:


• We generate simulated data using


• Simulation parameters: 

• 100 sample paths from t=0 to T=25.

• Euler-Maruyama method with internal time step of h=0.0001.

• However, data is only recorded at times 0, 1, 2, …, 25.

dX(t) = ✓1X(t)
�
✓2 �X(t)2

�
dt+ e✓3dWt

✓1 = 1, ✓2 = 4, e✓3 = 0.5



Inference Test

• Consider 4 competing methods to compute likelihood:

• Kessler, Ozaki, Shoji, Elerian (deterministic methods, CRAN “sde” package)


• Normal prior with

• not very close to ground truth


• Normal proposal with

• Acceptance rates between 20.5% and 43%


• Initialize Metropolis at MLE:

• Generate 10000 samples of posterior, discard first 100.  No thinning.

µ = 0.5, 0.5, 0; � = 4

µ = 0; � = 0.02, 0.02, 0.01

~✓(0) = (0.925, 3.99, 0.43)



Results: [1/3]
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Results: [2/3]
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Results: [3/3]
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Natural Parallelization: Part I (Scala, Breeze, MKL)
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Natural Parallelization: Part II (Spark)

implies that the transition kernel is time-independent.


Therefore, can compute in parallel all terms


We do this in Spark using sc.parallelize and map.

X(ti+1)|X(ti) = y ⇠ N (µ = y + f(y)h,�2 = g2(y)h)

p( ~X(j) = ~xj | ~X(j � 1) = ~xj�1, ✓)

Aab = pX(ti+1)|X(ti)=yb
(xa)



Extensions: Filtering and Inference

• Consider model:


• Y(t) = observations = SDE solution (or state) + noise.

• Data    = Y(t), sampled at irregular times.

• Goals: infer both parameters and states.

• Sample from joint posterior 
 
 For more details, see our KDD BigMine ’16 paper.

dX(t) = f(X(t), ✓)dt+ g(X(t), ✓)dWt

Y (t) = X(t) + ✏t

y

✏t ⇠ N (µ = 0,�2 = �2
✏ )

p(x, ✓,�2
✏ |y)



Results: Posterior Densities of Parameters

dX(t) = ✓1(✓2 �X(t))dt+ 0.25dWt

Y (t) = X(t) + ✏t
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Results: Inference of States X(t) from Observations Y(t)
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Results: Scaling
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Nonparametric Inference

• Hermite functions form orthonormal basis for L2: 
 

• We write our unknown functions as linear combinations 
of these basis functions, i.e., 


• Then the problem is to find the parameter vector 

 

j

(x) = (�1)j(2jj!
p
⇡)�1/2

e

x

2
/2 d

j

dx

j

e

�x

2

here. The work of [11] also fits the context of using data to
infer general stochastic models; here the authors propose a
model whose stochastic structure is completely unspecified.
In contrast, by constraining the model to be (1), we form a
connection to statistical physics, e.g., the Fokker-Planck and
Langevin equations. In this framework, our question is: given
enough realizations of a stochastic system, how well can we
infer its potential function?

Moving outside the SDE framework, there are several
approaches to use high-dimensional longitudinal data to build
predictive models: a tree-based method [12], methods from
functional data analysis [13], and time series methods [3],
to name just a few. The purpose of the present work is to
introduce and study our method; in future work, we plan
to conduct a detailed comparison of our SDE-based method
against these other methods1.

We detail our mathematical methods in Section II, after
which we provide brief notes on its R implementation in
Section III. In Section IV, we report on several tests of our
method using both artificial and real data sets. We show that
the method does an excellent job of accurately inferring drift
functions in the Hermite context, and we also show that the
method can be used to generate predictive models. This is
especially true if one is interested in forecasting the future
distribution (e.g., the PDF or CDF) of a particular variable.
Finally, we apply the method to develop an SDE model for
ground level ozone pollution. The model performs reasonably
well on a distributional forecasting problem.

II. METHODOLOGY

We assume that f and g are square-integrable, i.e., f, g 2
L

2
(R). The Hermite functions { 

i

(x)}1
i=0 form an orthonor-

mal basis of L2
(R); additionally, we have that any � 2 L

2
(R)

can be represented as an expansion in Hermite functions,

�(x) =

1X

i=0

c

i

 

i

(x), (2)

where the coefficient c
j

=

R
�(x) 

i

(x) dx. The j-th Hermite
function is defined by

 

j

(x) = (�1)

j

(2

j

j!

p
⇡)

�1/2
e

x

2
/2 d

j

dx

j

e

�x

2

. (3)

For further definitions and properties of the Hermite functions,
we refer the reader to [14].

To finite-dimensionalize the inference problem for (1), we
expand the unknown functions f and g in the Hermite basis
and then truncate the expansions:

f(x) ⇡
NfX

i=0

✓

i

 

i

(x) =

ˆ

f(x;✓) (4a)

g(x) ⇡
NgX

i=0

✓

Nf+1+i

 

i

(x) = ĝ(x;✓). (4b)

1We note that we are committed to making all of our code and data available
on a free, open-source repository. To preserve anonymity, we will wait until
peer review is complete before uploading and revealing the URL.

These approximations of f and g induce an approximation of
the original SDE (1) by the approximate SDE

dX

t

=

ˆ

f(X

t

;✓)dt+ ĝ(X

t

;✓)dW
t

. (5)

Properties of the Hermite functions guarantee that both ˆ

f and
ĝ and their derivatives are globally bounded. This is sufficient
for the existence of a unique solution X

t

of (5); moreover, we
are guaranteed that for t > 0, the random variable X

t

has a
density function p(x, t).

Let ✓ = (✓0, . . . , ✓Nf , ✓Nf+1, . . . , ✓Nf+Ng+1). Then the
inference problem consists of using the data x to compute ✓.
We now describe a maximum likelihood framework for doing
this.

In Section II-A, we start by explaining the inference method
for the case where ⌫ = 1, i.e., we have collected only one
observation at each point in time t

j

. Later, in Section II-C, we
discuss the generalization of the method for the case where
we have many observations at each point in time (⌫ > 1).

A. Inference for one time series

We compute the maximum likelihood estimator of ✓ by
minimizing the negative log likelihood of of the observed time
series given by

� logL(✓) = �
M�1X

j=0

log p

Xtj+1
(x

j+1|Xtj = x

j

;✓), (6)

where p

Xtj+1
(x

j+1|Xtj = x

j

;✓) is the conditional density of
X

tj+1 = x

j+1 given X

tj = x

j

. In our work, we approximate
the transition density using a method called density tracking
by quadrature (DTQ). The first step of the DTQ method is to
discretize (5) in time using the Euler-Maruyama scheme. We
select an internal time step h, a small fraction of �t, and set
hF = �t where F 2 Z and F � 2. Then the Euler-Maruyama
discretization gives

e
X

j+n/F

=

e
X

j+(n�1)/F +

ˆ

f(

e
X

j+(n�1)/F ; ✓)h

+ ĝ(

e
X

j+(n�1)/F ; ✓)h
1/2

Z

j+n/F

, (7)

for n = 1, . . . , F . Here {Z
j+n/F

} is an i.i.d. family of Gaus-
sian random variables with mean 0 and variance 1. The random
variable f

X

j

is intended to approximate X
tj when the index j is

an integer. When the index j is not an integer, e
X

j

represents a
random variable that interpolates in time between the random
variables that have been sampled to give us our data. The idea
now is to approximate p

Xtj+1
(x

j+1|Xtj = x

j

;✓) in 6 with
p e
Xj+1

(x

j+1| eXj

= x

j

;✓). Note that when n = 1, f
X

j

= x

j

is
the initial value of (7). The Chapman-Kolmogorov equation
for the Markov chain (7) is:

p e
Xj+n/F

(y| eX
j

= x

j

;✓)

=

Z

z

p e
Xj+n/F

(y| eX
j+(n�1)/F = z;✓)

⇥ p e
Xj+(n�1)/F

(z| eX
j

= x

j

;✓) dz. (8)

✓



Adjoint Method: Problem

• In nonparametric inference, # of parameters is 
 

• To compute gradient of likelihood w.r.t. parameters via 
“direct method,” we take     of the DTQ equation 
 
 

• This will give us one evolution equation per parameter.

• We have tried this: resulting optimization of log 

likelihood is too slow to be practical.

Nf +Ng + 2

d

d✓i

p(x, ti+1) =

Z yM

�yM

pX(ti+1)|X(ti)=y(x)p(y, ti) dy



Adjoint Method: Solution

• How do we compute gradient of likelihood w.r.t. 
parameters via the adjoint method? 

• First, introduce   , a variable that is adjoint or dual to 


• Then derive from DTQ an evolution equation for  

• This evolution equation proceeds backwards in time.  If 
we solve it once, we get the entire gradient. 

• This huge cost-savings is the key technical innovation 
of our work that enables practical inference.

u p

u



First Set of Results

• Consider SDE with constant diffusion 
and drift function equal to a Hermite basis function, 


• We simulate 10000 sample paths of this SDE from t=0 
to t=4, using a small internal time step of 10-4.


• Solution is retained only at t=0,1,2,3,4.

• We then take              and proceed with inference.

• Ground truth: for                     ,  

• Initialize trust region optimizer with 

g(x) ⌘ 1

f(x) =  i(x)

Nf = 4

f(x) =  i(x) ✓j = �j,i
g(x) ⌘ 1 ✓5 = 1

✓ = (1, 1, . . . , 1)



First Set of Results
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Model Selection/Regularization

• Two main approaches:

1.Find the best # of basis functions for    and 

2.Choose a really large # of basis functions; regularize 

using a penalty term

f g

E =

Z 1

x=�1

���f̂ 0(x)
���
2
dx

J(✓) = � logL(✓) + �E(✓)

Quadratic penalty, similar to ridge regression.
For Hermite basis, can evaluate penalty easily.

Can use cross-validation to select   .   �



Other Results (ask me later)

1. Replace Euler-Maruyama with higher-order method to 
obtain overall second-order convergence


2. Levy SDE; track characteristic fn instead of density

3. Online inference

4. Details of fast adjoint method to compute gradient of 

log likelihood w.r.t. theta

5. Expectation maximization

6. Higher-dimensional version + spatial tracking data

Thank You!



Code and Papers

All of our code is open source:

https://github.com/hbhat4000/sdeinference/


Papers available here:

http://faculty.ucmerced.edu/hbhat/publications.html


Email: hbhat@ucmerced.edu

https://github.com/hbhat4000/sdeinference/
http://faculty.ucmerced.edu/hbhat/publications.html
mailto:hbhat@ucmerced.edu

