Density Tracking by Quadrature for SDE Inference

Harish S. Bhat*, R. W. M. A. Madushani*, Shagun Rawat*

*Applied Mathematics Unit, University of California, Merced

Motivation (starting from the data)

- Let's say you have many time series observations.
- Perhaps the observations are at non-equispaced, irregular times.
- Perhaps there are multiple time series, i.e., independent observations of the same process.
- How can we use this data to infer both predictive and explanatory SDE models?

Motivation (starting from the model)

- Stochastic differential equations (SDE) are widely used to model time-dependent phenomena.
- Such models often have coefficients or parameters that must be determined from data.
- Typically we only have noisy, imprecise observations of the states.
- We seek methods for jointly inferring states and parameters in SDE models.

Motivation (even more!)

- For most SDE of interest, the likelihood function cannot be computed analytically.
- How can we efficiently compute a convergent approximation to the likelihood function?
- How do we incorporate this computation into a Metropolis algorithm?

Stochastic Differential Equation (SDE) Notation:

- We consider models of the form:

$$
d X(t)=f(X(t), \theta) d t+g(X(t), \theta) d W_{t}
$$

- $X(t)$ is the solution of the SDE at time t.
- W_{t} is Brownian motion (Wiener process).
- θ is a vector of parameters, \mathbf{x} is the data
- Goal: sample from posterior $p(\theta \mid \mathbf{x})$

Bayes

$$
\begin{gathered}
\qquad p(\theta \mid \mathbf{x})=\frac{p(\mathbf{x} \mid \theta) p(\theta)}{p(\mathbf{x})} \\
\text { posterior }=\frac{\text { likelihood } \cdot \text { prior }}{\text { normalization constant }}
\end{gathered}
$$

Pictorial Representation (why is the problem hard?)

Likelihood, using Markov property:
$p(\mathbf{x} \mid \theta)=p\left(X(0)=x_{0} \mid \theta\right) \prod_{j=1}^{7} p\left(X(j)=x_{j} \mid X(j-1)=x_{j-1}, \theta\right)$

Pictorial Representation Let's zoom in on $2 \leq t \leq 3$.

Piece of the likelihood: $p\left(X(3)=x_{3} \mid X(2)=x_{2}, \theta\right)$
transition density:
no analytical formula (for most SDE)

Context

There is a large literature on inference for SDEs.

Two main strategies:

Deterministic
Stochastic

Context

- Large literature on Bayesian inference for SDEs, with two main lines of attack:

1. Deterministic: use series expansions to analytically approximate transition density-lacus [2008, 2014]. Or, use Fokker-Planck/Kolmogorov PDE.
2. Stochastic: construct sample paths at intermediate time points, using concepts like the Brownian bridge, and numerically evaluate transition density. See Fuchs [2013].

- Our approach is deterministic and numerical.

Comparison

- Hurn, Jeisman, and Lindsay [2007] compared many methods for SDE inference and found:
- Solving the Fokker-Planck PDE to compute transition densities yields most accurate inference.
- The only drawback is speed.

Density Tracking by Quadrature (DTQ)

- This is how we step forward in time.
- Start with the SDE:

$$
d X(t)=f(X(t), \theta) d t+g(X(t), \theta) d W_{t}
$$

- Euler-Maruyama approximation of SDE:

$$
X\left(t_{i+1}\right)=X\left(t_{i}\right)+f\left(X\left(t_{i}\right)\right) h+g\left(X\left(t_{i}\right)\right) h^{1 / 2} Z_{i+1}^{\swarrow}
$$

- This approximation implies:

$$
X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y \sim \mathcal{N}\left(\mu=y+f(y) h, \sigma^{2}=g^{2}(y) h\right)
$$

Density Tracking by Quadrature (DTQ)

$$
\begin{gathered}
X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y \sim \mathcal{N}\left(\mu=y+f(y) h, \sigma^{2}=g^{2}(y) h\right) \\
X\left(t_{i+1}\right)=X\left(t_{i}\right)+f\left(X\left(t_{i}\right)\right) h+g\left(X\left(t_{i}\right)\right) h^{1 / 2} Z_{i+1}
\end{gathered}
$$

- Above two equations imply (Chapman-Kolmogorov)

$$
p\left(x, t_{i+1}\right)=\int_{\mathbb{R}} p_{X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y}(x) p\left(y, t_{i}\right) d y
$$

- If computers could compute in continuous space, this would be a method to step the PDF forward in time.

Density Tracking by Quadrature (DTQ): Missing Pieces

- Fix a spatial grid $x_{m}=y_{m}=m \Delta x$
- Represent $p\left(y, t_{i}\right)$ as a finite-dimensional vector

$$
\mathbf{p}_{i}=\left\{p\left(y_{m}, t_{i}\right)\right\}_{m=-M}^{m=M}
$$

- Truncate integral, apply trapezoidal rule to Chapman-Kolmogorov:

$$
p\left(x, t_{i+1}\right)=\int_{\mathbb{R}} p_{X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y}(x) p\left(y, t_{i}\right) d y
$$

- Whole thing reduces to iterated matrix multiplication!

$$
\mathbf{p}_{i+1}=A \mathbf{p}_{i}
$$

DTQ Preprint and Code

- For more information on DTQ itself, consult:
- Bhat and Madushani [2016],

Density tracking by quadrature for stochastic differential equations, arXiv:1610.09572.

- To try DTQ, see the R package on CRAN:
- Rdtq (https://cran.r-project.org/package=Rdtq)
- For the source code, see:
- https://github.com/hbhat4000/Rdtq

DTQ Theoretical Results

- $p(x, t)$ exact PDF of the SDE
- $\tilde{p}(x, t)$ exact PDF of the Euler-Maruyama approximation
- $\hat{p}(x, t)$ what DTQ computes

We have proved

$$
\|\hat{p}(\cdot, T)-\tilde{p}(\cdot, T)\|_{L^{1}}=O\left(h^{-1} \exp \left(-r h^{-\kappa}\right)\right)
$$

Bally and Talay [1996] proved

$$
\|\tilde{p}(\cdot, T)-p(\cdot, T)\|_{L^{1}}=O(h)
$$

DTQ Numerical Comparison

At the finest error level, DTQ-Sparse is 10-100x faster than Fokker-Planck

Our Approach (One Sample Path)

How do we think about $p\left(X(3)=x_{3} \mid X(2)=x_{2}, \theta\right)$?
Let $p(x, t)$ denote the p.d.f. of $X(t)$, for fixed θ
Start with $p(x, 2)=\delta\left(x-x_{2}\right)$
Step forward in time to solve for $p\left(x, t_{i}\right)$
Evaluate $p\left(x_{3}, 3\right) \approx p\left(X(3)=x_{3} \mid X(2)=x_{2}, \theta\right)$

Our Approach (Many Sample Paths)

When we have M sample paths, only one change:
Start with $p(x, 2)=\frac{1}{M} \sum_{m=1}^{M} \delta\left(x-x_{2}^{m}\right)$
Step forward in time to solve for $p\left(x, t_{i}\right)$
Evaluate $\prod_{m=1}^{M} p\left(x_{3}^{m}, 3\right) \approx p\left(\vec{X}(3)=\vec{x}_{3} \mid \vec{X}(2)=\vec{x}_{2}, \theta\right)$

Metropolis Algorithm

- Start with initial $\vec{\theta}^{(i)}$
- Proposal: $\vec{\theta}^{*}=\vec{\theta}^{(i)}+\vec{Z}$
- Ratio: $\rho=\frac{p\left(\vec{\theta}^{*} \mid \mathbf{x}\right)}{p\left(\vec{\theta}^{(i)} \mid \mathbf{x}\right)}=\frac{p\left(\mathbf{x} \mid \overrightarrow{\theta^{*}}\right) p\left(\vec{\theta}^{*}\right)}{p\left(\mathbf{x} \mid \vec{\theta}^{(i)}\right) p\left(\vec{\theta}^{(i)}\right)}$

Likelihoods computed via DTQ method

- Let $u \sim U(0,1)$. Accept if $\rho>u$; then $\vec{\theta}^{(i+1)}=\vec{\theta}^{*}$
- Else reject; then $\vec{\theta}^{(i+1)}=\vec{\theta}^{(i)}$

Example

- Consider nonlinear SDE:

$$
d X(t)=\theta_{1} X(t)\left(\theta_{2}-X(t)^{2}\right) d t+e^{\theta_{3}} d W_{t}
$$

- We generate simulated data using

$$
\theta_{1}=1, \theta_{2}=4, e^{\theta_{3}}=0.5
$$

- Simulation parameters:
- 100 sample paths from $t=0$ to $T=25$.
- Euler-Maruyama method with internal time step of $\mathrm{h}=0.0001$.
- However, data is only recorded at times $0,1,2, \ldots, 25$.

Inference Test

- Consider 4 competing methods to compute likelihood:
- Kessler, Ozaki, Shoji, Elerian (deterministic methods, CRAN "sde" package)
- Normal prior with $\mu=0.5,0.5,0 ; \sigma=4$
- not very close to ground truth
- Normal proposal with $\mu=0 ; \sigma=0.02,0.02,0.01$
- Acceptance rates between 20.5\% and 43\%
- Initialize Metropolis at MLE: $\vec{\theta}^{(0)}=(0.925,3.99,0.43)$
- Generate 10000 samples of posterior, discard first 100. No thinning.

Results: [1/3]

Results: [2/3]

Results: [3/3]

Natural Parallelization: Part I (Scala, Breeze, MKL)

Natural Parallelization: Part II (Spark)

$X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y \sim \mathcal{N}\left(\mu=y+f(y) h, \sigma^{2}=g^{2}(y) h\right)$ implies that the transition kernel is time-independent.

$$
A_{a b}=p_{X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y_{b}}\left(x_{a}\right)
$$

Therefore, can compute in parallel all terms

$$
p\left(\vec{X}(j)=\vec{x}_{j} \mid \vec{X}(j-1)=\vec{x}_{j-1}, \theta\right)
$$

We do this in Spark using sc. parallelize and map.

Extensions: Filtering and Inference

- Consider model:

$$
\begin{array}{rlrl}
d X(t) & =f(X(t), \theta) d t+g(X(t), \theta) d W_{t} \\
Y(t) & =X(t)+\epsilon_{t} & \epsilon_{t} \sim \mathcal{N}\left(\mu=0, \sigma^{2}=\sigma_{\epsilon}^{2}\right)
\end{array}
$$

- $\mathrm{Y}(\mathrm{t})=$ observations $=$ SDE solution (or state) + noise.
- Data $\mathbf{y}=Y(\mathrm{t})$, sampled at irregular times.
- Goals: infer both parameters and states.
- Sample from joint posterior $p\left(\mathbf{x}, \theta, \sigma_{\epsilon}^{2} \mid \mathbf{y}\right)$

For more details, see our KDD BigMine '16 paper.

Results: Posterior Densities of Parameters

DTQ step - $\mathrm{h}=0.02$ - $\mathrm{h}=0.01$

$$
\begin{aligned}
d X(t) & =\theta_{1}\left(\theta_{2}-X(t)\right) d t+0.25 d W_{t} \\
Y(t) & =X(t)+\epsilon_{t}
\end{aligned}
$$

Results: Inference of States X(t) from Observations Y(t)

Results: Scaling

Nonparametric Inference

- Hermite functions form orthonormal basis for L^{2} :

$$
\psi_{j}(x)=(-1)^{j}\left(2^{j} j!\sqrt{\pi}\right)^{-1 / 2} e^{x^{2} / 2} \frac{d^{j}}{d x^{j}} e^{-x^{2}}
$$

- We write our unknown functions as linear combinations of these basis functions, i.e.,

$$
\begin{aligned}
& f(x) \approx \sum_{i=0}^{N_{f}} \theta_{i} \psi_{i}(x)=\hat{f}(x ; \boldsymbol{\theta}) \\
& g(x) \approx \sum_{i=0}^{N_{g}} \theta_{N_{f}+1+i} \psi_{i}(x)=\hat{g}(x ; \boldsymbol{\theta})
\end{aligned}
$$

- Then the problem is to find the parameter vector $\boldsymbol{\theta}$

Adjoint Method: Problem

- In nonparametric inference, \# of parameters is

$$
N_{f}+N_{g}+2
$$

- To compute gradient of likelihood w.r.t. parameters via "direct method," we take $\frac{d}{d \theta_{i}}$ of the DTQ equation

$$
p\left(x, t_{i+1}\right)=\int_{-y_{M}}^{y_{M}} p_{X\left(t_{i+1}\right) \mid X\left(t_{i}\right)=y}(x) p\left(y, t_{i}\right) d y
$$

- This will give us one evolution equation per parameter.
- We have tried this: resulting optimization of log likelihood is too slow to be practical.

Adjoint Method: Solution

- How do we compute gradient of likelihood w.r.t. parameters via the adjoint method?
- First, introduce u, a variable that is adjoint or dual to p
- Then derive from DTQ an evolution equation for u
- This evolution equation proceeds backwards in time. If we solve it once, we get the entire gradient.
- This huge cost-savings is the key technical innovation of our work that enables practical inference.

First Set of Results

- Consider SDE with constant diffusion $g(x) \equiv 1$ and drift function equal to a Hermite basis function,

$$
f(x)=\psi_{i}(x)
$$

- We simulate 10000 sample paths of this SDE from $t=0$ to $t=4$, using a small internal time step of 10^{-4}.
- Solution is retained only at $t=0,1,2,3,4$.
- We then take $N_{f}=4$ and proceed with inference.
- Ground truth: for $f(x)=\psi_{i}(x), \theta_{j}=\delta_{j, i}$

$$
g(x) \equiv 1 \quad \theta_{5}=1
$$

- Initialize trust region optimizer with $\boldsymbol{\theta}=(1,1, \ldots, 1)$

First Set of Results

Model Selection/Regularization

- Two main approaches:
1.Find the best \# of basis functions for f and g
2.Choose a really large \# of basis functions; regularize using a penalty term

$$
\begin{gathered}
E=\int_{x=-\infty}^{\infty}\left|\hat{f}^{\prime}(x)\right|^{2} d x \\
J(\boldsymbol{\theta})=-\log \mathcal{L}(\boldsymbol{\theta})+\gamma E(\boldsymbol{\theta})
\end{gathered}
$$

Quadratic penalty, similar to ridge regression.
For Hermite basis, can evaluate penalty easily. Can use cross-validation to select γ.

Other Results (ask me later)

1. Replace Euler-Maruyama with higher-order method to obtain overall second-order convergence
2. Levy SDE; track characteristic fn instead of density
3. Online inference
4. Details of fast adjoint method to compute gradient of log likelihood w.r.t. theta
5. Expectation maximization
6. Higher-dimensional version + spatial tracking data

Thank You!

Code and Papers

All of our code is open source: https://github.com/hbhat4000/sdeinference/

Papers available here:
http://faculty.ucmerced.edu/hbhat/publications.html

Email: hbhat@ucmerced.edu

