Density Tracking by Quadrature for SDE Inference

Harish S. Bhat*, R. W. M. A. Madushani*, Shagun Rawat*

*Applied Mathematics Unit, University of California, Merced

Motivation (starting from the data)

- Let's say you have many time series observations.
 - Perhaps the observations are at non-equispaced, irregular times.
 - Perhaps there are multiple time series, i.e., independent observations of the same process.
- How can we use this data to infer both predictive and explanatory SDE models?

Motivation (starting from the model)

- Stochastic differential equations (SDE) are widely used to model time-dependent phenomena.
 - Such models often have coefficients or parameters that must be determined from data.
 - Typically we only have noisy, imprecise observations of the states.
 - We seek methods for jointly inferring states and parameters in SDE models.

Motivation (even more!)

- For most SDE of interest, the likelihood function cannot be computed analytically.
 - How can we efficiently compute a convergent approximation to the likelihood function?
 - How do we incorporate this computation into a Metropolis algorithm?

Stochastic Differential Equation (SDE) Notation:

• We consider models of the form:

 $dX(t) = f(X(t), \theta)dt + g(X(t), \theta)dW_t$

- X(t) is the solution of the SDE at time t.
- W_t is Brownian motion (Wiener process).
- θ is a vector of parameters, \mathbf{x} is the data
- Goal: sample from posterior $p(\theta|\mathbf{x})$

Bayes

$$p(\theta | \mathbf{x}) = \frac{p(\mathbf{x} | \theta) p(\theta)}{p(\mathbf{x})}$$

$$posterior = \frac{likelihood \cdot prior}{normalization \ constant}$$

Pictorial Representation (why is the problem hard?)

Pictorial Representation

Piece of the likelihood: $p(X(3) = x_3 | X(2) = x_2, \theta)$ transition density: no analytical formula (for most SDE)

Context

There is a large literature on inference for SDEs.

Context

- Large literature on Bayesian inference for SDEs, with two main lines of attack:
 - 1. **Deterministic**: use series expansions to analytically approximate transition density—lacus [2008, 2014]. Or, use Fokker-Planck/Kolmogorov PDE.
 - 2. **Stochastic**: construct sample paths at intermediate time points, using concepts like the Brownian bridge, and numerically evaluate transition density. See Fuchs [2013].
- Our approach is deterministic and numerical.

Comparison

- Hurn, Jeisman, and Lindsay [2007] compared many methods for SDE inference and found:
 - Solving the Fokker-Planck PDE to compute transition densities yields most accurate inference.
 - The only drawback is speed.

Density Tracking by Quadrature (DTQ)

- This is **how** we step forward in time.
- Start with the SDE:

 $dX(t) = f(X(t), \theta)dt + g(X(t), \theta)dW_t$

• Euler-Maruyama approximation of SDE: $X(t_{i+1}) = X(t_i) + f(X(t_i))h + g(X(t_i))h^{1/2}Z_{i+1}^{independent}$ • This approximation implies:

$$X(t_{i+1})|X(t_i) = y \sim \mathcal{N}(\mu = y + f(y)h, \sigma^2 = g^2(y)h)$$

Density Tracking by Quadrature (DTQ)

$$X(t_{i+1})|X(t_i) = y \sim \mathcal{N}(\mu = y + f(y)h, \sigma^2 = g^2(y)h)$$
$$X(t_{i+1}) = X(t_i) + f(X(t_i))h + g(X(t_i))h^{1/2}Z_{i+1}$$

Above two equations imply (Chapman-Kolmogorov)

$$p(x, t_{i+1}) = \int_{\mathbb{R}} p_{X(t_{i+1})|X(t_i)=y}(x) \, p(y, t_i) \, dy$$

 If computers could compute in continuous space, this would be a method to step the PDF forward in time.

Density Tracking by Quadrature (DTQ): Missing Pieces

- Fix a spatial grid $x_m = y_m = m\Delta x$
- Represent $p(y, t_i)$ as a finite-dimensional vector

$$\mathbf{p}_i = \{p(y_m, t_i)\}_{m=-M}^{m=M}$$

• Truncate integral, apply trapezoidal rule to Chapman-Kolmogorov:

$$p(x, t_{i+1}) = \int_{\mathbb{R}} p_{X(t_{i+1})|X(t_i)=y}(x) \, p(y, t_i) \, dy$$

Whole thing reduces to iterated matrix multiplication!

$$\mathbf{p}_{i+1} = A\mathbf{p}_i$$

DTQ Preprint and Code

- For more information on DTQ itself, consult:
 - Bhat and Madushani [2016], Density tracking by quadrature for stochastic differential equations, arXiv:1610.09572.
- To try DTQ, see the R package on CRAN:
 - Rdtq (<u>https://cran.r-project.org/package=Rdtq</u>)
- For the source code, see:
 - <u>https://github.com/hbhat4000/Rdtq</u>

DTQ Theoretical Results

- p(x,t) exact PDF of the SDE
- $\tilde{p}(x,t)$ exact PDF of the Euler-Maruyama approximation
- $\hat{p}(x,t)$ what DTQ computes

We have proved

$$\|\hat{p}(\cdot,T) - \tilde{p}(\cdot,T)\|_{L^1} = O(h^{-1}\exp(-rh^{-\kappa}))$$

Bally and Talay [1996] proved

$$\|\tilde{p}(\cdot,T) - p(\cdot,T)\|_{L^1} = O(h)$$

DTQ Numerical Comparison

At the finest error level, DTQ-Sparse is 10-100x faster than Fokker-Planck

Our Approach (One Sample Path)

Our Approach (Many Sample Paths)

Metropolis Algorithm

- Start with initial $\vec{\theta}^{(i)}$
- Proposal: $\vec{\theta}^* = \vec{\theta}^{(i)} + \vec{Z}$

• Ratio:
$$\rho = \frac{p\left(\vec{\theta^*}|\mathbf{x}\right)}{p\left(\vec{\theta^{(i)}}|\mathbf{x}\right)} = \frac{p\left(\mathbf{x}|\vec{\theta^*}\right)p(\vec{\theta^*})}{p\left(\mathbf{x}|\vec{\theta^{(i)}}\right)p(\vec{\theta^{(i)}})}$$

Likelihoods computed via DTQ method

- Let $u \sim U(0,1)$. Accept if $\rho > u$; then $\vec{\theta}^{(i+1)} = \vec{\theta}^*$
- Else reject; then $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)}$

Example

Consider nonlinear SDE:

$$dX(t) = \theta_1 X(t) \left(\theta_2 - X(t)^2\right) dt + e^{\theta_3} dW_t$$

We generate simulated data using

$$\theta_1 = 1, \ \theta_2 = 4, \ e^{\theta_3} = 0.5$$

- Simulation parameters:
 - 100 sample paths from t=0 to T=25.
 - Euler-Maruyama method with internal time step of h=0.0001.
 - However, data is only recorded at times 0, 1, 2, ..., 25.

Inference Test

- Consider 4 competing methods to compute likelihood:
 - Kessler, Ozaki, Shoji, Elerian (deterministic methods, CRAN "sde" package)
- Normal prior with $\mu = 0.5, 0.5, 0; \ \sigma = 4$
 - not very close to ground truth
- Normal proposal with $\mu = 0$; $\sigma = 0.02, 0.02, 0.01$
 - Acceptance rates between 20.5% and 43%
- Initialize Metropolis at MLE: $\vec{\theta}^{(0)} = (0.925, 3.99, 0.43)$
 - Generate 10000 samples of posterior, discard first 100. No thinning.

Results: [1/3]

Results: [2/3]

Results: [3/3]

Natural Parallelization: Part I (Scala, Breeze, MKL)

Natural Parallelization: Part II (Spark)

$$X(t_{i+1})|X(t_i) = y \sim \mathcal{N}(\mu = y + f(y)h, \sigma^2 = g^2(y)h)$$

implies that the transition kernel is time-independent. $A_{ab} = p_{X(t_{i+1})|X(t_i)=y_b}(x_a)$

Therefore, can compute in parallel **all** terms $p(\vec{X}(j) = \vec{x}_j | \vec{X}(j-1) = \vec{x}_{j-1}, \theta)$

We do this in Spark using **sc.parallelize** and **map**.

Extensions: Filtering and Inference

Consider model:

$$dX(t) = f(X(t), \theta)dt + g(X(t), \theta)dW_t$$

$$Y(t) = X(t) + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(\mu = 0, \sigma^2 = \sigma_\epsilon^2)$$

- Y(t) = observations = SDE solution (or state) + noise.
- Data y = Y(t), sampled at irregular times.
- Goals: infer both parameters and states.
- Sample from joint posterior $p(\mathbf{x}, \theta, \sigma_{\epsilon}^2 | \mathbf{y})$

For more details, see our KDD BigMine '16 paper.

Results: Posterior Densities of Parameters

 $\begin{aligned} & \operatorname{DTQ} \operatorname{step} - \operatorname{h=0.02} - \operatorname{h=0.01} \\ & dX(t) = \theta_1(\theta_2 - X(t)) dt + 0.25 dW_t \\ & Y(t) = X(t) + \epsilon_t \end{aligned}$

Results: Inference of States X(t) from Observations Y(t)

 $dX(t) = \theta_1(\theta_2 - X(t))dt + 0.25dM$ $Y(t) = X(t) + \epsilon_t$

Results: Scaling

Nonparametric Inference

Hermite functions form orthonormal basis for L²:

$$\psi_j(x) = (-1)^j (2^j j! \sqrt{\pi})^{-1/2} e^{x^2/2} \frac{d^j}{dx^j} e^{-x^2}$$

 We write our unknown functions as linear combinations of these basis functions, i.e.,

$$f(x) \approx \sum_{i=0}^{N_f} \theta_i \psi_i(x) = \hat{f}(x; \theta)$$
$$g(x) \approx \sum_{i=0}^{N_g} \theta_{N_f+1+i} \psi_i(x) = \hat{g}(x; \theta)$$

• Then the problem is to find the parameter vector $\boldsymbol{\theta}$

Adjoint Method: Problem

• In nonparametric inference, # of parameters is

$$N_f + N_g + 2$$

• To compute gradient of likelihood w.r.t. parameters via "direct method," we take $\frac{d}{d\theta_i}$ of the DTQ equation

$$p(x, t_{i+1}) = \int_{-y_M}^{y_M} p_{X(t_{i+1})|X(t_i)=y}(x)p(y, t_i) \, dy$$

- This will give us one evolution equation per parameter.
- We have tried this: resulting optimization of log likelihood is too slow to be practical.

Adjoint Method: Solution

- How do we compute gradient of likelihood w.r.t. parameters via the adjoint method?
- First, introduce u, a variable that is adjoint or dual to p
- Then derive from DTQ an evolution equation for u
- This evolution equation proceeds backwards in time. If we solve it once, we get the entire gradient.
- This huge cost-savings is the key technical innovation of our work that enables practical inference.

First Set of Results

- Consider SDE with constant diffusion $g(x) \equiv 1$ and drift function equal to a Hermite basis function, $f(x) = \psi_i(x)$
- We simulate 10000 sample paths of this SDE from t=0 to t=4, using a small internal time step of 10⁻⁴.
- Solution is retained only at t=0,1,2,3,4.
- We then take $N_f = 4$ and proceed with inference.
- Ground truth: for $f(x) = \psi_i(x)$, $\theta_j = \delta_{j,i}$ $g(x) \equiv 1$ $\theta_5 = 1$
- Initialize trust region optimizer with $\theta = (1, 1, ..., 1)$

First Set of Results

Model Selection/Regularization

- Two main approaches:
 - 1. Find the best # of basis functions for f and g
 - 2.Choose a really large # of basis functions; regularize using a penalty term

$$E = \int_{x=-\infty}^{\infty} \left| \hat{f}'(x) \right|^2 dx$$

$$J(\boldsymbol{\theta}) = -\log \mathcal{L}(\boldsymbol{\theta}) + \gamma E(\boldsymbol{\theta})$$

Quadratic penalty, similar to ridge regression. For Hermite basis, can evaluate penalty easily. Can use cross-validation to select γ .

Other Results (ask me later)

- 1. Replace Euler-Maruyama with higher-order method to obtain overall second-order convergence
- 2. Levy SDE; track characteristic fn instead of density
- 3. Online inference
- 4. Details of fast adjoint method to compute gradient of log likelihood w.r.t. theta
- 5. Expectation maximization
- 6. Higher-dimensional version + spatial tracking data

Thank You!

Code and Papers

All of our code is open source: <u>https://github.com/hbhat4000/sdeinference/</u>

Papers available here:

http://faculty.ucmerced.edu/hbhat/publications.html

Email: <u>hbhat@ucmerced.edu</u>