LINEAGE ESTIMATION WITH SINGLE CELL MRNA-SEQ DATA

Elizabeth Purdom
Associate Professor
Department of Statistics, UC Berkeley
Statistical and Computational Challenges in Large Scale Molecular Biology
Banff International Research Station
March 28, 2017

Single Cell sequencing

- Standard mRNA-Seq on bulk populations

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing those from multiple cells - but errors are more likely.

Standard genome sequencing

DNA is broken into fragments and then sequenced.

Single Cell sequencing

- Standard mRNA-Seq on bulk populations
- Single cell: allows to see diversity of individual cells

ONE GENOME FROM MANY

 milions of cells is isolated.

A single cell is difficult to isolate, but t can be done mechanically or with an automated cell sorter.
Owens (2012) "Genomics: The single life" Nature News

Experimental process

- Isolate cell
- Micropipette
- FACS : Fluidigm C $_{1}$ ≤ 96 cells per run*, good: 60-70\% capture rate
- Droplet
- Library Prep
- Amplification: small input material, high amplification
- Sequencing
- Low seq. depth: e.g. 96 per lane (1M reads)

S1 cortex in mice (NIH BRAIN Initiative Cell Census
 Layer 5 cells (Glial contaminents removed)

- FACS sorting of the S1 cortex (Layer 4/5/6)

Olfactory Epithelium (OE)

Sustentacular cells

Mature olfactory neurons
Immature olfactory neurons
Globose basal cells
Horizontal basal cells

Bowman's gland

Quick snapshot of the data

Data Set	Olefactory	Brain
\# mice	51	41
\# C1 Batches	61	40
\# Illumina Lanes	19	7
\# cells	$2,627^{*}$	1,249
\# cells pass QC	2,190	1,042
\# Sequenced Reads	4,001 Million	1,500 Million

* Many conditions: in this talk, only 904 total (687 after sequencing)

Overview

- SCONE

- Data specific choice of normalization strategy
- Via comprehensive comparison in every dataset
- Metrics to rank normalized data
- RSEC
- Robust clustering strategy to find heterogeneity in scSeq data
- Subsampling and sequential clustering, merging of clusters, ...
- Part of clusterExperiment package for common clustering tasks (e.g. pairwise DE, plotting with clustering information)
- Slingshot
- Estimation of developmental lineages

Overview

- SCONE

- Data specific choice of normalization strategy
- Via comprehensive comparison in every dataset
- Metrics to rank normalized data
- RSEC
- Robust clustering strategy to find heterogeneity in scSeq data
- Subsampling and sequential clustering, merging of clusters, ...
- Part of clusterExperiment package for common clustering tasks (e.g. pairwise DE, plotting with clustering information)
- Slingshot
- Estimation of developmental lineages

Experiments (two):

- Capture descendant cells at several time points after regeneration
- Destroy all but HBC and watch them regenerate: 145 cells (of 175)
- Lineage tracing after inducing HBC: 542 cells (of 729)
- Sequence the individual cells to determine what is changing
- Goal: characterize the differentiation process and at what point cell fate is chosen

Find genes related to differentiation

But observed time is not differential state

000000000000000000000000
$\mathrm{HBC} \longrightarrow$ ORN
Differentiation Order

Better representation if order cells by differentiation state

1

Better representation if order cells by differentiation state

Differentiation Order

Problem more acute when multiple endpoints

Sus

Developmental Order

Many Strategies for One lineage

- Assume distance gives differentiation order, at some level
- Find a 'path' (lineage) through space of gene expression data
- Order individual cells on the path
- E.g. orthogonal projection
- Many "details" hard-coded in, make comparisons difficult
- Dimensionality of space (e.g. 2 dimensions)
- How find low dimensions (ICA / PCA / Laplacian Embedding)

Path Choices

- MST through individual cells, take longest path (Monocle) 'Project' onto path via where branch off path

Path Choices

- MST through individual cells, take longest path (Monocle)
- MST on Clusters, orthogonal projection (Waterfall / TSCAN)

Path Choices

- MST through individual cells, take longest path (Monocle)
- MST on Clusters, orthogonal projection (Waterfall / TSCAN)
- Principal Curves, orthogonal projection (Embedder)

Monocle not robust

Monocle not robust

(Jittered)

Monocle not robust

(Jittered)

Principal Curves More Stable

Principal Curves Not Reliant on Clustering

- MST on clusters can be sensitive to choice of clusters

MST on Clusters

Principal curves

Monocle Data

Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching Clustering often uses more dimensions - more information
- Principal curves more robust estimates of ordering
- Slingshot
\rightarrow Use MST for assigning clusters of cells to lineages
\rightarrow Principal curves within lineages to give ordering

Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching Clustering often uses more dimensions - more information
- Principal curves more robust estimates of ordering
- Slingshot
\rightarrow Use MST for assigning clusters of cells to lineages
\rightarrow Principal curves within lineages to give ordering
- Additionally
\rightarrow allow for supervision (constrained MST)

Importance of Constrained MST

- Huge assumption distance in gene expression = order
- Clustering gives important information
- If know the end points of process, should guide estimation

PCA of Gene Expression, with clusters

Constraint keeps these lineages separate

With Constraints

Without Constraints

- HBC
- $\triangle \mathrm{HBC}$
- GBC
- iORN
- mORN
- mSus
- MV

Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching Clustering often uses more dimensions - more information
- Principal curves more robust estimates of ordering
- Slingshot
\rightarrow Use MST for assigning clusters of cells to lineages
\rightarrow Principal curves within lineages to give ordering
- Additionally
\rightarrow allow for supervision (constrained MST)
\rightarrow simulataneous principal curve fitting for overlapping branches

Shrinkage

- Principal curves \rightarrow multiple pseudotimes for same cells in multiple lineages
- Shrink curves to average based on the density of cells shared across lineages

Shrinkage

- Principal curves \rightarrow multiple pseudotimes for same cells in multiple lineages
- Shrink curves to average based on the density of cells shared across lineages

Retain robustness of Principal Curves

Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching Clustering often uses more dimensions - more information
- Principal curves more robust estimates of ordering
- Slingshot
\rightarrow Use MST for assigning clusters of cells to lineages
\rightarrow Principal curves within lineages to give ordering
- Additionally
\rightarrow allow for supervision (constrained MST)
\rightarrow simulataneous principal curve fitting for overlapping branches
\rightarrow covariance based distance for MST to capture shape of cluster

Compare to Other Methods

Monocle

- Must specify \# lineages

- Only two lineages
- Built-in Dimensionality Reduction

Krt14

Hes6

Olfactory Epithelium

Pseudotime

Neuronal Lineage Samples

Concluding Remarks

- Robust and flexible method for determining lineage of cells
- However, ...
- Very high expectations \rightarrow Many assumptions
- Processing and dimensionality reduction are also critical components

John Ngai

David Stafford
Jasper Visser
Russell Fletcher
Diya Das
Levi Gadye
Mike Sanchez
Ariane Baudhuin
Hillel Adesnik
David Taylor Alex Naka

Sandrine Dudoit
 Elizabeth Purdom

Davide Risso
Kelly Street
Nir Yosef
Allon Wagner
Michael Cole
Functional Genomics Lab
Justin Choi
CRL Flow Cytometry Core Hector Nolla

RSEC available as part of clusterExperiment package on bioconductor SCONE available on bioconductor (dev)
Slingshot available on https://github.com/kstreet13/slingshot
NIH BRAIN Initiative Cell Census Consortium
National Institute on Deafness and Other Communication Disorders National Institute on Aging
National Human Genome Resource Institute California Institute for Regenerative Medicine

Effect of dimensionality reduction is big

Laplacian Embedding
tSNE

Limitations: Noisy data

Dilution of Bulk RNA

Brennecke et al Nature Methods (2013)

Because of low starting input (picograms), large amounts of amplification, other technical problems

