A Bayesian method to infer disease networks and expected phenotypes using electronic health records

Yue Li Postdoctoral researcher Kellis Lab MIT

Dissecting regulatory circuitry of human complex diseases

Electronic health records contain rich patient-level data

Jensen et al., Nature Rev. Gen. 2012

- Lab tests: Logical Obs. Identifiers Names & Codes (LOINC)
- Pharmaceutical: Prescription data (RxNorm)
- · Imaging: Digital Imaging and Comm. in Medicine (DICOM)
- Phenotype: International Classification of Disease-9 (ICD-9)

Phenome-wide association studies with genetic information

Pleiotropy: the same SNP is associated with multiple traits

PheWAS without genetics information using EHR

- · Genotype are often not available over large patient cohort
- Given the causal mediating phenotypes, diseases of interest are conditionally independent of genotype

Overall goal:

building an intelligent medical recommendation system

Diagnosis of new patients

Intuition behind predicting phenotypes by factorization

Phenotype similarity

Model the EHR data as data generative process

Clinical recommendation

EHR data are extremely sparse

Two types of missing data in EHR

EHR data are not missing at random (NMAR)

Modeling missing mechanism in lab test

Modeling missing mechanism in phenotype data

PheMAP joint inference over multiple data types

Meta-phenotype likelihood follows Dirichlet distribution

PheMAP achieves promising imputation accuracy

Many meta-lab clusters are biologically meaningful

Lung disease	R29-M2	Kidney-related	R29-M7
HEMTOCRIT-High RED BLOOD CELLS-High PCO2+High NUCLEATED TOTAL CO2+High NUCLEATED TOTAL CO2+High NUCLEATED TOTAL CO2+High NEUTROPHILS-High CREATURE PATIENT GRADULAR CASTS-LOW UREA NITEOCON-High FIBRINGEN, FUNCTIONAL-High % HEMOGLOBIN AIC-High % HEMOGLOBIN AIC-High % HEMOGLOBIN AIC-High % HEMOGLOBIN AIC-High WEC, PLEUTAL-High WEC, PLEUTAL-High WEC, PLEUTAL-High WEC, PLEUTAL-High	29523 28119 13393 2674 27774 22858 27419 8372 22858 27419 8372 22852 1193 22964 27273 4045 22964 27273 4045 22922 3103 3103 7714 4827 10396	CREATININE-High UREA NITROGEN-High HEMATOCATI-High RED BLOOD CELLS-High NUCLEATED BED CELLS-High NUCLEATED BED CELLS-High NUTROPHIS-High WHITE BLOOD CELLS-High WHITE BLOOD CELLS-High PARATHYROID HORMONE-High PARATHYROID HORMONE-High PROMVEL CCYTES-Low CALCIUM, TOTAL-Low CALCIUM, TOTAL-Low EBEE CALCIUM-Low FREE CALCIUM-Low FREE CALCIUM-Low PHEOSYNATE-High COTTOL-High PHOSYNATE-HIGh	20472 22964 29523 28119 2674 19165 22858 2175 27273 868 654 28163 27419 27419 27419 27419 27419 27419 27419 2749 2740 17266 3020 17266 3020 14660 12982
Anemia-related	R29-M10		
HEMATOCRIT-Low RED BLOOD CELLS-Low HEMOGLOBIN-Low CALCIUM, TOTAL-Low SEDIMENTATION RATE-High - ROW-High NUCLEATED RED CELLS-Low C-REACTIVE PROTEINS-High FREE CALCIUM-Low UREA NITROGEN-High PROTEIN, TOTAL-Low NITPROBIN-High	11330 12434 7274 28163 1825 22922 27419 2674 1659 22858 17627 22964 2639 2175	pat clust	Lab Data
TROPONIN T-Low - PROMYELOCYTES-Low - GRANULAR CASTS-Low - PHENYTOIN-Low - ALBUMIN-Low - PROTEIN/CREATININE RATIO-High -	8372 654 1193 2242 13634 1336	Meta-lab	Lab

Thanks Yuri Anjura (MD student at HMS) for help interpreting the meta-lab!

Many meta-phenotypes clusters are biologically meaningful

Thanks Brad Ruzicka (MD at McLean Hospital) for help interpreting the meta-phenotypes!

Associating patients by the inferred meta-phenotypes

Linking lab tests to phenotypes via meta-phenotypes

"Newborn" is an "outlier" meta-phenotype based on the lab tests

Linking lab tests to phenotypes via meta-phenotypes

Imputing phenotypes by meta-phenotype associations

- Patients and phenotypes are sorted in decreasing order of their probabilistic associations with each meta-phenotype
- For each meta-phenotype, the top 100 patients and top 10 phenotypes are selected

Correlation across meta-phenotypes reveal high modularity

Many modules are highly enriched for common disease categories defined by ICD-9 system

Visualizing PheWAN by correlation across meta-phenotypes

Online visualization portal of disease network

Se	lect by id		
Se	lect by grou	up	

http://people.csail.mit.edu/yueli/phewan/mimic/CompleteNetAnnotated.html

Collaborating with postdoc Jose Davila on the visualization portal

Alzheimer's disease subnetwork module

http://people.csail.mit.edu/yueli/phewan/mimic/NewMentalNetInt.html

Bipolar disorder subnetwork module

http://people.csail.mit.edu/yueli/phewan/mimic/NewMentalNetInt.html

Summary of the EHR PheMAP model

Clinical recommendation

Future works

MPRA analysis

MPRA training data

MPRA features enrichments

MPRA predictions

Common variants with high predicted scores exhibit lower MAF

Figure 4

Common variants in eQTL exhibit higher predicted scores

Figure 5

HEPG2_act_mpra_elasticnet_gkm_Whole_Blood

Common variants in GWAS catalog exhibit higher predicted scores

Figure 6

Incorporation of CNN model trained MPRA as prior model into the fine-mapping model

Transfer learning CNNs

Alvin Shi Yue Li Manolis Kellis 3/26/2017

Evolutionary training algorithm and transfer learning

- Training phase
 - Initialize modules for each layer and randomly pick two subset as active
 - Example: We can initialize 10 modules, each containing 25 convolutional filters for a total of 250 total filters.
 - Designate the set of active modules a "path" or "genotype"
 - Train both networks until convergence and compare costs/performance metrics
 - Keep the "winning" path, with a small chance to mutate the winning path.
 - Reinitialize the "losing" path randomly
 - Repeat until desired number of iterations have concluded
- Transfer from task 1 to task 2
 - Network weights from best path from task 1 is frozen and remaining modules are reinitialized. Initialize the "winning" path for task 2 from the wining path from task 1.
 - Repeat training process until convergence for task 2.
- Motivations for PathNet
 - Generalizes the idea of dropout to modular sections of a neural net prevents overfitting.
 - Prevents overfitting when training large networks when transferring from a larger training task to a small training task. Furthermore, decreases training time/cost when transferring between related tasks.

PathNet in action: Task 1

Tracing evolutionary path in a 2-layer CNN during training on HepG2 MPRA tiling data

0.80

Validation auROC vs. Evolutionary Steps for cross-validation for HepG2 (10% held-out)

Winner auROC
Challenger auROC

PathNet in action: Transfer from Task 1 to Task 2

Transferred

0.60 0.0

2.5

5.0

7.5

10.0

Evolutionary Steps

12.5

20.0

:

15.0

17.5

20.0

Pathnet Model

Pathnet model at two evolutionary time steps:

Testing PathNet: MPRA Transfer Learning

- Training Data from Ernst et al.¹
 - Task 1: Binarized HepG2 MPRA tiling data (10% validation)
 - Task 2: Binarized K562 MPRA tiling data (10% validation)
- Testing Data
 - Testing dataset: Binarized LCL MPRA data
- Evaluate against matched CNN
 - Same architecture, hyperparameter settings, total number of weights

Task 1: HepG2	Validation auROC	Test auROC
PathNet	0.735	0.67
Matched CNN	0.726	0.65

Task 2: K562	Validation auROC	Test auROC
PathNet + Transfer	0.80	0.68
PathNet	0.80	0.67
Matched CNN	0.73	0.64

1 - Ernst, J., Melnikov, A., Zhang, X., Wang, L., Rogov, P., Mikkelsen, T. S., & Kellis, M. (2016). Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions. *Nature Biotechnology*, (October 2015). http://doi.org/10.1038/nbt.3678 2 - Tewhey, R., Kotliar, D., Park, D. S., Liu, B., Winnicki, S., Reilly, S. K., ... Sabeti, P. C. (2016). Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. *Cell*, 165(6), 1519–1529. http://doi.org/10.1016/j.cell.2016.04.027

PathNet – No Transfer

PathNet – With Transfer

Conclusion and future directions

- On our initial tests, PathNet outperforms generic CNNs in single-task prediction.
- Current implementation of transfer learning produces no tangible evidence of faster training on MPRA testing/training datasets.
 - Continue to evaluate other transfer methods and other relevant prediction tasks.
 - Implement and test alternative transfer learning method (freeze both weights and path in task 2 – thereby expanding the total number of utilized modules).

Decomposition and interpretation of Alzheimer's disease GWAS statistics from transcriptomic and epigenomic regulatory programs

Yongjin Park, MIT CSAIL / Broad Institute

Yongjin Park

Abhishek Sarkar

Benjamin Liang

Manolis Kellis

Bhutani

Philip De Jager

Gusev

GWAS implicates existence of molecular & cellular mechanisms in Alzheimer's disease

Lambert et al. Nat. Gen. (2013)

Goal: Identify embedded associations / causation of regulatory elements in between genetics and phenotype associations

Deeper knowledge of GWAS: Identify multiple types regulatory programs using multi-omics data

Association of phenotypic variability with imputed regulatory signals

Imputed TWAS

(1) Train a linear model of gene expression on reference cohort

 $GE_{ref} \approx X_{ref} \theta_{qtl}$

(2) Impute individual-level gene expressions

 $GE_{pred} \leftarrow X_{gwas} \theta_{qtl}$

(3) Measure correlation between the predicted expr. and observed phenotypes

Pheno ~ GE_{pred}

Gamazon et al. Nat. Gen. (2015)

Association of phenotypic variability with imputed regulatory signals

Imputed TWAS

(1) A linear model of gene expression on reference cohort

 $GE_{ref} \approx X_{ref} \theta_{qtl}$

(2) Imputed gene expressions

 $GE_{pred} \approx X_{gwas} \Theta_{qtl}$

What if we don't have access to individual genotype data? or *n* is too small?

But we could have access to well-powered summary SNP-level (marginal) effect sizes!

Gamazon et al. Nat. Gen. (2015)

(1) Reference cohort QTL model $GE_{ref} \approx X_{ref} \theta_{atl}$ (2) Skip imp. & find a walk-round sol'n Goal: $\phi \sim GE_{pred}$? Assume: $E[\phi] = X \theta_{gwas}$ Test stat. T := $GE_{pred} \Phi_{pred} / n$ $E[T|gwas] \approx (X\theta_{atl})^{T} X\theta_{gwas} / n$ $\approx \theta_{\text{atl}}^{T} \text{LD} \theta_{\text{gwas}}$ $\approx \theta_{\text{otl}}^{T} \mathbf{z}_{\text{gwas}}$ $V[T|gwas] \approx \theta_{atl}^{T} LD \theta_{atl}$

Gusev et al. Nat. Gen. (2016)

Fine-mapped identification of causal SNPs by colocalization of eQTL and GWAS

Summary-based test

Test stat. T := $GE_{pred}^{\top} \Phi_{pred} / n$ E[T|gwas] $\approx (X\Theta_{qtl})^{\top} X\Theta_{gwas} / n$ $\approx \Theta_{qtl}^{\top} (LD \Theta_{gwas})$

 $V[T|gwas] \approx \theta_{qtl}^{T} LD \theta_{qtl}$

Co-localization of eQTL + GWAS

 $z_{gwas} \sim N(\lambda_g \text{ LD } \Theta_{shared}, \text{ LD})$

 $z_{qtl} \sim N(\lambda_q LD \Theta_{shared}, LD)$

Aggregation of multiple signals within *cis*-region (causal + passenger)

Find credible set of SNPs driving both GWAS and QTL z-scores.

Hormozdiari .. Eskin, bioRxiv (2016)

Contributions of our work

Improving regulatory programs

- Accurately model types of data (DNAme arrays, RNA-seq, Chip-seq)
- Aggregating related information (tissue axis or multiple gene axis)
- Spike-slab type of sparse regression (reduce generalization errors; parsimonious model)
- Multiple levels of regulatory models

Summary-based NWAS (1) Reference cohort QTL model $Reg_{ref} \approx X_{ref} \theta_{qtl}$ (2) Test regulatory association $Goal: \phi \sim Reg_{pred}$?

Contributions of our work

Improving regulatory programs

- Accurately model types of data (DNAme arrays, RNA-seq, Chip-seq)
- Aggregating related tissues (tissue axis or multiple gene axis)
- Spike-slab type of sparse regression (reduce generalization errors; parsimonious model)

Distinguish sources of information

- Correct reverse-causation using observed phenotypes / proxy
- Account for direct effects in summary-based models

Summary-based NWAS (1) Reference cohort QTL model $Reg_{ref} \approx X_{ref} \theta_{qtl}$ (2) Test regulatory association Goal: $\phi \approx Reg_{pred}$? TWAS reveals target genes with tissue and cellular context by aggregating multivariate effects

Reference cohort with regulatory contexts (GTEx tissues)

TWAS reveals target genes with tissue and cellular context by aggregating multivariate effects

Removing non-genetic sources of variability using low-ranked matrix factorization model

- Matrix factorization with known covariates (including demographic, technical confounders & common variants within 1Mb *cis*regulatory regions of each gene)
- Automatic identification of ranks using generalized spike-slab prior on columns of latent factors; resolve #dimensions by posterior probability > .5)

Park & Sarkar et al. bioRxiv (2017)

Joint training of 48 GTEx tissues on shared genotype matrix with factored regression model

Factor analysis on most variable 1,000 genes in tissue and correct hidden & known confounders

12K genes

- Full effect size = SNPfactor × Tissue factor
- SNP factor = shared regulatory motifs
- Tis factor = activity

 $\Theta = \Theta^{snp}(\Theta^{tis})^T$

Fit multi-tissue & polygenic regression with factored regression coefficients

Park & Sarkar *et al.* bioRxiv (2017)

Test gene-level association with AD GWAS z-scores in a tissue-specific or pan-tissue manner

12K genes

Park & Sarkar et al. bioRxiv (2017)

Brain-specific AD genes are only discovered by factored QTL models

Pancreas Adipose.Subcutaneous Breast.MammarvTissue Skin.SunExposed Lung Artery. Tibial Nerve.Tibial Esophagus.Mucosa Adipose.Visceral Skin.NotSunExposed Muscle.Skeletal Heart.LeftVentricle Heart.AtrialAppendage Thyroid WholeBlood Colon.Sigmoid Esophagus.Muscularis Artery.Aorta Esophagus.GastroesophagealJunction Colon.Transverse Stomach Artery.Coronary Ovary Uterus Vagina Prostate Liver Cells.EBV.transformedlymphocytes SmallIntestine.Terminallleum MinorSalivaryGland Spleen Testis AdrenalGland Pituitarv Brain.Hypothalamus Brain.Spinalcord Brain.Substantianigra Brain.Anteriorcingulatecortex Brain.Hippocampus Brain.Cortex Brain.Amygdala Brain.Caudate Brain.Putamen Brain.FrontalCortex Brain.Nucleusaccumbens Brain.CerebellarHemisphere Brain.Cerebellum Cells.Transformedfibroblasts

Park, et al., in preparation

Three types of association patterns iTWAS, sTWAS, co-localization can identify

(But TWAS cannot distinguish them from each other)

Gusev et al. Nat. Gen. (2016)

Remove reverse causation in AD sTWAS, sMWAS

(What TWAS cannot distinguish from each other)

Reverse causation

DNAme ~ SNP (within ±1Mb) + Trait

Gene expression ~ SNP (within ±1Mb) + Trait

In the ROS-MAP cohort (with observed A β , NF τ , cognitive decline slope) pathological variables can be used as a surrogate of AD phenotype.

Park, et al., in preparation

Distinguish mediation and pleiotropy by including direct effects in summary-based analysis

Pleiotropy model:

 $GE \approx X \theta_{qtl}$ $\Phi \approx X \theta_{gwas}$

VS

Without individual level data (apply summary-based regression; Zhu & Stephens, bioRxiv, 2016)

 $X^{T} \varphi \approx X^{T} X (\theta_{qtl} \theta_{mediation} + \theta_{direct})$

Or through fine-mapping model (Hormozdiari & Eskin)

 $z \sim N(\lambda LD(\theta_{qtl} \theta_{med} + \theta_{dir}), LD)$

Mediation model (individual level data):

 $\boldsymbol{\varphi} \approx \boldsymbol{X} \; \boldsymbol{\theta}_{qtl} \; \boldsymbol{\theta}_{mediation}$

 $GE \approx X \theta_{atl}$

Ask: Can direct effect explain away mediation?

+ X θ_{direct}

Estimate posterior distribution of spike-slab mediation effects using spectral transformation (Park, Sarkar, Kellis, *in preparation*)

AD GWAS causal mediation effects on Chr 1 - 10

MWAS mediation

CG.loc (1Mb)

AD GWAS causal mediation effects on Chr 11 - 22

MWAS mediation

CG.loc (1Mb)

TWAS mediation

TSS (1Mb)