Heritability estimation in high-dimensional mixed models

Anna Bonnet, Elisabeth Gassiat, Céline Lévy-Leduc

Banff - March 28, 2017

Heritability

- Heritability of a biological trait: Proportion of phenotypic variance explained by genetic factors.

Phenotype (P) = Genotype (G) + Environment (E)

$$
\sigma_{P}^{2}=\sigma_{G}^{2}+\sigma_{E}^{2}
$$

Heritability: $H^{2}=\frac{\sigma_{G}^{2}}{\sigma_{P}^{2}}$

Heritability

- The biological trait can be either quantitative or qualitative.

 Quantitative (Height)
 Binary (Disease)

- Interest of estimating heritability: better understanding of complex diseases, further research for genetic causes...

Linear Mixed Model

$$
Y=X \beta+Z u+e
$$

where

- Y is a $n \times 1$ vector of observations
- $X \beta$ are the fixed effects (age, city, ...)
- Z is a $n \times N$ random matrix which contains the genetic information (SNPs matrix)
- u and e are independent random effects

$$
u \sim \mathcal{N}\left(0, \sigma_{u}^{\star 2} \operatorname{Id}_{\mathbb{R}^{N}}\right) \text { and } e \sim \mathcal{N}\left(0, \sigma_{e}^{\star 2} \operatorname{Id}_{\mathbb{R}^{n}}\right)
$$

- Classical mathematical definition of heritability :

$$
\eta^{\star}=\frac{N \sigma_{u}^{\star 2}}{N \sigma_{u}^{\star 2}+\sigma_{e}^{\star 2}} .
$$

Sparse Linear Mixed Model

$$
Y=X \beta+Z u+e
$$

where

- Y is a $n \times 1$ vector of observations
- $X \beta$ are the fixed effects
- Z is a $n \times N$ random matrix, which contains the genetic information
- u and e are the random effects

$$
u_{i} \stackrel{i . i . d .}{\sim}(1-q) \delta_{0}+q \mathcal{N}\left(0, \sigma_{u}^{\star 2}\right) \text {, for all } i
$$

■ Estimation of $\eta^{\star}=\frac{N q \sigma_{u}^{\star 2}}{N q \sigma_{u}^{\star 2}+\sigma_{e}^{\star 2}}$.

Heritability estimator

In the sequel, we consider

$$
Y=Z u+e
$$

■ We study the maximum likelihood estimator in the case $q=1$ (no sparsity): misspecification of the model.

- Reparameterization with new parameters η^{\star} and $\sigma^{\star 2}=N \sigma_{u}^{\star 2}+\sigma_{e}^{\star 2}$ (Pirinen et al. 2013).

$$
Y \left\lvert\, Z \sim \mathcal{N}\left(0, \eta^{\star} \sigma^{\star 2} \frac{Z Z^{\prime}}{N}+\left(1-\eta^{\star}\right) \sigma^{\star 2} \operatorname{Id}_{\mathbb{R}^{n}}\right)\right.
$$

■ $\hat{\eta}$ maximizer of the log-likelihood conditionally to Z.

Framework

Our methodology is inspired from Yang et al. (2011) and Pirinen et al. (2013) but the theoretical properties of this estimator have not been established.

- State of the art: $q=1, N$ is fixed and $n \rightarrow \infty$.

■ In genetic applications, $N \gg n, q$ is unknown.

- Our goal: establish theoretical properties about our estimator in the framework $q \in(0,1], n, N \rightarrow \infty$ and $n / N \rightarrow a \in(0,+\infty)$.

\sqrt{n}-Consistency

Theorem
Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ satisfy the sparse LMM with $\eta^{\star}>0$ and $\hat{\eta}$ the maximizer of $L_{n}(\eta)$.
Then, under mild assumptions on Z, for all q in $(0,1]$, as $n, N \rightarrow \infty$ such that $n / N \rightarrow a \in(0,+\infty)$,

$$
\sqrt{n}\left(\hat{\eta}-\eta^{\star}\right)=O_{P}(1)
$$

Central Limit Theorem in the sparse LMM

Theorem
Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ satisfy the sparse LMM with $\eta^{\star}>0$ and assume that $Z_{i, j}$ are i.i.d. $\mathcal{N}(0,1)$.
Then for any $q \in(0,1]$, as $n, N \rightarrow \infty$ such that $n / N \rightarrow a>0$,

$$
\sqrt{n}\left(\hat{\eta}-\eta^{\star}\right)
$$

converges in distribution to a centered Gaussian random variable with variance

$$
\tau^{2}\left(a, \eta^{\star}, q\right)=\frac{2}{\widetilde{\sigma}^{2}\left(a, \eta^{\star}\right)}+3 \frac{a^{2} \eta^{\star 2}}{\widetilde{\sigma}^{4}\left(a, \eta^{\star}\right)}\left(\frac{1}{q}-1\right) S\left(a, \eta^{\star}\right)
$$

where $\tilde{\sigma}^{2}\left(a, \eta^{\star}\right)$ and $S\left(a, \eta^{\star}\right)$ are positive functions, for which closed-form expressions are available.

Simulation study

$$
\text { Influence of } a=n / N \quad \text { Influence of sparsity } q
$$

a

q

Figure: Estimations of η^{\star} for $n=1000$ and for different values of $a=\frac{n}{N}$ when $q=1$ (left) and different values of q when $a=0.01$ (right).

- When a decreases, that is $N \gg n$, the variance of our heritability estimator increases.
- The presence of null components $(q<1)$ does not influence the estimations.

Variable selection

- Step 1: Empirical correlation computation (SIS, Fan \& Lv (2008)) . We keep the columns of Z which are the most correlated to Y. The reduced matrix is denoted $Z_{\text {red }}$.

■ Step 2: The LASSO criterion. We minimize with respect to u the criterion:

$$
\operatorname{Crit}_{\lambda}(u)=\left\|Y-Z_{\text {red }} u\right\|_{2}^{2}+\lambda\|u\|_{1}
$$

+ stability selection (Meinshausen \& Buhlmann, 2010).
- Step 3: Bootstrap method to compute confidence intervals.
- R Package EstHer: Variable selection + Heritability Estimation + Computation of standard errors

Choice of the threshold in the stability selection step

■ A choice of threshold \rightarrow a set of selected variables, an estimated value of η^{\star}

100 causal SNPs

10000 causal SNPs

Figure: Absolute difference $\left|\eta^{\star}-\hat{\eta}\right|$ for thresholds from 0.6 to 0.9 .

- 100 causal SNPs: a range of thresholds (0.7-0.85) provides a good estimation for heritability (optimal threshold: 0.78)
- 10000 causal SNPs: no optimal threshold.

First results of the variable selection method

Figure: Estimation of η^{\star} using our variable selection method with threshold 0.78 and using no variable selection ($n=2000, N=100000$).

- For 100 causal SNPs, selecting variables reduces substantially the variance.
- For 10000 causal SNPs, selecting variables leads to underestimate η^{\star}.

Influence of the threshold in the stability selection

Figure: Heritability estimations with $95 \% \mathrm{Cl}$ for thresholds between 0.7 and 0.85 .

- 100 causal SNPs: two close thresholds provide similar estimations.
- 10000 causal SNPs: small change in the threshold \rightarrow very different estimations.

A criterion to decide whether to apply the variable selection or not

Table: Mean value (and proportion) of the number of overlapping confidence intervals for 16 thresholds from 0.7 to 0.85 .

η^{\star}	100 causal SNPs	1000 causal SNPs	10000 causal SNPs
0.4	$12.2(0.76)$	$6.6(0.41)$	$6.9(0.43)$
0.5	$14.9(0.93)$	$6.6(0.41)$	$6.3(0.39)$
0.6	$16(1)$	$7.8(0.48)$	$7.2(0.45)$

- Criterion: If the mean proportion of overlapping thresholds >0.6 \rightarrow variable selection.

Application of the criterion

1000 causal SNPs
10000 causal SNPs

- Small number of causal SNPs: reduction of standard errors
- High number of causal SNPs: behaves like HiLMM (no selection).

Application to brain volume data

Collaboration with T.Bourgeron's GHFC team (Institut Pasteur)

Data from the IMAGEN project: volume of the different regions of the brain from ~ 2000 adolescents in Europe.

Figure: Different regions of the brain (Toro et al, 2014) and the estimation of heritability for these different regions' volumes.

References

[1] Anna Bonnet, Elisabeth Gassiat, and Celine Levy-Leduc. Heritability estimation in high-dimensional sparse linear mixed models. Electronic Journal of Statistics, 9(2):2099-2129, 2015.
[2] Anna Bonnet, Elisabeth Gassiat, Celine Levy-Leduc, Roberto Toro, and Thomas Bourgeron. Improving heritability estimation by a variable selection approach in sparse high dimensional linear mixed models, 2016. Submitted.
[3] Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849-911, 2008.
[4] Nicolai Meinshausen and Peter Buhlmann. Stability selection. Journal of the Royal Statistical Society, pages 417-473, 2010.
[5] Xiang Zhou, Peter Carbonetto, and Matthew Stephens. Polygenic modeling with bayesian sparse linear mixed models. PLoS genetics, 9(2):e1003264, 2013.

Comparison

- BSLMM (Zhou et al, 2013): Bayesian method which can adapt to sparsity.

Computational times
(in seconds)

- Convergence issues when using the default parameters in BSLMM.
- EstHer faster than BSLMM.

