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Heritability

Heritability of a biological trait: Proportion of phenotypic variance
explained by genetic factors.

Phenotype (P) = Genotype (G) + Environment (E)

σ2P = σ2G + σ2E

Heritability: H2 =
σ2G
σ2P
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Heritability

The biological trait can be either quantitative or qualitative.

Quantitative (Height)

Binary (Disease)

Interest of estimating heritability: better understanding of complex
diseases, further research for genetic causes...
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Model

Linear Mixed Model

Y = Xβ + Zu + e

where
I Y is a n × 1 vector of observations
I Xβ are the fixed effects (age, city, . . . )
I Z is a n × N random matrix which contains the genetic information

(SNPs matrix)
I u and e are independent random effects

u ∼ N (0, σ?u2IdRN ) and e ∼ N
(
0, σ?e 2IdRn

)
Classical mathematical definition of heritability :

η? =
Nσ?2u

Nσ?2u + σ?2e
.
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Model

Sparse Linear Mixed Model

Y = Xβ + Zu + e

where
I Y is a n × 1 vector of observations
I Xβ are the fixed effects
I Z is a n × N random matrix, which contains the genetic information
I u and e are the random effects

ui
i .i .d .∼ (1− q)δ0 + qN (0, σ?u

2) , for all i

Estimation of η? = Nqσ?2
u

Nqσ?2
u +σ?2

e
.
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Maximum Likelihood estimator

Heritability estimator

In the sequel, we consider

Y = Zu + e

We study the maximum likelihood estimator in the case q = 1 (no
sparsity): misspecification of the model.
Reparameterization with new parameters η? and σ?2 = Nσ?2u + σ?2e
(Pirinen et al. 2013).

Y |Z ∼ N
(
0, η?σ?2ZZ ′

N + (1− η?)σ?2IdRn

)
.

η̂ maximizer of the log-likelihood conditionally to Z .

Anna Bonnet Estimation of heritability Banff - March 28, 2017 5 / 16



Theoretical results

Framework

Our methodology is inspired from Yang et al. (2011) and Pirinen et al.
(2013) but the theoretical properties of this estimator have not been
established.

State of the art: q = 1, N is fixed and n → ∞.

In genetic applications, N >> n, q is unknown.

Our goal: establish theoretical properties about our estimator in the
framework q ∈ (0, 1], n,N → ∞ and n/N → a ∈ (0,+∞).
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Theoretical results

√
n-Consistency

Theorem
Let Y = (Y1, . . . ,Yn)

′ satisfy the sparse LMM with η? > 0 and η̂ the
maximizer of Ln(η).
Then, under mild assumptions on Z, for all q in (0, 1], as n,N →∞ such
that n/N → a ∈ (0,+∞),

√
n(η̂ − η?) = OP(1).
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Theoretical results

Central Limit Theorem in the sparse LMM

Theorem
Let Y = (Y1, . . . ,Yn)

′ satisfy the sparse LMM with η? > 0 and assume
that Zi ,j are i.i.d. N (0, 1).
Then for any q ∈ (0, 1], as n,N →∞ such that n/N → a > 0,

√
n(η̂ − η?)

converges in distribution to a centered Gaussian random variable with
variance

τ2(a, η?, q) = 2
σ̃2(a, η?) + 3 a2η?2

σ̃4(a, η?)

(
1
q − 1

)
S(a, η?)

where σ̃2(a, η?) and S(a, η?) are positive functions, for which
closed-form expressions are available.
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Numerical results

Simulation study
Influence of a = n/N Influence of sparsity q

η̂
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Figure: Estimations of η? for n = 1000 and for different values of a = n
N when q = 1

(left) and different values of q when a = 0.01 (right).

I When a decreases, that is N >> n, the variance of our heritability
estimator increases.

I The presence of null components (q < 1) does not influence the
estimations.
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Variable selection

Variable selection

Step 1: Empirical correlation computation (SIS, Fan & Lv
(2008)) . We keep the columns of Z which are the most correlated
to Y . The reduced matrix is denoted Zred .

Step 2: The LASSO criterion. We minimize with respect to u the
criterion:

Critλ(u) = ‖Y − Zredu‖22 + λ‖u‖1

+ stability selection (Meinshausen & Buhlmann, 2010).
Step 3: Bootstrap method to compute confidence intervals.

I R Package EstHer: Variable selection + Heritability Estimation
+ Computation of standard errors
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Variable selection

Choice of the threshold in the stability selection step
A choice of threshold → a set of selected variables, an estimated value of η?
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Figure: Absolute difference |η? − η̂| for thresholds from 0.6 to 0.9.

I 100 causal SNPs: a range of thresholds (0.7-0.85) provides a good
estimation for heritability (optimal threshold: 0.78)

I 10000 causal SNPs: no optimal threshold.
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Variable selection

First results of the variable selection method

100 causal SNPs 10000 causal SNPs
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Figure: Estimation of η? using our variable selection method with threshold 0.78
and using no variable selection (n = 2000,N = 100000).

I For 100 causal SNPs, selecting variables reduces substantially the variance.
I For 10000 causal SNPs, selecting variables leads to underestimate η?.
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Variable selection

Influence of the threshold in the stability selection
η? = 0.4 η? = 0.5 η? = 0.6

100 causal
SNPs
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Figure: Heritability estimations with 95% CI for thresholds between 0.7 and 0.85.

I 100 causal SNPs: two close thresholds provide similar estimations.
I 10000 causal SNPs: small change in the threshold → very different

estimations.
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Variable selection

A criterion to decide whether to apply the variable
selection or not

Table: Mean value (and proportion) of the number of overlapping confidence
intervals for 16 thresholds from 0.7 to 0.85.

η? 100 causal SNPs 1000 causal SNPs 10000 causal SNPs
0.4 12.2 (0.76) 6.6 (0.41) 6.9 (0.43)
0.5 14.9 (0.93) 6.6 (0.41) 6.3 (0.39)
0.6 16 (1) 7.8 (0.48) 7.2 (0.45)

I Criterion: If the mean proportion of overlapping thresholds > 0.6
→ variable selection.
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Variable selection

Application of the criterion

100 causal SNPs 1000 causal SNPs 10000 causal SNPs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

criterion selection no selection

 


0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

criterion selection no selection







0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

criterion selection no selection







I Small number of causal SNPs: reduction of standard errors
I High number of causal SNPs: behaves like HiLMM (no selection).
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Application

Application to brain volume data
Collaboration with T.Bourgeron’s GHFC team (Institut Pasteur)

Data from the IMAGEN project: volume of the different regions of the
brain from ∼2000 adolescents in Europe.
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Figure: Different regions of the brain (Toro et al, 2014) and the estimation of
heritability for these different regions’ volumes.
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Comparison

BSLMM (Zhou et al, 2013): Bayesian method which can adapt to
sparsity.

Computational times
100 causal SNPs 10000 causal SNPs (in seconds)
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I Convergence issues when using the default parameters in BSLMM.
I EstHer faster than BSLMM.
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