# Rotatable random sequences in local fields

#### Steven N. Evans

U.C. Berkeley

October, 2017



A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Daniel Raban, U.C. Berkeley

・ロト ・日子・ ・ヨト・

Recall that the linear isometries of  $\mathbb{R}^n$  are given by matrices  $U \in O(n, \mathbb{R})$  (i.e.  $U^{\top}U = UU^{\top} = I$ ).

# Definition

A real random vector  $\xi = (\xi_1, \dots, \xi_n)$  is rotatable if  $U\xi \stackrel{d}{=} \xi$  for all  $U \in O(n, \mathbb{R})$  (i.e. the distribution of  $\xi$  is spherically symmetric).

# Theorem (Maxwell)

Let  $\xi_1, \ldots, \xi_n$ ,  $n \ge 2$ , be i.i.d. real random variables. Then  $(\xi_1, \ldots, \xi_n)$  is rotatable if and only if the  $\xi_k$  are centered Gaussian.

# Theorem (Maxwell, Borel)

For each  $n \in \mathbb{N}$ , let the random vector  $(\xi_{n1}, \ldots, \xi_{nn})$  be uniform on the unit sphere in  $\mathbb{R}^n$ , and let  $\eta_1, \eta_2, \ldots$  be i.i.d. standard normal random variables. Then, for each  $k \in \mathbb{N}$ ,

$$\lim_{n\to\infty} \|\mathcal{L}(\sqrt{n}(\xi_{n1},\ldots,\xi_{nk})) - \mathcal{L}(\eta_1,\ldots,\eta_k)\|_{\mathrm{TV}} = 0.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A real random infinite sequence  $\xi = (\xi_1, \xi_2, ...)$  is rotatable if  $(\xi_1, ..., \xi_n)$  is rotatable for all  $n \in \mathbb{N}$ .

# Theorem (Freedman)

A real random infinite sequence  $\xi = (\xi_1, \xi_2, ...)$  is rotatable if and only if  $\xi_j = \sigma \eta_j$  a.s. for all  $j \in \mathbb{N}$  for some i.i.d. standard normal random variables  $\eta_1, \eta_2, ...$  (possibly defined on an extension of the original probability space) and an a.s. unique nonnegative random variable  $\sigma$  that is independent of  $\eta_1, \eta_2, ...$ 

(日) (同) (三) (

- Fix a positive prime p.
- We can write any non-zero rational number  $r \in \mathbb{Q} \setminus \{0\}$  uniquely as  $r = p^s(a/b)$ , where a and b are not divisible by p. Set  $|r| := p^{-s}$  and |0| := 0.
- The valuation map  $|\cdot|$  has the properties:

$$\begin{aligned} |x| &= 0 \iff x = 0\\ |xy| &= |x||y|\\ |x+y| &\leq |x| \lor |y| \end{aligned}$$

- The map  $(x,y) \mapsto |x-y|$  defines a metric on  $\mathbb{Q}$ .
- We denote the completion of  $\mathbb{Q}$  in this metric by  $\mathbb{Q}_p$ .
- The field operations on  $\mathbb{Q}$  extend continuously to make  $\mathbb{Q}_p$  a topological field called the *p*-adic numbers.
- The map  $|\cdot|$  also extends continuously.

<ロト <問と < 注と < 注)

- The closed unit ball around 0, Z<sub>p</sub> := {x ∈ Q<sub>p</sub> : |x| ≤ 1} (= the closure in Q<sub>p</sub> of the integers Z), is a ring called the *p*-adic integers.
- As  $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x| < p\}$ , the set  $\mathbb{Z}_p$  is also open.
- Any ball around 0 is of the form  $\{x \in \mathbb{Q}_p : |x| \le p^{-k}\} = p^k \mathbb{Z}_p$  for some integer k.
- Such a ball is the closure of the rational numbers divisible by  $p^k$  and is a  $\mathbb{Z}_p$ -module (in particular, an additive subgroup of  $\mathbb{Q}_p$ ).
- Arbitrary balls are translates (cosets) of these closed and open subgroups.
- As the topology of  $\mathbb{Q}_p$  has a base of closed and open sets,  $\mathbb{Q}_p$  is totally disconnected.
- As these balls are compact,  $\mathbb{Q}_p$  is locally compact.



・ロト ・回ト ・ヨト

A local field is any locally compact, non-discrete field other than  $\mathbb R$  or  $\mathbb C$ .

### Theorem

A local field is totally disconnected, and is either a finite algebraic extension of the field of p-adic numbers or a finite algebraic extension of the p-series field (:= the field of formal Laurent series with coefficients drawn from the finite field with p elements).

- Let  $\mathcal{K}$  be a local field.
- There is a valuation map  $|\cdot|: \mathcal{K} \to \{q^k : k \in \mathbb{Z}\} \cup \{0\}$ , where  $q = p^c$  for some prime p and  $c \in \mathbb{N}$ , such that

$$\begin{aligned} |x| &= 0 \iff x = 0\\ |xy| &= |x||y|\\ |x+y| &\leq |x| \lor |y| \end{aligned}$$

- The metric  $(x,y) \mapsto |x-y|$  induces the topology on  $\mathcal{K}$ .
- The ring of integers  $\mathcal{D} := \{x \in \mathcal{K} : \|x\| \le 1\}$  is a compact, open ring.
- Fix  $\rho \in \mathcal{K}$  with  $|\rho| = q^{-1}$ .
- All balls are of the form  $x + \rho^k \mathcal{D}$  for  $x \in \mathcal{K}$  and  $k \in \mathbb{Z}$ .

For 
$$x = (x_1, ..., x_n) \in \mathcal{K}^n$$
 set  $||x|| := \bigvee_{i=1}^n |x_i|$ .

#### Definition

Say that the vectors  $x_1 = (x_{11}, \ldots, x_{1n}), \ldots, x_k = (x_{k1}, \ldots, x_{kn})$  are orthogonal if

$$\left\|\sum_{j=1}^{k} \alpha_j x_j\right\| = \bigvee_{j=1}^{k} |\alpha_j| \|x_j\|$$

for all  $\alpha_1, \ldots, \alpha_k \in \mathcal{K}$ .

# Definition

Say that the vectors  $x_1 = (x_{11}, \ldots, x_{1n}), \ldots, x_k = (x_{k1}, \ldots, x_{kn})$  are orthonormal if they are orthogonal and  $||x_j|| = 1$  for all j.

・ロト ・四ト ・ヨト ・ヨト

### Theorem

The following are equivalent for an  $n \times n$  matrix U with entries in  $\mathcal{K}$ .

- ||Ux|| = ||x|| for all  $x \in \mathcal{K}^n$ ,
- the columns of U are orthonormal,
- the rows of U are orthonormal,
- U is invertible and the entries of U and  $U^{-1}$  belong to  $\mathcal{D}$  (i.e.  $M \in \operatorname{GL}(n, \mathcal{D})$ ),

• the entries of U belong to  $\mathcal{D}$  and  $|\det(U)| = 1$ .

- ullet There is a unique Borel measure  $\lambda$  on  ${\cal K}$  such that
  - $\lambda(x+A) = \lambda(A)$  for  $x \in \mathcal{K}$  and  $A \in \mathcal{B}(\mathcal{K})$ ,
  - $\lambda(xA) = |x|\lambda(A)$  for  $x \in \mathcal{K}$  and  $A \in \mathcal{B}(\mathcal{K})$ ,
  - $\lambda(\mathcal{D}) = 1.$

ヘロト ヘロト ヘヨト ヘ

A  ${\mathcal K} ext{-valued}$  random variable  $\eta$  is  ${\mathcal K} ext{-}\operatorname{Gaussian}$  if either  $\eta=0$  a.s. or for some  $k\in{\mathbb Z}$ 

$$\mathbb{P}\{\eta \in A\} = \frac{\lambda(A \cap \rho^k \mathcal{D})}{\lambda(\rho^k \mathcal{D})}.$$

Say that  $\eta$  is standard  $\mathcal{K}$ -Gaussian if

$$\mathbb{P}\{\eta \in A\} = \lambda(A \cap \mathcal{D}).$$

Steven N. Evans (U.C. Berkeley) Rotatable random sequences in local fields Oc

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# What???

We will see why this is the "right" analogue in a moment, but note the following.

• A standard (real) Gaussian has distribution

$$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)\,dx.$$

- Any group character for  $\mathbb R$  is of the form  $x\mapsto \exp(izx), \ z\in \mathbb R.$
- A standard (real) Gaussian has Fourier transform

$$z \mapsto \int_{\mathbb{R}} \exp(izx) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \, dx = \exp\left(-\frac{z^2}{2}\right).$$

 $\bullet$  A standard  $\mathcal{K}\mbox{-}\mathsf{Gaussian}$  has distribution

$$\mathbb{1}_{\mathcal{D}}(x)\,\lambda(dx).$$

- Any group character for  $\mathcal{K}$  is of the form  $x \mapsto \chi(zx)$ ,  $z \in \mathbb{K}$ , where  $\chi$  is some fixed character that is 1 on  $\mathcal{D}$  but not constant on  $\rho^{-1}\mathcal{D}$
- $\bullet$  A standard  $\mathcal K\text{-}\mathsf{Gaussian}$  has Fourier transform

$$z\mapsto \int_{\mathcal{D}}\chi(zx)\mathbb{1}_{\mathcal{D}}(x)\,\lambda(dx)=\mathbb{1}_{\mathcal{D}}(z).$$

A  $\mathcal{K}$ -valued random vector  $\xi = (\xi_1, \dots, \xi_n)$  is rotatable if  $U\xi \stackrel{d}{=} \xi$  for all  $U \in GL(n, \mathcal{D})$ .

# Theorem (E.)

Let  $\xi_1, \ldots, \xi_n$ ,  $n \ge 2$ , be i.i.d.  $\mathcal{K}$ -valued random variables. Then  $(\xi_1, \ldots, \xi_n)$  is rotatable if and only if the  $\xi_k$  are  $\mathcal{K}$ -Gaussian.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Corollary (E. & Raban)

The following are equivalent:

- $\nu$  is the unique probability measure supported on  $\{x \in \mathcal{K}^n : ||x|| = 1\}$  such that  $\nu(UA) = \nu(A)$  for all  $U \in GL(n, \mathcal{D})$  and  $A \in \mathcal{B}(\mathcal{K}^n)$ ,
- $\nu$  is the distribution of  $\tau(\eta)^{-1}\eta$ , where  $\eta = (\eta_1, \dots, \eta_n)$  with  $\eta_1, \dots, \eta_n$  i.i.d. standard  $\mathcal{K}$ -Gaussian random variables and  $\tau : \mathcal{K}^n \to \{\rho^k : k \in \mathbb{Z}\} \cup \{0\}$  is defined by

$$F(x) := \begin{cases} \rho^k, & \text{if } \|x\| = q^{-k}, \\ 0, & \text{if } \|x\| = 0. \end{cases}$$

・ロト ・回ト ・ヨト ・

17 / 24

•  $\nu$  is the conditional distribution of  $\eta$  given the event { $\|\eta\| = 1$ }, where  $\eta = (\eta_1, \dots, \eta_n)$  with  $\eta_1, \dots, \eta_n$  i.i.d. standard  $\mathcal{K}$ -Gaussian random variables.

# Theorem (E. & Raban)

For each  $n \in \mathbb{N}$ , let the random vector  $(\xi_{n1}, \ldots, \xi_{nn})$  be uniform on  $\{x \in \mathcal{K}^n : ||x|| = 1\}$ and let  $\eta_1, \eta_2, \ldots$  be i.i.d. standard  $\mathcal{K}$ -Gaussian random variables. Then, for  $1 \leq k \leq n$ ,

$$\|\mathcal{L}(\xi_{n1},\ldots,\xi_{nk})-\mathcal{L}(\eta_1,\ldots,\eta_k)\|_{\mathrm{TV}}=\frac{q^{-n}(1-q^{-k})}{1-q^{-n}}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A  $\mathcal{K}$ -valued random infinite sequence  $\xi = (\xi_1, \xi_2, ...)$  is rotatable if  $(\xi_1, ..., \xi_n)$  is rotatable for all  $n \in \mathbb{N}$ .

# Theorem (E. & Raban)

A  $\mathcal{K}$ -valued random infinite sequence  $\xi = (\xi_1, \xi_2, ...)$  is rotatable if and only if  $\xi_j = \sigma \eta_j$ a.s. for all  $j \in \mathbb{N}$  for some i.i.d. standard  $\mathcal{K}$ -Gaussian random variables  $\eta_1, \eta_2, ...$ (possible defined on an extension of the original probability space) and a random variable  $\sigma$  that is independent of  $\eta_1, \eta_2, ...$ , takes values in  $\{\rho^k : k \in \mathbb{Z}\} \cup \{0\}$ , and is given by

$$\sigma := \begin{cases} \rho^k, & \text{if } \sup_j |\xi_j| = q^{-k}, \\ 0, & \text{if } \sup_j |\xi_j| = 0. \end{cases}$$

(In particular,  $\sup_j |\xi_j|$  is almost surely finite for any rotatable random infinite sequence  $\xi = (\xi_1, \xi_2, ...)$ .)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

19 / 24

# Proof

• Put

$$\sigma_n := \tau(\xi_1, \dots, \xi_n) = \begin{cases} \rho^k, & \text{if } \|(\xi_1, \dots, \xi_n)\| = q^{-k}, \\ 0, & \text{if } \|(\xi_1, \dots, \xi_n)\| = 0. \end{cases}$$

• Let  $(\tilde{\xi}_{n1},\ldots,\tilde{\xi}_{nn})$  be uniform on  $\{x\in\mathcal{K}^n:\|x\|=1\}$  and independent of  $\sigma_n$ .

- Observe that  $(\xi_1,\ldots,\xi_n)\stackrel{d}{=}\sigma_n(\tilde{\xi}_{n1},\ldots,\tilde{\xi}_{nn})$  be rotatability.
- Let 
   *˜*<sub>1</sub>, *˜*<sub>2</sub>,... be i.i.d. standard *K*-Gaussian random variables independent of
   *σ*<sub>1</sub>, *σ*<sub>2</sub>,....
- Note that

$$\begin{split} \|\mathcal{L}(\xi_1,\ldots,\xi_k) - \mathcal{L}(\sigma_n(\tilde{\eta}_1,\ldots,\tilde{\eta}_k))\|_{\mathrm{TV}} \\ &= \|\mathcal{L}(\sigma_n(\tilde{\xi}_{n1},\ldots,\tilde{\xi}_{nk})) - \mathcal{L}(\sigma_n(\tilde{\eta}_1,\ldots,\tilde{\eta}_k))\|_{\mathrm{TV}} \\ &\leq \|\mathcal{L}(\tilde{\xi}_{n1},\ldots,\tilde{\xi}_{nk}) - \mathcal{L}(\tilde{\eta}_1,\ldots,\tilde{\eta}_k)\|_{\mathrm{TV}} \\ &\to 0 \quad \text{as } n \to \infty. \end{split}$$

• Thus,  $\sigma_n \tilde{\eta} \stackrel{d}{\to} \xi$ .

# Proof - continued

Now  $|\sigma_n| = ||(\xi_1, \dots, \xi_n)|| = \bigvee_{i=1}^n |\xi_i|$  is increasing with n and  $0 = \inf_{m} \mathbb{P}\{|\xi_1| > q^m\}$  $= \inf \lim \mathbb{P}\{|\sigma_n \tilde{\eta}_1| > q^m\}$  $= \inf_{m} \sup_{n} \mathbb{P}\{|\sigma_n \tilde{\eta}_1| > q^m\}$  $= \inf_{m} \sup_{n} \sum_{\ell=0}^{\infty} \mathbb{P}\{|\sigma_{n}| > q^{m+\ell}\} \mathbb{P}\{|\tilde{\eta}_{1}| = q^{-\ell}\}$  $=\sum_{n=0}^{\infty}\inf_{m}\sup_{n}\mathbb{P}\{|\sigma_{n}|>q^{m+\ell}\}\mathbb{P}\{|\tilde{\eta}_{1}|=q^{-\ell}\}$  $= \sum_{\ell=0}^{\infty} \inf_{m} \mathbb{P}\{\sup_{n} |\sigma_{n}| > q^{m+\ell}\} \mathbb{P}\{|\tilde{\eta}_{1}| = q^{-\ell}\}$  $= \mathbb{P}\{\sup |\sigma_n| = \infty\}$ 

so that  $\sigma_n \stackrel{a.s.}{\to} \sigma$  for some random variable  $\sigma$  taking values in  $\{\rho^k : k \in \mathbb{Z}\} \cup \{0\}$ .

- Therefore,  $\xi \stackrel{d}{=} \sigma \tilde{\eta}$ .
- The "transfer theorem" gives  $\xi = \breve{\sigma}\eta$  with  $(\breve{\sigma}, \eta) \stackrel{d}{=} (\sigma, \tilde{\eta})$ .
- It remains to observe that

$$\sigma| = \sup_{n} \|(\xi_1, \dots, \xi_n)\|$$
$$= \sup_{n} \|\check{\sigma}(\eta_1, \dots, \eta_n)\|$$
$$= \sup_{n} |\check{\sigma}|\|(\eta_1, \dots, \eta_n)\|$$
$$= |\check{\sigma}| \sup_{n} \|(\eta_1, \dots, \eta_n)\|$$
$$= |\check{\sigma}|,$$

so that  $\breve{\sigma} = \sigma$ .

# Theorem (Schoenberg)

Let  $f : \mathbb{R}_+ \to \mathbb{R}$  be a continuous function with f(0) = 1. For  $n \in \mathbb{N}$  define  $f_n : \mathbb{R}^n \to \mathbb{R}$  by

$$f_n(x_1,...,x_n) := f(x_1^2 + \dots + x_n^2).$$

Then  $f_n$  is nonnegative definite for every  $n \in \mathbb{N}$  if and only if f is completely monotone.

# Theorem (E. & Raban)

Let  $f : \{q^k : k \in \mathbb{Z}\} \cup \{0\} \to \mathbb{R}$  be such that  $\lim_{k\to\infty} f(q^{-k}) = f(0) = 1$ . For  $n \in \mathbb{N}$  define  $f_n : \mathcal{K}^n \to \mathbb{R}$  by

$$f_n(x_1,\ldots,x_n):=f(|x_1|\vee\cdots\vee|x_n|).$$

Then  $f_n$  is nonnegative definite for every  $n \in \mathbb{N}$  if and only if f is nonnegative and nonincreasing.

・ロト ・四ト ・ヨト ・ヨト

#### Lemma

Fix two Borel spaces S and T, a measurable mapping  $f: S \to T$ , and random elements  $\alpha$  in S and  $\beta$  in T with  $\beta \stackrel{d}{=} f(\alpha)$ . Then there exists (possibly on an extension of the original probability space) a random element  $\hat{\alpha} \stackrel{d}{=} \alpha$  in S with  $\beta = f(\hat{\alpha})$  a.s.

24 / 24