Rotatable random sequences in local fields

Steven N. Evans

U.C. Berkeley

October, 2017

Collaborator

Daniel Raban, U.C. Berkeley

Rotatable real random vectors

Recall that the linear isometries of \mathbb{R}^{n} are given by matrices $U \in O(n, \mathbb{R})$ (i.e. $\left.U^{\top} U=U U^{\top}=I\right)$.

Definition

A real random vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is rotatable if $U \xi \stackrel{d}{=} \xi$ for all $U \in O(n, \mathbb{R})$ (i.e. the distribution of ξ is spherically symmetric).

Theorem (Maxwell)

Let $\xi_{1}, \ldots, \xi_{n}, n \geq 2$, be i.i.d. real random variables. Then $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is rotatable if and only if the ξ_{k} are centered Gaussian.

Asymptotics of uniforms on the unit sphere

Theorem (Maxwell, Borel)

For each $n \in \mathbb{N}$, let the random vector $\left(\xi_{n 1}, \ldots, \xi_{n n}\right)$ be uniform on the unit sphere in \mathbb{R}^{n}, and let $\eta_{1}, \eta_{2}, \ldots$ be i.i.d. standard normal random variables. Then, for each $k \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty}\left\|\mathcal{L}\left(\sqrt{n}\left(\xi_{n 1}, \ldots, \xi_{n k}\right)\right)-\mathcal{L}\left(\eta_{1}, \ldots, \eta_{k}\right)\right\|_{\mathrm{TV}}=0
$$

Rotatable real random sequences

Definition

A real random infinite sequence $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$ is rotatable if $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is rotatable for all $n \in \mathbb{N}$.

Theorem (Freedman)

A real random infinite sequence $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$ is rotatable if and only if $\xi_{j}=\sigma \eta_{j}$ a.s. for all $j \in \mathbb{N}$ for some i.i.d. standard normal random variables $\eta_{1}, \eta_{2}, \ldots$ (possibly defined on an extension of the original probability space) and an a.s. unique nonnegative random variable σ that is independent of $\eta_{1}, \eta_{2}, \ldots$..

p-adic numbers

Definition

- Fix a positive prime p.
- We can write any non-zero rational number $r \in \mathbb{Q} \backslash\{0\}$ uniquely as $r=p^{s}(a / b)$, where a and b are not divisible by p. Set $|r|:=p^{-s}$ and $|0|:=0$.
- The valuation map $|\cdot|$ has the properties:

$$
\begin{aligned}
& |x|=0 \Longleftrightarrow x=0 \\
& |x y|=|x||y| \\
& |x+y| \leq|x| \vee|y|
\end{aligned}
$$

- The map $(x, y) \mapsto|x-y|$ defines a metric on \mathbb{Q}.
- We denote the completion of \mathbb{Q} in this metric by \mathbb{Q}_{p}.
- The field operations on \mathbb{Q} extend continuously to make \mathbb{Q}_{p} a topological field called the p-adic numbers.
- The map | \mid also extends continuously.

Properties of \mathbb{Q}_{p}

- The closed unit ball around $0, \mathbb{Z}_{p}:=\left\{x \in \mathbb{Q}_{p}:|x| \leq 1\right\}$ ($=$ the closure in \mathbb{Q}_{p} of the integers \mathbb{Z}), is a ring called the p-adic integers.
- As $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|<p\right\}$, the set \mathbb{Z}_{p} is also open.
- Any ball around 0 is of the form $\left\{x \in \mathbb{Q}_{p}:|x| \leq p^{-k}\right\}=p^{k} \mathbb{Z}_{p}$ for some integer k.
- Such a ball is the closure of the rational numbers divisible by p^{k} and is a \mathbb{Z}_{p}-module (in particular, an additive subgroup of \mathbb{Q}_{p}).
- Arbitrary balls are translates (cosets) of these closed and open subgroups.
- As the topology of \mathbb{Q}_{p} has a base of closed and open sets, \mathbb{Q}_{p} is totally disconnected.
- As these balls are compact, \mathbb{Q}_{p} is locally compact.

A picture of \mathbb{Z}_{2}

Local fields

Definition

A local field is any locally compact, non-discrete field other than \mathbb{R} or \mathbb{C}.

Theorem

A local field is totally disconnected, and is either a finite algebraic extension of the field of p-adic numbers or a finite algebraic extension of the p-series field (:= the field of formal Laurent series with coefficients drawn from the finite field with p elements).

Valuations

- Let \mathcal{K} be a local field.
- There is a valuation map $|\cdot|: \mathcal{K} \rightarrow\left\{q^{k}: k \in \mathbb{Z}\right\} \cup\{0\}$, where $q=p^{c}$ for some prime p and $c \in \mathbb{N}$, such that

$$
\begin{aligned}
& |x|=0 \Longleftrightarrow x=0 \\
& |x y|=|x||y| \\
& |x+y| \leq|x| \vee|y|
\end{aligned}
$$

- The metric $(x, y) \mapsto|x-y|$ induces the topology on \mathcal{K}.
- The ring of integers $\mathcal{D}:=\{x \in \mathcal{K}:\|x\| \leq 1\}$ is a compact, open ring.
- Fix $\rho \in \mathcal{K}$ with $|\rho|=q^{-1}$.
- All balls are of the form $x+\rho^{k} \mathcal{D}$ for $x \in \mathcal{K}$ and $k \in \mathbb{Z}$.

Norms and orthogonality

Definition

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{K}^{n}$ set $\|x\|:=\bigvee_{i=1}^{n}\left|x_{i}\right|$.

Definition

Say that the vectors $x_{1}=\left(x_{11}, \ldots, x_{1 n}\right), \ldots, x_{k}=\left(x_{k 1}, \ldots, x_{k n}\right)$ are orthogonal if

$$
\left\|\sum_{j=1}^{k} \alpha_{j} x_{j}\right\|=\bigvee_{j=1}^{k}\left|\alpha_{j}\right|\left\|x_{j}\right\|
$$

for all $\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{K}$.

Definition

Say that the vectors $x_{1}=\left(x_{11}, \ldots, x_{1 n}\right), \ldots, x_{k}=\left(x_{k 1}, \ldots, x_{k n}\right)$ are orthonormal if they are orthogonal and $\left\|x_{j}\right\|=1$ for all j.

Linear isometries

Theorem

The following are equivalent for an $n \times n$ matrix U with entries in \mathcal{K}.

- $\|U x\|=\|x\|$ for all $x \in \mathcal{K}^{n}$,
- the columns of U are orthonormal,
- the rows of U are orthonormal,
- U is invertible and the entries of U and U^{-1} belong to \mathcal{D} (i.e. $M \in \operatorname{GL}(n, \mathcal{D})$),
- the entries of U belong to \mathcal{D} and $|\operatorname{det}(U)|=1$.

Haar measure

- There is a unique Borel measure λ on \mathcal{K} such that
- $\lambda(x+A)=\lambda(A)$ for $x \in \mathcal{K}$ and $A \in \mathcal{B}(\mathcal{K})$,
- $\lambda(x A)=|x| \lambda(A)$ for $x \in \mathcal{K}$ and $A \in \mathcal{B}(\mathcal{K})$,
- $\lambda(\mathcal{D})=1$.

Local field Gaussian random variables

Definition

A \mathcal{K}-valued random variable η is \mathcal{K}-Gaussian if either $\eta=0$ a.s. or for some $k \in \mathbb{Z}$

$$
\mathbb{P}\{\eta \in A\}=\frac{\lambda\left(A \cap \rho^{k} \mathcal{D}\right)}{\lambda\left(\rho^{k} \mathcal{D}\right)}
$$

Say that η is standard \mathcal{K}-Gaussian if

$$
\mathbb{P}\{\eta \in A\}=\lambda(A \cap \mathcal{D})
$$

What???

We will see why this is the "right" analogue in a moment, but note the following.

- A standard (real) Gaussian has distribution

$$
\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x
$$

- Any group character for \mathbb{R} is of the form $x \mapsto \exp (i z x), z \in \mathbb{R}$.
- A standard (real) Gaussian has Fourier transform

$$
z \mapsto \int_{\mathbb{R}} \exp (i z x) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x=\exp \left(-\frac{z^{2}}{2}\right)
$$

- A standard \mathcal{K}-Gaussian has distribution

$$
\mathbb{1}_{\mathcal{D}}(x) \lambda(d x)
$$

- Any group character for \mathcal{K} is of the form $x \mapsto \chi(z x), z \in \mathbb{K}$, where χ is some fixed character that is 1 on \mathcal{D} but not constant on $\rho^{-1} \mathcal{D}$
- A standard \mathcal{K}-Gaussian has Fourier transform

$$
z \mapsto \int_{\mathcal{D}} \chi(z x) \mathbb{1}_{\mathcal{D}}(x) \lambda(d x)=\mathbb{1}_{\mathcal{D}}(z)
$$

Rotatable local field valued random vectors

Definition

A \mathcal{K}-valued random vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is rotatable if $U \xi \stackrel{d}{=} \xi$ for all $U \in \operatorname{GL}(n, \mathcal{D})$.

Theorem (E.)

Let $\xi_{1}, \ldots, \xi_{n}, n \geq 2$, be i.i.d. \mathcal{K}-valued random variables. Then $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is rotatable if and only if the ξ_{k} are \mathcal{K}-Gaussian.

Uniform distribution on the "unit sphere"

Corollary (E. \& Raban)

The following are equivalent:

- ν is the unique probability measure supported on $\left\{x \in \mathcal{K}^{n}:\|x\|=1\right\}$ such that $\nu(U A)=\nu(A)$ for all $U \in \mathrm{GL}(n, \mathcal{D})$ and $A \in \mathcal{B}\left(\mathcal{K}^{n}\right)$,
- ν is the distribution of $\tau(\eta)^{-1} \eta$, where $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ with $\eta_{1}, \ldots \eta_{n}$ i.i.d. standard \mathcal{K}-Gaussian random variables and $\tau: \mathcal{K}^{n} \rightarrow\left\{\rho^{k}: k \in \mathbb{Z}\right\} \cup\{0\}$ is defined by

$$
\tau(x):= \begin{cases}\rho^{k}, & \text { if }\|x\|=q^{-k} \\ 0, & \text { if }\|x\|=0\end{cases}
$$

- ν is the conditional distribution of η given the event $\{\|\eta\|=1\}$, where $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ with $\eta_{1}, \ldots \eta_{n}$ i.i.d. standard \mathcal{K}-Gaussian random variables.

Asymptotics of uniforms on the "unit sphere"

Theorem (E. \& Raban)

For each $n \in \mathbb{N}$, let the random vector $\left(\xi_{n 1}, \ldots, \xi_{n n}\right)$ be uniform on $\left\{x \in \mathcal{K}^{n}:\|x\|=1\right\}$ and let $\eta_{1}, \eta_{2}, \ldots$ be i.i.d. standard \mathcal{K}-Gaussian random variables. Then, for $1 \leq k \leq n$,

$$
\left\|\mathcal{L}\left(\xi_{n 1}, \ldots, \xi_{n k}\right)-\mathcal{L}\left(\eta_{1}, \ldots, \eta_{k}\right)\right\|_{\mathrm{TV}}=\frac{q^{-n}\left(1-q^{-k}\right)}{1-q^{-n}} .
$$

Rotatable local field valued random sequences

Definition

A \mathcal{K}-valued random infinite sequence $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$ is rotatable if $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is rotatable for all $n \in \mathbb{N}$.

Theorem (E. \& Raban)

A \mathcal{K}-valued random infinite sequence $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$ is rotatable if and only if $\xi_{j}=\sigma \eta_{j}$ a.s. for all $j \in \mathbb{N}$ for some i.i.d. standard \mathcal{K}-Gaussian random variables $\eta_{1}, \eta_{2}, \ldots$ (possible defined on an extension of the original probability space) and a random variable σ that is independent of $\eta_{1}, \eta_{2}, \ldots$, takes values in $\left\{\rho^{k}: k \in \mathbb{Z}\right\} \cup\{0\}$, and is given by

$$
\sigma:= \begin{cases}\rho^{k}, & \text { if } \sup _{j}\left|\xi_{j}\right|=q^{-k} \\ 0, & \text { if } \sup _{j}\left|\xi_{j}\right|=0\end{cases}
$$

(In particular, $\sup _{j}\left|\xi_{j}\right|$ is almost surely finite for any rotatable random infinite sequence $\left.\xi=\left(\xi_{1}, \xi_{2}, \ldots\right).\right)$

Proof

- Put

$$
\sigma_{n}:=\tau\left(\xi_{1}, \ldots, \xi_{n}\right)= \begin{cases}\rho^{k}, & \text { if }\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|=q^{-k} \\ 0, & \text { if }\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|=0\end{cases}
$$

- Let $\left(\tilde{\xi}_{n 1}, \ldots, \tilde{\xi}_{n n}\right)$ be uniform on $\left\{x \in \mathcal{K}^{n}:\|x\|=1\right\}$ and independent of σ_{n}.
- Observe that $\left(\xi_{1}, \ldots, \xi_{n}\right) \stackrel{d}{=} \sigma_{n}\left(\tilde{\xi}_{n 1}, \ldots, \tilde{\xi}_{n n}\right)$ be rotatability.
- Let $\tilde{\eta}_{1}, \tilde{\eta}_{2}, \ldots$ be i.i.d. standard \mathcal{K}-Gaussian random variables independent of $\sigma_{1}, \sigma_{2}, \ldots$.
- Note that

$$
\begin{aligned}
& \left\|\mathcal{L}\left(\xi_{1}, \ldots, \xi_{k}\right)-\mathcal{L}\left(\sigma_{n}\left(\tilde{\eta}_{1}, \ldots, \tilde{\eta}_{k}\right)\right)\right\|_{\mathrm{TV}} \\
& \left.\quad=\| \mathcal{L}\left(\sigma_{n} \tilde{\xi}_{n 1}, \ldots, \tilde{\xi}_{n k}\right)\right)-\mathcal{L}\left(\sigma_{n}\left(\tilde{\eta}_{1}, \ldots, \tilde{\eta}_{k}\right)\right) \|_{\mathrm{TV}} \\
& \quad \leq\left\|\mathcal{L}\left(\tilde{\xi}_{n 1}, \ldots, \tilde{\xi}_{n k}\right)-\mathcal{L}\left(\tilde{\eta}_{1}, \ldots, \tilde{\eta}_{k}\right)\right\|_{\mathrm{TV}} \\
& \quad \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

- Thus, $\sigma_{n} \tilde{\eta} \xrightarrow{d} \xi$.

Proof - continued

Now $\left|\sigma_{n}\right|=\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|=\bigvee_{i=1}^{n}\left|\xi_{i}\right|$ is increasing with n and

$$
\begin{aligned}
0 & =\inf _{m} \mathbb{P}\left\{\left|\xi_{1}\right|>q^{m}\right\} \\
& =\inf _{m} \lim _{n} \mathbb{P}\left\{\left|\sigma_{n} \tilde{\eta}_{1}\right|>q^{m}\right\} \\
& =\inf _{m} \sup _{n} \mathbb{P}\left\{\left|\sigma_{n} \tilde{\eta}_{1}\right|>q^{m}\right\} \\
& =\inf _{m} \sup _{n} \sum_{\ell=0}^{\infty} \mathbb{P}\left\{\left|\sigma_{n}\right|>q^{m+\ell}\right\} \mathbb{P}\left\{\left|\tilde{\eta}_{1}\right|=q^{-\ell}\right\} \\
& =\sum_{\ell=0}^{\infty} \inf _{m} \sup _{n} \mathbb{P}\left\{\left|\sigma_{n}\right|>q^{m+\ell}\right\} \mathbb{P}\left\{\left|\tilde{\eta}_{1}\right|=q^{-\ell}\right\} \\
& =\sum_{\ell=0}^{\infty} \inf _{m} \mathbb{P}\left\{\sup _{n}\left|\sigma_{n}\right|>q^{m+\ell}\right\} \mathbb{P}\left\{\left|\tilde{\eta}_{1}\right|=q^{-\ell}\right\} \\
& =\mathbb{P}\left\{\sup _{n}\left|\sigma_{n}\right|=\infty\right\}
\end{aligned}
$$

so that $\sigma_{n} \xrightarrow{\text { a.s. }} \sigma$ for some random variable σ taking values in $\left\{\rho^{k}: k \in \mathbb{Z}\right\} \cup\{0\}$.

Proof - completed

- Therefore, $\xi \stackrel{d}{=} \sigma \tilde{\eta}$.
- The "transfer theorem" gives $\xi=\breve{\sigma} \eta$ with $(\breve{\sigma}, \eta) \stackrel{d}{=}(\sigma, \tilde{\eta})$.
- It remains to observe that

$$
\begin{aligned}
|\sigma| & =\sup _{n}\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\| \\
& =\sup _{n}\left\|\breve{\sigma}\left(\eta_{1}, \ldots, \eta_{n}\right)\right\| \\
& =\sup _{n}|\breve{\sigma}|\left\|\left(\eta_{1}, \ldots, \eta_{n}\right)\right\| \\
& =|\breve{\sigma}| \sup _{n}\left\|\left(\eta_{1}, \ldots, \eta_{n}\right)\right\| \\
& =|\breve{\sigma}|,
\end{aligned}
$$

so that $\breve{\sigma}=\sigma$.

Schoenberg's theorem

Theorem (Schoenberg)

Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a continuous function with $f(0)=1$. For $n \in \mathbb{N}$ define $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) .
$$

Then f_{n} is nonnegative definite for every $n \in \mathbb{N}$ if and only if f is completely monotone.

Theorem (E. \& Raban)

Let $f:\left\{q^{k}: k \in \mathbb{Z}\right\} \cup\{0\} \rightarrow \mathbb{R}$ be such that $\lim _{k \rightarrow \infty} f\left(q^{-k}\right)=f(0)=1$. For $n \in \mathbb{N}$ define $f_{n}: \mathcal{K}^{n} \rightarrow \mathbb{R}$ by

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right):=f\left(\left|x_{1}\right| \vee \cdots \vee\left|x_{n}\right|\right)
$$

Then f_{n} is nonnegative definite for every $n \in \mathbb{N}$ if and only if f is nonnegative and nonincreasing.

Reminder: transfer theorem / stochastic equations (Kallenberg)

Lemma

Fix two Borel spaces S and T, a measurable mapping $f: S \rightarrow T$, and random elements α in S and β in T with $\beta \stackrel{d}{=} f(\alpha)$. Then there exists (possibly on an extension of the original probability space) a random element $\hat{\alpha} \stackrel{d}{=} \alpha$ in S with $\beta=f(\hat{\alpha})$ a.s.

