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@ The Q-tensor is:
> isotropicis Q =0
= uniaxial if it has two equal eigenvalues
» biaxial otherwise

@ Ericksen’s theory (1991) for uniaxial Q-tensors which can be written as

Q(x) = s(x) (n(x) ®n(x) — %Id), seR,nes?

@ Oseen-Frank theory (1958) take s in the uniaxial representation to be a
fixed constant s,



Q-tensors: visualisation

@ One can visualise a Q-tensor as either a:

» parallelepiped whose axis are parallel with the eigenvectors of Q and whose
lengths are proportional to the eigenvalues of Q
oran

~ ellipsoid whose axis are parallel with the eigenvectors of Q and whose radii are
proportional to the eigenvalues of Q

@ Some Q-tensor fields in the two representations:
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Stationary states and energy minimization

@ Energy functional:

3
FLelQ f Z 60,,( )ZXU (x) + f8(Q(x)) dx

ij,k=1 an

with bulk term b
Cc 2
f8(Q) = - (a(T - T#)) r(@?) - gu(QS) +y (r@?)
=3

where Q(x) : Q — (M e R®3 M = M!, trM = 0} a Q-tensor (with Q c R3)

@ The set Qmin Where fg attains its minimums is:
> Forb # 0: A 2D manifold (s, (n(x) en(x)-1 Id) n € S2} homemorphic to RP?
» Forb=0:(anda>0): A 4D manifold {Zu 1 Q;Q; = 2} homeomorphic to S*.



Scalings and the role of b

Euler-Lagrange system of equations:
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Euler-Lagrange system of equations:

1 .
LAQ,'/ = —aQ,-,-—b (ijij - §tr026,-,-) +c (ter) Q,'j, ih,j=1,2,3

@ Scalings Qu, = 1Q(%) give:

a

c
2

2
ﬂ212 Qﬁ,,uIQ/l,ul

b 1
LAQu, = -—Quu - E[QZ - §|o|2/cf] +

just two independent variables, say L and b OR L and a.

@ In the whole space one has that the regime a — 0 is equivalentto b — oo
and a — oo is equivalentto b — 0.

@ One can consider a non-dimensionalisation suited for studying defect cores
(Mkadddem and Gartland, Virga and Kralj) in which a has the significance of
a reduced temperature.



Boundary conditions and Q-tensor versus director theory

o If we take boundary conditions Q(x), x € 99 taking values in the

minimisation set of the bulk, Qp, potential then we can consider the
minimisation problem:

min IVQ[?(x) dx
QeW1:2(Q;Qppin) Q
Q(x)=Qp(x),x€d

For Qmin = {s+ (n(x) ®n(x) - %Id) ,n € §2} we have [VQP? = 2s2|Vn|? so this
problem becomes

min 2st f IVnl?(x
new1.2(Q;s2)
n(x)=np x) Xxeo2

is really just about the director theory (but written using matrices!) and we
can compare the predictions of the director and the tensor theories.



Prototypical Point Defects in 2D



Half-integer defects in 2D domains:

director representation (  energy!)

w many 2z-times the director rotates as one goes along a full-circle.
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Half-integer defects in 2D domains:

Q-tensor representation( energy!)
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Figure: Q-tensor defect of index } (left) and —1 (right)

Thus the index one-half defects in the Q-tensor theory permit to “mollify” the
infinite energy core.



Half-integer defects in 2D domains:
Q-tensor representation allows for
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Figure: Y- (left) and Y (right) defects for of strength 1
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Ansatz and the reduction to an ODE system

@ Ansatz:

Y = u(r)\@(n@p) ®n(y) - %12) + v(r)\/g(eg ®e; - %I)

where n(¢) = (cos(k%),sin(k%),0).
@ Then the PDE system reduces to an ODE system, that is easier (though highly nontrivial!) to

analyse qualitatively:
2
—a% + §b2v+02(u2+v2) ,

—a? - _b?v+ (P + )

6

u(0) = 0, V'(0) = 0, u(R) = %g, V(R) = -
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u(0) = 0, V'(0) = 0, u(R) = %g, V(R) = -

@ The dependence on k the index of the solution is very weak.

@ Theterm b makes a significant difference: makes the system more coupled (for b # 0 as
opposed to b = 0) and changes the shape of the solutions.



The shape of solutions

The shape of the solutions depends strongly on the size of b with respect to the
other coefficients:
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Figure 1: Schematic graphs of u and v in different regimes of a®, b* and .

@ For the critical regime b? = 3a%¢? we have that v is a constant and the
system reduces to a single ODE for u.

@ For b? > 0 there exists a solution in the whole space but not for b? = 0!



The main question: stability

Given Y a symmetric solution as before, is the second variation non-negative?
This is physically important and also its failure often signals a symmetry
breaking....

102
2dt2|t 0
_ _ 2__ 2_R2 2 il 2/ p12 2
7fR2{2|VP| > PP = b?u(P Y)+ < 5 (|Y| P2 + 2|tr( YP)] )}dx.
(1)

LY](P) = f{ IV(Y + tP)P +fbulk(y+fp)__|VY| — fouik ( )}dX

where P € CZ(Bg(0), Sop).
Note that P has five degrees of freedom so one needs to find ways to carefully
“peel them out”



The stability story, the easy case: b? =0

Theorem (G. Di Fratta, J. Robbins, V. Slastikov, AZ, 2014)
Letb? =0, and let Y be given by

Y =u(r) \/E(n@p) ® n(yp) — %Ig) + v(r) \/g(eg ®e3 — %I)

with (u, v) the unique global minimiser of the reduced energy

&(u, v) f[ ((u + (V)2 + r—zuz)—g(u +v)+%(u2+v2)2}rdr

v(v —30?) rdr.

3L\/_ 0

Then for any index k and for any R € (0, ) the symmetric solution Y is the
unique global minimiser of the full Landau-de Gennes energy in H'(Bg; So).




The stability story, the trickier case: b? # 0

Theorem (R. Ignat, L. Nguyen, V.Slastikov, AZ, 2015, 2016)

Let a%, b2, ¢® > 0 be any fixed constants and k € Z \ {0, +1}. Any k-radially
symmetric critical point Y in the whole space is locally unstable, i.e. there is a
perturbation P € CZ°(R2,Sy), supported in a bounded disk Bg, such that the
second variation L[Y](P) < 0.

If k = £1 then there exist a solution (u, v) of the ODE system such that k-radially
symmetric Q-tensor Y is locally stable, i.e. the second variation L[Y](P) > 0 for
all P € H'(R2,So). Moreover, L[Y](P) = 0 if and only if P € {0, Y}2_,, i.e. the
kernel of the second variation coincides with translations of Y.




Beyond stability: symmetry breaking

The global minimiser for hedgehog boundary conditions (in 2D ), numerics:
Y. Hu, Y.Qu and P. Zhang On the disinclination lines of nematic liquid crystals



Two technical tools: | the suitable basis decomposition

Let {e;}3_, be the standard basis in R® and denote, for ¢ € [0, 27),
n = n(p) = (cos(&¢).sin(5¢),0), m = m(e) = (~sin(5¢),cos(4¢),0).

We endow the space Sy of Q-tensors with the scalar product Q - Q = tr(QQ) and
for any ¢ € [0, 2), we define the following orthonormal basis in Sy:

3 1
Ey= A2 1
0 \/;(93@)63 33),

1 1
E1:E1((,D): \/E(I’I@n—ilg),E2:E2(<p):$(n®m+m®n),
1 1
Ezs=—(e1®e3+e3®e€), Es = —(e0®e3+63865).
3 \/5(1 3 3® ), Eq @(2 )

Let
4

P(x) = Z wi(x)E;, xeR?
i=0
Then the second variation decomposes into two independent parts:
Li[Y(P) = Li[Y](wo, w1, w2) + La[Y](ws, wa)



Two technical tools: Ibis the suitable basis decomposition

2

00 27 1
Li[Y](wo, wi, wp) = f f {Z 10rwil® + =z (|6¢w0|2 +10,w1 — kwal? + 18,w2 + kwy |2)
0 Yo Vixo

2

+ (—32 + 02(u2 + v2)) Z w2 + 2c? (vwo + uwy )2
i=0

_2v?

Ve (v(wg - w12 - W22) - 2uwow1)} rdr de

00 27 4 2
_ 2 1 2 2 b 20,2 2 2
L[Y](WS,WU—fO fo {;[Iﬁrwil + 0wl +|-a ——\/év—i-c (v + v3) | lwi]

—_—

b2
- 7: ((W32 - w}) cos(ke) + 2uwawy sin(ke)) } rdrdep.

The “inhomogeneity” in u and v are dealt with using the Hardy trick.



Two technical tools: Il the Hardy trick

(Idea for the b? = 0 case)
F(Y+P)-F(Y) = I[Y] +1 Jo, Z(IPR + 2tr(YP))?,
where ’ ]
I[Y)(P.P :7f |VP|2+—f PP (-a% + ¢?| Y12 2
(PP =3 | IVPE+op | IPF( ) @

To investigate (2) we use a Hardy trick:
We have that v < 0 on [0, R]. Then, any P € H{ (B, So) can be written P(x) = v(r)U(x), where
Ue H&(BH,SO). Equation for v gives

n

_Y 2, 22
VAV = T (—a +c |Y|)
and therefore

I[Y](P,P) Z f IVv(Ix1) Uj(x) 4 v(IXI)V U5 (x)? + Av(Ix)v(Ix)U; (x).
Integrating by parts in the second term above, we obtain

Zf Avv U Zf IVVPUZ + 2V - VU; v Uj.

It follows that 1
I[Y)(P,P) = = f VZIVUPR.
2 Jpg
Using the fact that 0 < ¢y < v2 < ¢» and the Poincaré inequality we obtain

I[Y](P,P)sz |PP2.
Br



[l: Point Defects in 3D



Universal(?) boundary conditions near point singularities
of the limiting (approximating) harmonic map
and the possible solutions

SPLIT CORE RADIAL HEDGEHOG  RING DISCLINATION

S.Mkaddem, E.C. Gartland, Phys. Rev. E, 62, no. 5, (2000), p. 6694



The stability diagram

S5(0)

SPLIT CORE

i PR T -6 . -4 -2 0 2

FIG. 7. Bifurcation diagram of discretized model for radial
hedgehog, ring-disclination, and split-core solutions. Scalar order
parameter at the origin [S(0)] vs reduced temperature (7). Bold line
indicates stable equilibrium (minimum free energy); solid line indi-
cates metastable (locally stable); dashed line indicates not meta-
stable (not locally stable). Parameters: #7=0, R=25. Transition
value: 7=0.583. Ring limit/turning point: 7==0.947.

S Mkaddem E C Gartland Phvs Rev E 62 no 5 (2000) p 6694



A prototypical 3D profile: the melting hedgehog

A map Q € H'(R3,S)) is radially-symmetric if
Q(Rx) = RQ(x)R! for any R € SO(3) and a.e. x € R®. (3)

In fact, such a map Q(x) has only one degree of freedom , namely, there exists a
continuous radial scalar profile s : (0, +c0) — R such that Q(x) = u(|x|) H(x) for
a.e. x € R% , where H is called hedgehog

— X X 1

H(X): m@m—gld

If Q is a critical point of the EL equations then u is a solution of the ODE:
2 6 b? 2¢?
W (r) + U (1) = 3 u(r) = ~a® u(r) = - u(r)® + - u(r)’, )
u(0) =0, rlim u(r) =sy. (5)

_ b4 Vb 2aa??

Here, s; : 1o



The local stability problem for the melting hedgehog

The second variation of the energy # at the point H in the direction V € H! (RS;SO) is defined as 2

Qv =12 J;RS [ 3IVCH+ OV g (H o+ V) = ZIHE =t () o
_ 1 yvR
‘fRalilw‘ +g(x,V)]dx ®)

where
a? | 2P )
3

g V)= (-5 + V2 - b2 utr(AV2) + ¢ u2 w2 (A V). %

Theorem (R.Ignat, L. Nguyen, V. Slastikov, AZ)

Let b? and ¢? be fixed positive constants. Then there exists ag > 0 (depending on
b? and ¢?) such that for all a® < a2 the radially symmetric solution H is locally
stable in H'(R3; Sp), meaning that Q(V) > 0 for all V € H'(R3; Sp). Moreover
Q(V) =0 ifandonly if V € {9,,H}3_,, i.e. the kernel of the second variation
coincides with translations of H(x).

Also, there exists a? > 0 (depending on b? and c¢?) so that for any a® > aZ there
exists V, € CX(R3; Sy) such that Q(V.) < 0. Moreover, any such V. cannot be

purely uniaxial (i.e., V.(x) has three different eigenvalues for some point x € R3).

2
2Equ\valent|y. for every V e Cg° ('3{3;50), one defines Q(V) = g? |r70T[H+ t V; Q] where the domain €2 is any bounded open set containing the support of
V.



Some ideas: a special basis, adapted to the hedgehog

n = (sin@ cosy,sind singp,cosd) = ﬁ
m = (cosf cosg,cosd sing,—sind),
p = (sing,—cosg,0).

Using this basis, we can also define an orthogonal frame in Sp as
- 1
Eo=H= n®n—§Id, Et=n®p+pen Ez=n@em+men,

Es=m®p+p®m, Es=m@m-pop.

Then:
4
V(x) = ) wi(r,6,9)E(6,¢), x#0,
hence e
g(x. V(x)) = 1W0 F(u(r)) + (WF + w2)f(u(r)) + (W5 + wi)F(u(r)), x#0,
where
2 2 2
f(U(r)) — FEJLEE’;)) — _a2 _ b L?l’(r) + 2¢c LS"(r) ,
Hu(n) = F'(u(r)) = —a® - 2"2;’(') 1 2¢2u(r)?,

2b%u(r)  2c2u(r)?
()Jr ().

Fu(r) = -a® + = ;




The second variation now:

00 27 T
1
Q(Vv) :f f f {§|Brwo|2 + 10, w1 P + 10, wol® + |0, wsl? + 10, wal?
o Jo Jo
171
+ ,_2[5(39‘”0 —3w2)? + (Bgws — W3)? + (FpWa + Wo — Wy)?
+(0aws + wy)? + (Ogwa + W2)2]
1
r2sin® @
+(0,Wa2 + coS O Wy + Sin@ws)? + (9,Ws — Sin O wp — 2¢os O wy)?

’
[5(6¢w0 +3sindwy)? + (9w — sin 6wy — cos 6 wa — sin  wy)?

+(0,w4 + sin6wy + 2cos o ws)z]

1.
f

+3 1) wg + f(u) (WF + wB) + F(u) (W8 + wf) } r? sin6df dgdr.



Peeling off the variables: the easy one-Fourier

decomposition

We start by the representation of Vas V = Zj‘zo w;(r, 6, ¢)E;. Let us expand w;
using Fourier series in the ¢-variable

w;(r,6,¢) = Z ,uk)(r ) cos k(,o+vk (r,0) sinke).

Then V(r,0,¢) = Yo Vi(r.0,¢) = X5 _o(Mk(r, 6, ¢) cos kg + Ni(r,0,¢) sinke),
hence



After some more work:

We eliminate the ¢ component, play a bit with some symmetries of the system
and are left to deal with:

|av| Govol?
(v, V2, v4) f f POL 4 Wl + Bl + 5| 4 ol + 1wl

1
+ p[(Z + §k2 csc? 0)|vol? + (5 + (cotf + k csc 8)?)|vaf?

+ (24 (2cotf + k csc 9)2)|v4|2]
4
+ ﬁ[—vo (Ogv2 + cotBuo + k cscOuvp)
+(—gv2 + cotOuo + k cschus) v4]

1, .
+ §f(u) lwol? + f(u)lval? + f(u)IU4|2} r? sin6dé dr.



Separating r and 6 variables: heuristics

We analyze of the sign of ®y(vg, v2,v4) (k = 0,1, 2) where the functions v, vg, v4
are p-independent. The idea is to separate variables in vy,(r,6), m = 0,2, 4.
The natural thing to do is for each k = 0,1, 2 represent vy, m = 0,2, 4 as a series

m(r,0) = Z uk,

and then hope that there will be the following separation in &

¢k(U0,U2,U4 —ﬂ'z (Dk, kl)’W!E,zi)’WlEiti))’ k :O,1,2

It's not clear why it will work since there is a mixing between vg, v», and vs.



Separating r and 6 variables-the basis |

Therefore we need a special basis in L2((0, ), sin 6 df) in order to have this separation.
We will construct this basis. Let’s formally consider eigenvalue problems for v, take an
anzatz vm = - Um(#) and look at the behavior near co:

1

1 . 1 1
- ﬁa,(rz 6,1)0) - —69(S|n 069110) + r—2(2 + —k2 0302 O)Uo

3r2sing 3
2 1.
- r—z(agvg + cot v, + k csc 01}2) + gf(u) vy = Avg.
When r — oo we should have oy = a» + 2 and

Ug ~ 69U2 + cotfu, + k csch Us.



Separating r and 6 variables-the basis Il

1 1 . 1
- r—26r(f2 6,4)2) - mag(sln 069112) + r—2[5 + (COtH + kcsc 0)2]‘[}2

—2 H .
+ aging o(sin6uo) + dy(sinbus) + (cos 6 + k)(~vo + va)]

A
+f(U)U2 = r—2U2.

When r — oo we should have
1
sind

dy(sin 69,uz) + (cot + k csc 6)?us.

Uy ~ —

1 1 .
- Eﬁr(rz (9,—1/4) - mag(sln 9(991}4)

1 2
+ r_2[2 + (2cot @ + k csc 6)]us + ;(—69112 + cot Qu, + k csc buy)
+ ?(U) vs = Avg.
When r — oo we should have a4 = a, + 2 and

Uy ~ —OgUs + cotOu, + k cscl us.



Separating r and 6-the basis Il

These heuristic calculations give us
Ug ~ Ogu2 + cotBuo + k csc O uo.

1
Up ~ —%69(sin 09gu2) + (cotf + k csc 6)2us.

Ug ~ —0gUo + cotOup + k csc 6 us.

Notice that with these relations mixed terms in spectral problems are absorbed by the right hand side.
Therefore, for each k = 0, 1, 2, we focus on the spectral problem associated to the operator

@ __ 1 4 2
T = Sin969(3|n969)+[1+(cot9+kcsc€) 1. (8)

more precisely, on the couples (eigenfunction, eigenvalue)= (u,((zi),/lk,,-)

TOUE — 4 @, iz 1,

For each k = 0, 1, 2, these eigenfunctions {u,((zi)},'21 will form a basis in L2((O, n);sin@dp) and
therefore we have the following expansion for v

va(r.0) = Y w®(nu®(a).



Separating r and 6 variables -the basis IV

The key observation is the following: for every k = 0,1, 2, if (u‘(( i Ak i) is an eigenpair of the operator

T,Ez), following the above ansatz, we set

u,((,) 1= 0, u,(()+cot6u,(()+kcsc9u(2) 9)
u,(( ’) = —6gu( ) + cot Hu( ) + k cscé)u,(f,.). (10)
Then u(o) and u,(ji) are eigenfunctions of the following operators
7O =— S:Wag(sin 009) + k® csc? 6, (11)
T = - Sﬂﬁﬁg(sin 099) + [4+ (2cotd + k csc6)?], (12)
and satisfy
TOU?) = 4. TOUE = dy ). (13)

The functions {u,((oi)} and {“;((41)} also form bases of L2((0,7r); sin 6 do) and therefore one can separate
variables. In particular, we can represent vy, as

um(r.6) = Y Wi (N UP(6), m=0.4
i
and we observe that we will reduce ® to the sum of functionals depending only on r-variable:
Dy (vo, v2,v4) :nZCPKJ(W(O w® I(fi))’ k=0,1,2.
i

kl’

An important simplification to notice is that only ®¢; enter into ®, and therefore it is enough to study
the sign of one functional.



After some seriously hard work...

Eventually left with studying:

Po.2(Wo, W2, Wa) = fo i {ZIb‘rWol2 + 10, Wal® + 410, wal?
T %[24|Wo|2 +10[wal? + 16]ws?
—24wow; + 16w2w4]
+ 2f(u)Iwol? + F(u)Iwal® + 4?(U)|W4|2}r2 o

Dealt with using a few Hardy tricks and very, very (very!) detailed study of the
ODE for u.



THANK YOU!



