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Liquid crystals modelling: physics

1

A measure µ such that 0 ≤ µ(A) ≤ 1 ∀A ⊂ S2

The probability that the molecules are pointing in a direction contained in the
surface A ⊂ S2 is µ(A)

Physical requirement µ(A) = µ(−A) ∀A ⊂ S2

1Simulation by C. Zannoni group
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Landau-de Gennes Q-tensor and other simpler theories

Q =

∫
S2

p ⊗ p dµ(p) −
1
3

Id

The Q-tensor is:
I isotropic is Q = 0
I uniaxial if it has two equal eigenvalues
I biaxial otherwise

Ericksen’s theory (1991) for uniaxial Q-tensors which can be written as

Q(x) = s(x)

(
n(x) ⊗ n(x) −

1
3

Id
)
, s ∈ R, n ∈ S2

Oseen-Frank theory (1958) take s in the uniaxial representation to be a
fixed constant s+
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Q-tensors: visualisation

One can visualise a Q-tensor as either a:
I parallelepiped whose axis are parallel with the eigenvectors of Q and whose

lengths are proportional to the eigenvalues of Q
or an

I ellipsoid whose axis are parallel with the eigenvectors of Q and whose radii are
proportional to the eigenvalues of Q

Some Q-tensor fields in the two representations:

Index 1/2 defect (parallelepipeds) Index 1/2 defect
(ellipsoids)



Defects



Stationary states and energy minimization

Energy functional:

FLG [Q] =

∫
Ω

L
2

3∑
i,j,k=1

∂Qij

∂xk
(x)

∂Qij

∂xk
(x) + fB (Q(x)) dx

with bulk term

fB (Q) = − (α(T − T∗))︸          ︷︷          ︸
= a

2

tr
(
Q2

)
−

b
3

tr
(
Q3

)
+

c
4

(
trQ2

)2

where Q(x) : Ω→ {M ∈ R3×3,M = Mt , trM = 0} a Q-tensor (with Ω ⊂ R3)

The set Qmin where fB attains its minimums is:

I For b , 0: A 2D manifold {s+

(
n(x) ⊗ n(x) − 1

3 Id
)
, n ∈ S2} homemorphic to RP2

I For b = 0: (and a > 0): A 4D manifold {
∑3

i,j=1 QijQij =
a
c } homeomorphic to S4.



Scalings and the role of b

Euler-Lagrange system of equations:

L∆Qij = −aQij−b
(
QipQpj −

1
3

trQ2δij

)
+ c

(
trQ2

)
Qij , i, j = 1, 2, 3

Scalings Qλ,µ = λQ( x
µ

) give:

L∆Qλ,µ = −
a
µ2 Qλ,µ −

b
µ2λ

[Q2 −
1
3
|Q |2Id] +

c
µ2λ2 Qλ,µ|Qλ,µ|

2

just two independent variables, say L and b OR L and a.

In the whole space one has that the regime a → 0 is equivalent to b → ∞
and a → ∞ is equivalent to b → 0.

One can consider a non-dimensionalisation suited for studying defect cores
(Mkadddem and Gartland, Virga and Kralj) in which a has the significance of
a reduced temperature.
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Boundary conditions and Q-tensor versus director theory

If we take boundary conditions Qb(x), x ∈ ∂Ω taking values in the
minimisation set of the bulk, Qmin potential then we can consider the
minimisation problem:

min
Q∈W1,2(Ω;Qmin)

Q(x)=Qb (x),x∈∂Ω

∫
Ω
|∇Q |2(x) dx

For Qmin = {s+

(
n(x) ⊗ n(x) − 1

3 Id
)
, n ∈ S2} we have |∇Q |2 = 2s2

+|∇n|2 so this
problem becomes

min
n∈W1,2(Ω;S2)

n(x)=nb (x),x∈∂Ω

2s2
+

∫
Ω
|∇n|2(x) dx

is really just about the director theory (but written using matrices!) and we
can compare the predictions of the director and the tensor theories.



Prototypical Point Defects in 2D



Half-integer defects in 2D domains:
director representation (∞ energy!)

The index counts how many 2π-times the director rotates as one goes along a full-circle.

Figure: Defects of index 1
2 (left) and − 1

2 (right)
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Figure: Defects of index 3
2 (left) and − 3

2 (right)



Half-integer defects in 2D domains:
Q-tensor representation(finite energy!)

Figure: Q-tensor defect of index 1
2 (left) and − 1

2 (right)

Thus the index one-half defects in the Q-tensor theory permit to “mollify” the
infinite energy core.



Half-integer defects in 2D domains:
Q-tensor representation allows for multiple solutions

Figure: Y− (left) and Y+ (right) defects for of strength 1

Figure: Uniaxial defect of strength 1



Ansatz and the reduction to an ODE system

Ansatz :

Y = u(r)
√

2
(
n(ϕ) ⊗ n(ϕ) −

1
2

I2

)
+ v(r)

√
3
2

(
e3 ⊗ e3 −

1
3

I
)
,

where n(ϕ) = (cos(k ϕ
2 ), sin(k ϕ

2 ), 0).

Then the PDE system reduces to an ODE system, that is easier (though highly nontrivial!) to
analyse qualitatively:

u′′ + u′
r −

k2u
r2 = u

L

−a2 +

√
2
3b2v + c2

(
u2 + v2

)
 ,

v′′ + v′
r = v

L

−a2 − 1√
6

b2v + c2
(
u2 + v2

) + 1√
6L

b2u2, r ∈ (0,R).

u(0) = 0, v′(0) = 0, u(R) =
1
√

2
s+, v(R) = −

1
√

6
s+.

The dependence on k, the index of the solution is very weak.

The term b makes a significant difference: makes the system more coupled (for b , 0 as
opposed to b = 0) and changes the shape of the solutions.
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The shape of solutions
The shape of the solutions depends strongly on the size of b with respect to the
other coefficients:

For the critical regime b2 = 3a2c2 we have that v is a constant and the
system reduces to a single ODE for u.
For b2 > 0 there exists a solution in the whole space but not for b2 = 0!



The main question: stability

Given Y a symmetric solution as before, is the second variation non-negative?
This is physically important and also its failure often signals a symmetry
breaking....

L[Y ](P) =
1
2

d2

dt2 |t=0

∫
R2

{1
2
|∇(Y + tP)|2 + fbulk (Y + tP) −

1
2
|∇Y |2 − fbulk (Y)

}
dx

=

∫
R2

{1
2
|∇P |2 −

a2

2
|P |2 − b2tr(P2Y) +

c2

2

(
|Y |2|P |2 + 2|tr(YP)|2

) }
dx.

(1)

where P ∈ C∞c (BR(0),S0).
Note that P has five degrees of freedom so one needs to find ways to carefully
“peel them out”



The stability story, the easy case: b2 = 0

Theorem (G. Di Fratta, J. Robbins, V. Slastikov, AZ, 2014)

Let b2 = 0, and let Y be given by

Y = u(r)
√

2
(
n(ϕ) ⊗ n(ϕ) −

1
2

I2

)
+ v(r)

√
3
2

(
e3 ⊗ e3 −

1
3

I
)
,

with (u, v) the unique global minimiser of the reduced energy

E(u, v) =

∫ R

0

[
1
2

(
(u′)2 + (v ′)2 +

k 2

r2 u2
)
−

a2

2L
(u2 + v2) +

c2

4L

(
u2 + v2

)2
]

rdr

−
b2

3L
√

6

∫ R

0
v(v2 − 3u2) rdr .

Then for any index k and for any R ∈ (0,∞) the symmetric solution Y is the
unique global minimiser of the full Landau-de Gennes energy in H1(BR ;S0).



The stability story, the trickier case: b2 , 0

Theorem (R. Ignat, L. Nguyen, V.Slastikov, AZ, 2015, 2016)

Let a2, b2, c2 > 0 be any fixed constants and k ∈ Z \ {0,±1}. Any k-radially
symmetric critical point Y in the whole space is locally unstable, i.e. there is a
perturbation P ∈ C∞c (R2,S0), supported in a bounded disk BR , such that the
second variation L[Y ](P) < 0.

If k = ±1 then there exist a solution (u, v) of the ODE system such that k -radially
symmetric Q-tensor Y is locally stable, i.e. the second variation L[Y ](P) ≥ 0 for
all P ∈ H1(R2,S0). Moreover, L[Y ](P) = 0 if and only if P ∈ {∂xi Y }

2
i=1, i.e. the

kernel of the second variation coincides with translations of Y.



Beyond stability: symmetry breaking

The global minimiser for hedgehog boundary conditions (in 2D ), numerics:

Y. Hu, Y.Qu and P. Zhang On the disinclination lines of nematic liquid crystals



Two technical tools: I the suitable basis decomposition
Let {ei}

3
i=1 be the standard basis in R3 and denote, for ϕ ∈ [0, 2π),

n = n(ϕ) =
(
cos( k

2ϕ), sin( k
2ϕ), 0

)
, m = m(ϕ) =

(
− sin( k

2ϕ), cos( k
2ϕ), 0

)
.

We endow the space S0 of Q-tensors with the scalar product Q · Q̃ = tr(QQ̃) and
for any ϕ ∈ [0, 2π), we define the following orthonormal basis in S0:

E0 =

√
3
2

(
e3 ⊗ e3 −

1
3

I3

)
,

E1 = E1(ϕ) =
√

2
(
n ⊗ n −

1
2

I2

)
, E2 = E2(ϕ) =

1
√

2
(n ⊗m + m ⊗ n) ,

E3 =
1
√

2
(e1 ⊗ e3 + e3 ⊗ e1), E4 =

1
√

2
(e2 ⊗ e3 + e3 ⊗ e2) .

Let

P(x) =
4∑

i=0

wi(x)Ei , x ∈ R2,

Then the second variation decomposes into two independent parts:
L1[Y ](P) = L1[Y ](w0,w1,w2) +L2[Y ](w3,w4)



Two technical tools: Ibis the suitable basis decomposition

L1[Y ](w0,w1,w2) =

∫ ∞

0

∫ 2π

0

{ 2∑
i=0

|∂r wi |
2 +

1
r2

(
|∂ϕw0 |

2 + |∂ϕw1 − kw2 |
2 + |∂ϕw2 + kw1 |

2
)

+
(
−a2 + c2(u2 + v2)

) 2∑
i=0

|wi |
2 + 2c2 (vw0 + uw1)2

−
2b2
√

6

(
v(w2

0 − w2
1 − w2

2 ) − 2uw0w1
) }

rdr dϕ

L[Y ](w3,w4) =

∫ ∞

0

∫ 2π

0

{ 4∑
i=3

[
|∂r wi |

2 +
1
r2 |∂ϕwi |

2 +

(
−a2 −

b2
√

6
v + c2(u2 + v2)

)
|wi |

2
]

−
b2u
√

2

(
(w2

3 − w2
4 ) cos(kϕ) + 2uw3w4 sin(kϕ)

) }
rdrdϕ.

The “inhomogeneity” in u and v are dealt with using the Hardy trick.



Two technical tools: II the Hardy trick
(Idea for the b2 = 0 case)

F (Y + P) − F (Y) = I[Y ](P,P) + 1
L

∫
BR

c2

4 (|P |2 + 2 tr(YP))2,

where

I[Y ](P,P) =
1
2

∫
BR

|∇P |2 +
1

2L

∫
BR

|P |2
(
−a2 + c2 |Y |2

)
(2)

To investigate (2) we use a Hardy trick:
We have that v < 0 on [0,R]. Then, any P ∈ H1

0(BR ,S0) can be written P(x) = v(r)U(x), where
U ∈ H1

0(BR ,S0). Equation for v gives

v∆v =
v2

L

(
−a2 + c2 |Y |2

)
and therefore

I[Y ](P,P) =
1
2

∑
i,j

∫
BR

|∇v(|x |)Uij(x) + v(|x |)∇Uij(x)|2 + ∆v(|x |)v(|x |)U2
ij (x).

Integrating by parts in the second term above, we obtain∑
i,j

∫
BR

∆v v U2
ij = −

∑
i,j

∫
BR

|∇v |2U2
ij + 2∇v · ∇Uij v Uij .

It follows that

I[Y ](P,P) =
1
2

∫
BR

v2 |∇U|2.

Using the fact that 0 < c1 ≤ v2 ≤ c2 and the Poincaré inequality we obtain

I[Y ](P,P) ≥ C
∫

BR

|P |2.



II: Point Defects in 3D



Universal(?) boundary conditions near point singularities
of the limiting (approximating) harmonic map
and the possible solutions

S.Mkaddem, E.C. Gartland, Phys. Rev. E, 62, no. 5, (2000), p. 6694



The stability diagram

S.Mkaddem, E.C. Gartland, Phys. Rev. E, 62, no. 5, (2000), p. 6694



A prototypical 3D profile: the melting hedgehog

A map Q ∈ H1(R3,S0) is radially-symmetric if

Q(Rx) = RQ(x)Rt for any R ∈ SO(3) and a.e. x ∈ R3. (3)

In fact, such a map Q(x) has only one degree of freedom , namely, there exists a
continuous radial scalar profile s : (0,+∞)→ R such that Q(x) = u(|x |) H(x) for
a.e. x ∈ R3 , where H is called hedgehog

H(x) =
x
|x |
⊗

x
|x |
−

1
3

Id.

If Q is a critical point of the EL equations then u is a solution of the ODE:

u′′(r) +
2
r

u′(r) −
6
r2 u(r) = −a2 u(r) −

b2

3
u(r)2 +

2c2

3
u(r)3, (4)

u(0) = 0, lim
r→∞

u(r) = s+. (5)

Here, s+ := b2+
√

b4+24a2c2

4c2 .



The local stability problem for the melting hedgehog
The second variation of the energy F at the point H in the direction V ∈ H1(R3 ;S0) is defined as 2

Q(V) =
1
2

d2

dt2

∣∣∣∣∣∣t=0

∫
R3

[ 1
2
|∇(H + t V)|2 + fbulk (H + t V) −

1
2
|∇H|2 − fbulk (H)

]
dx

=

∫
R3

[ 1
2
|∇V |2 + g(x,V)

]
dx (6)

where

g(x,V) :=
(
−

a2

2
+

c2u2

3

)
|V |2 − b2 u tr(H̄ V2) + c2 u2 tr2(H̄ V). (7)

Theorem (R.Ignat, L. Nguyen, V. Slastikov, AZ)

Let b2 and c2 be fixed positive constants. Then there exists a2
0 > 0 (depending on

b2 and c2) such that for all a2 < a2
0 the radially symmetric solution H is locally

stable in H1(R3;S0), meaning that Q(V) ≥ 0 for all V ∈ H1(R3;S0). Moreover
Q(V) = 0 if and only if V ∈ {∂xi H}

3
i=1, i.e. the kernel of the second variation

coincides with translations of H(x).
Also, there exists a2

1 > 0 (depending on b2 and c2) so that for any a2 > a2
1 there

exists V∗ ∈ C∞c (R3;S0) such that Q(V∗) < 0. Moreover, any such V∗ cannot be
purely uniaxial (i.e., V∗(x) has three different eigenvalues for some point x ∈ R3).

2Equivalently, for every V ∈ C∞c (R3 ;S0), one defines Q(V) = d2

dt2

∣∣∣∣t=0
F [H + t V ; Ω] where the domain Ω is any bounded open set containing the support of

V .



Some ideas: a special basis, adapted to the hedgehog

n = (sin θ cosϕ, sin θ sinϕ, cos θ) = x
|x | ,

m = (cos θ cosϕ, cos θ sinϕ,− sin θ),
p = (sinϕ,− cosϕ, 0).

Using this basis, we can also define an orthogonal frame in S0 as

E0 = H̄ = n ⊗ n −
1
3

Id, E1 = n ⊗ p + p ⊗ n, E2 = n ⊗m + m ⊗ n,

E3 = m ⊗ p + p ⊗m, E4 = m ⊗m − p ⊗ p.

Then:

V(x) =
4∑

i=0

wi(r , θ, ϕ)Ei(θ, ϕ), x , 0,

hence

g(x,V(x)) =
1
3

w2
0 f̂(u(r)) + (w2

1 + w2
2 )f(u(r)) + (w2

3 + w2
4 )̃f(u(r)), x , 0,

where

f(u(r)) =
F(u(r))

u(r)
= −a2 −

b2u(r)

3
+

2c2u(r)2

3
,

f̂(u(r)) = F ′(u(r)) = −a2 −
2b2u(r)

3
+ 2c2u(r)2,

f̃(u(r)) = −a2 +
2b2u(r)

3
+

2c2u(r)2

3
.



The second variation now:

Q(V) =

∫ ∞

0

∫ 2π

0

∫ π

0

{
1
3
|∂rw0|

2 + |∂rw1|
2 + |∂rw2|

2 + |∂rw3|
2 + |∂rw4|

2

+
1
r2

[1
3

(∂θw0 − 3w2)2 + (∂θw1 − w3)2 + (∂θw2 + w0 − w4)2

+(∂θw3 + w1)2 + (∂θw4 + w2)2
]

+
1

r2 sin2 θ

[1
3

(∂ϕw0 + 3 sin θw1)2 + (∂ϕw1 − sin θw0 − cos θw2 − sin θw4)2

+(∂ϕw2 + cos θw1 + sin θw3)2 + (∂ϕw3 − sin θw2 − 2 cos θw4)2

+(∂ϕw4 + sin θw1 + 2 cos θw3)2
]

+
1
3

f̂(u) w2
0 + f(u)

(
w2

1 + w2
2

)
+ f̃(u)

(
w2

3 + w2
4

) }
r2 sin θ dθ dϕ dr .



Peeling off the variables: the easy one-Fourier
decomposition

We start by the representation of V as V =
∑4

i=0 wi(r , θ, ϕ)Ei . Let us expand wi

using Fourier series in the ϕ-variable

wi(r , θ, ϕ) =
∞∑

k=0

(µ
(i)
k (r , θ) cos kϕ + ν

(i)
k (r , θ) sin kϕ).

Then V(r , θ, ϕ) =
∑∞

k=0 Vk (r , θ, ϕ) =
∑∞

k=0(Mk (r , θ, ϕ) cos kϕ + Nk (r , θ, ϕ) sin kϕ),
hence

Q(V) =
∞∑

k=0

Q(Vk ).



After some more work:

We eliminate the ϕ component, play a bit with some symmetries of the system
and are left to deal with:

Φk (υ0, υ2, υ4) =

∫ ∞

0

∫ π

0

{
|∂rυ0|

2

3
+ |∂rυ2|

2 + |∂rυ4|
2 +

1
r2

[
|∂θυ0|

2

3
+ |∂θυ2|

2 + |∂θυ4|
2
]

+
1
r2

[
(2 +

1
3

k 2 csc2 θ)|υ0|
2 + (5 + (cot θ + k csc θ)2)|υ2|

2

+ (2 + (2 cot θ + k csc θ)2)|υ4|
2
]

+
4
r2

[
−υ0 (∂θυ2 + cot θυ2 + k csc θ υ2)

+(−∂θυ2 + cot θ υ2 + k csc θ υ2) υ4

]
+

1
3

f̂(u) |υ0|
2 + f(u)|υ2|

2 + f̃(u)|υ4|
2
}

r2 sin θ dθ dr .



Separating r and θ variables: heuristics

We analyze of the sign of Φk (υ0, υ2, υ4) (k = 0, 1, 2) where the functions υ0, υ2, υ4

are ϕ-independent. The idea is to separate variables in υm(r , θ), m = 0, 2, 4.
The natural thing to do is for each k = 0, 1, 2 represent υm, m = 0, 2, 4 as a series

υm(r , θ) =
∑

i

w(m)
k ,i (r)u(m)

k ,i (θ)

and then hope that there will be the following separation in Φk

Φk (υ0, υ2, υ4) = π
∑

i

Φk ,i(w
(0)
k ,i ,w

(2)
k ,i ,w

(4)
k ,i ), k = 0, 1, 2

It’s not clear why it will work since there is a mixing between υ0, υ2, and υ4.



Separating r and θ variables-the basis I

Therefore we need a special basis in L2((0, π), sin θ dθ) in order to have this separation.
We will construct this basis. Let’s formally consider eigenvalue problems for υm, take an
anzatz υm = 1

rαm um(θ) and look at the behavior near ∞:

−
1

3r2
∂r(r2 ∂rυ0) −

1
3r2 sin θ

∂θ(sin θ∂θυ0) +
1
r2
(2 +

1
3

k 2 csc2 θ)υ0

−
2
r2
(∂θυ2 + cot θυ2 + k csc θυ2) +

1
3

f̂(u) υ0 = λυ0.

When r → ∞ we should have α0 = α2 + 2 and

u0 ∼ ∂θu2 + cot θu2 + k csc θ u2.



Separating r and θ variables-the basis II

−
1
r2
∂r(r2 ∂rυ2) −

1
r2 sin θ

∂θ(sin θ∂θυ2) +
1
r2
[5 + (cot θ+ k csc θ)2]υ2

+
2

r2 sin θ
[∂θ(sin θυ0) + ∂θ(sin θυ4) + (cos θ+ k)(−υ0 + υ4)]

+ f(u) υ2 =
λ

r2
υ2.

When r → ∞ we should have

u2 ∼ −
1

sin θ
∂θ(sin θ∂θu2) + (cot θ+ k csc θ)2u2.

−
1
r2
∂r(r2 ∂rυ4) −

1
r2 sin θ

∂θ(sin θ∂θυ4)

+
1
r2
[2 + (2 cot θ+ k csc θ)2]υ4 +

2
r2
(−∂θυ2 + cot θυ2 + k csc θυ2)

+ f̃(u) υ4 = λυ4.

When r → ∞ we should have α4 = α2 + 2 and

u4 ∼ −∂θu2 + cot θu2 + k csc θ u2.



Separating r and θ-the basis III
These heuristic calculations give us

u0 ∼ ∂θu2 + cot θu2 + k csc θ u2.

u2 ∼ −
1

sin θ
∂θ(sin θ∂θu2) + (cot θ + k csc θ)2u2.

u4 ∼ −∂θu2 + cot θu2 + k csc θ u2.

Notice that with these relations mixed terms in spectral problems are absorbed by the right hand side.
Therefore, for each k = 0, 1, 2, we focus on the spectral problem associated to the operator

T (2)
k ≡ −

1
sin θ

∂θ(sin θ∂θ) + [1 + (cot θ + k csc θ)2], (8)

more precisely, on the couples (eigenfunction, eigenvalue)= (u(2)
k ,i , λk ,i)

T (2)
k u(2)

k ,i = λk ,iu
(2)
k ,i , i ≥ 1.

For each k = 0, 1, 2, these eigenfunctions {u(2)
k ,i }i≥1 will form a basis in L2((0, π); sin θ dθ) and

therefore we have the following expansion for υ2

υ2(r , θ) =
∑
i≥1

w(2)
k ,i (r)u(2)

k ,i (θ).



Separating r and θ variables -the basis IV
The key observation is the following: for every k = 0, 1, 2, if (u(2)

k ,i , λk ,i) is an eigenpair of the operator

T (2)
k , following the above ansatz, we set

u(0)
k ,i := ∂θu

(2)
k ,i + cot θu(2)

k ,i + k csc θ u(2)
k ,i , (9)

u(4)
k ,i = −∂θu

(2)
k ,i + cot θu(2)

k ,i + k csc θ u(2)
k ,i . (10)

Then u(0)
k ,i and u(4)

k ,i are eigenfunctions of the following operators

T (0)
k ≡ −

1
sin θ

∂θ(sin θ∂θ) + k2 csc2 θ , (11)

T (4)
k ≡ −

1
sin θ

∂θ(sin θ∂θ) + [4 + (2 cot θ + k csc θ)2] , (12)

and satisfy
T (0)

k u(0)
k ,i = λk ,iu

(0)
k ,i , T (4)

k u(4)
k ,i = λk ,iu

(4)
k ,i . (13)

The functions {u(0)
k ,i } and {u(4)

k ,i } also form bases of L2((0, π); sin θ dθ) and therefore one can separate
variables. In particular, we can represent υm as

υm(r , θ) =
∑

i

w(m)
k ,i (r) u(m)

k ,i (θ), m = 0, 4

and we observe that we will reduce Φk to the sum of functionals depending only on r-variable:

Φk (υ0, υ2, υ4) = π
∑

i

Φk ,i(w(0)
k ,i ,w

(2)
k ,i ,w

(4)
k ,i ), k = 0, 1, 2.

An important simplification to notice is that only Φ0,i enter into Φk and therefore it is enough to study
the sign of one functional.



After some seriously hard work...

Eventually left with studying:

Φ0,2(w0,w2,w4) =

∫ ∞

0

{
2|∂rw0|

2 + |∂rw2|
2 + 4|∂rw4|

2

+
1
r2

[
24|w0|

2 + 10|w2|
2 + 16|w4|

2

−24w0w2 + 16w2w4

]
+ 2f̂(u)|w0|

2 + f(u)|w2|
2 + 4f̃(u)|w4|

2
}
r2 dr .

Dealt with using a few Hardy tricks and very, very (very!) detailed study of the
ODE for u.



THANK YOU!


