# Phase transitions in noncentrosymmetric superconductors: Lifshitz invariants and nonuniform states

#### **Kirill Samokhin**

Department of Physics Brock University, Ontario, Canada

BIRS, May 3rd 2017

## Outline

- New features in the Ginzburg-Landau theory
- Noncentrosymmetric superconductors in a nutshell:
  - Examples in 3D, 2D, and 1D
  - Electron-lattice spin-orbit coupling and electron band splitting
  - Rashba model
- Cooper pairing in nondegenerate bands:
  - Intraband vs interband pairing
  - Two-band model
- Unusual nonuniform superconducting states:
  - Helical states
  - Interband phase solitons
  - Zero-field instabilities

Bardeen-Cooper-Schrieffer theory: superconductivity is due to the coherent motion of the pairs of electrons with k and -k near the Fermi surface (Cooper pairs)

Order parameter in superconductors = wave function of the pairs

Single component:  $\eta(\mathbf{r})$  (e.g., classic BCS or high- $T_c$  SCs)

Many components:  $\eta_1(\mathbf{r}), ..., \eta_N(\mathbf{r})$  (e.g., N = 2 in Sr<sub>2</sub>RuO<sub>4</sub>, N = 9 in superfluid <sup>3</sup>He)

Simplest model of noncentrosymmetric SCs: N = 2, order parameters  $\eta_{+}(\mathbf{r}), \eta_{-}(\mathbf{r})$ 

# Ginzburg-Landau free energy

Free energy density:  $F = F_{uniform} + F_{gradient} + F_{magnetic}$ 

Single component  $\rightarrow$  standard GL:

$$F = a(T - T_c)|\eta|^2 + \frac{\beta}{2}|\eta|^4 + K|D\eta|^2 + \frac{(B - H)^2}{8\pi}, \ D = -i\nabla + \frac{2e}{\hbar c}A$$

Noncentrosymmetric superconductors:

$$\begin{split} F_{uniform} &= A_1(T) |\eta_+|^2 + A_2(T) |\eta_-|^2 + A_3(\eta_+^* \eta_- + \text{c.c.}) \\ &+ B_1 |\eta_+|^4 + B_2 |\eta_-|^4 + B_3 |\eta_+|^2 |\eta_-|^2 \\ &+ B_4(\eta_+^{*,2} \eta_-^2 + \text{c.c.}) + (B_5 |\eta_+|^2 + B_6 |\eta_-|^2) (\eta_+^* \eta_- + \text{c.c.}) \end{split}$$

Sensible approximation:  $B_3 = B_4 = B_5 = B_6 = 0$ 

# Ginzburg-Landau free energy



GL free energy density:  $F = F_+ + F_- + \gamma_m(\eta_+^*\eta_- + \eta_-^*\eta_+)$ Intraband contributions:

$$F_{\lambda} = \alpha_{\lambda} |\eta_{\lambda}|^{2} + \beta_{\lambda} |\eta_{\lambda}|^{4} + K_{\lambda} |\nabla \eta_{\lambda}|^{2} + \underbrace{\tilde{K}_{\lambda} \operatorname{Im} \left[ \eta_{\lambda}^{*} (\boldsymbol{H} \times \boldsymbol{\nabla})_{z} \eta_{\lambda} \right]}_{\text{Lifshitz invariant}} + \underbrace{L_{\lambda} H^{2} |\eta_{\lambda}|^{2}}_{\text{"diamagnetic" term}}$$

Superconducting current by the pairs:

$$\boldsymbol{j} = -4e\sum_{\lambda} K_{\lambda} \operatorname{Im}(\eta_{\lambda}^{*} \boldsymbol{\nabla} \eta_{\lambda}) + 2e\sum_{\lambda} \tilde{K}_{\lambda} (\boldsymbol{H} \times \hat{\boldsymbol{z}}) |\eta_{\lambda}|^{2}$$

Lifshitz invariants (Mineev & KS '94; Agterberg '03; KS '04)  $\;\;\Rightarrow\;$  unusual nonuniform SC states, etc

## 3D noncentrosymmetric superconductors

| 0              | Li <sub>2</sub> Pt <sub>3</sub> B (2K), Li <sub>2</sub> Pd <sub>3</sub> B (8K), Mo <sub>3</sub> Al <sub>2</sub> C (10K) |
|----------------|-------------------------------------------------------------------------------------------------------------------------|
| $T_d$          | Ti <sub>5</sub> Re <sub>24</sub> (6.6K), Y <sub>2</sub> C <sub>3</sub> (17K), TLa <sub>3</sub> S <sub>4</sub> (8K)      |
| т              | LaRhSi (4K), LaIrSi (2K)                                                                                                |
| $C_{4v}$       | CePt <sub>3</sub> Si (0.5K), CeRhSi <sub>3</sub> (1K), CelrSi <sub>3</sub> (1.5K)                                       |
| $\mathbf{C}_4$ | $La_5B_2C_6$ (7K)                                                                                                       |
| $C_{6v}$       | MoN (15K), GaN (6K)                                                                                                     |
| $D_{3h}$       | MoC (9K), NbSe (6K), ZrPuP (13K)                                                                                        |
| $C_{3v}$       | $MoS_2$ (1K)                                                                                                            |
| $\mathbf{C}_2$ | Ulr (0.1K)                                                                                                              |
|                |                                                                                                                         |







(from E. Bauer et al, PRL 92, 027003 (2004))

## 2D noncentrosymmetric superconductors

Insulator/insulator interface: LaAlO<sub>3</sub>/SrTiO<sub>3</sub> (LAO/STO) LaTiO<sub>3</sub>/SrTiO<sub>3</sub> (LTO/STO)

Metal/insulator interface: LSCO/LCO

Doped insulator surface: STO, WO<sub>3</sub>

Typically:  $T_c < 1$ K FeSe single layers on doped STO substrate:  $T_c=109$ K



(from J. Pereiro et al, Phys. Express 1, 208 (2011))

# 1D noncentrosymmetric superconductors

Proximity-induced superconductivity in semiconducting wires

(experiment: InSb nanowire on NbTiN SC substrate, H = 100mT)



(from M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012))

 $\gamma_1$  and  $\gamma_2$  – topologically-protected zero-energy bound states a.k.a. Majorana quasiparticles

No inversion + spin-orbit coupling  $\rightarrow$  nondegenerate Bloch bands

Time-reversal K ( $K = i\hat{\sigma}_2 K_0$ ) and inversion I:  $|\mathbf{k}\rangle, KI|\mathbf{k}\rangle$  belong to  $\mathbf{k}$  $K|\mathbf{k}\rangle, I|\mathbf{k}\rangle$  belong to  $-\mathbf{k}$ 



bands twofold degenerate at all k

Time-reversal K, no inversion:  $|\mathbf{k}\rangle$  belongs to  $\mathbf{k}$  $K|\mathbf{k}\rangle$  belongs to  $-\mathbf{k}$ 



bands nondegenerate at (almost) all k

# Spin-orbit coupling

Electron-lattice SO coupling: 
$$H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{4m^2c^2}\hat{\sigma}[\nabla U(r) \times \hat{p}]$$

Noninteracting electrons:

$$\hat{H}_{0} = \sum_{\boldsymbol{k},\mu\nu} \sum_{\alpha,\beta=\uparrow,\downarrow} \underbrace{[\epsilon_{\mu}(\boldsymbol{k})\delta_{\mu\nu}\delta_{\alpha\beta}}_{I-\text{symmetric}} + \underbrace{iA_{\mu\nu}(\boldsymbol{k})\delta_{\alpha\beta} + B_{\mu\nu}(\boldsymbol{k})\boldsymbol{\sigma}_{\alpha\beta}}_{I-\text{asymmetric}}]\hat{a}^{\dagger}_{\boldsymbol{k}\mu\alpha}\hat{a}_{\boldsymbol{k}\nu\beta}$$

$$A_{\mu\nu}(\mathbf{k}) = -A_{\nu\mu}(\mathbf{k}) = -A_{\mu\nu}(-\mathbf{k})$$
$$B_{\mu\nu}(-\mathbf{k}) = B_{\nu\mu}(\mathbf{k}) = -B_{\mu\nu}(\mathbf{k})$$

+ additional constraints due to point-group symmetry

Band degeneracy is lifted if  $B_{\mu\nu}(k) \neq 0$   $\downarrow$ Nondegenerate Bloch bands  $\xi_n(k) = \xi_n(-k)$  labelled by n

# Spin-orbit coupling

TR invariant points: -K = K + G

2D square lattice (spacing = d)

$$\{\mathbf{K}_i\} = \left\{ \mathbf{0}, \ \frac{\mathbf{G}_1}{2}, \ \frac{\mathbf{G}_2}{2}, \ \frac{\mathbf{G}_1 + \mathbf{G}_2}{2} \right\}$$
$$\mathbf{G}_1 = \frac{2\pi}{d}\hat{x}, \quad \mathbf{G}_2 = \frac{2\pi}{d}\hat{y}$$

$$\boldsymbol{B}_{\mu\nu}(\boldsymbol{K}) = 0, \quad \boldsymbol{A}_{\mu\nu}(\boldsymbol{K}) = 0$$



Bloch bands  $\xi_n(\mathbf{k})$  remain pairwise degenerate at the TRI points



# Electron band structure



SO band splitting:

 $E_{\rm SO} \gg$  SC energy scales

# Minimal model of SO coupling

Generalized Rashba model: 
$$\hat{H}_0 = \sum_{\boldsymbol{k},\alpha\beta=\uparrow,\downarrow} [\epsilon_0(\boldsymbol{k})\delta_{\alpha\beta} + \boldsymbol{\gamma}(\boldsymbol{k})\boldsymbol{\sigma}_{\alpha\beta}] \hat{a}^{\dagger}_{\boldsymbol{k}\alpha}\hat{a}_{\boldsymbol{k}\beta}$$
  
antisymmetric SO coupling,  $\boldsymbol{B}_{00}(\boldsymbol{k}) \equiv \boldsymbol{\gamma}(\boldsymbol{k}) = -\boldsymbol{\gamma}(-\boldsymbol{k})$ 

Two Bloch bands:  $\xi_{\lambda}(\mathbf{k}) = \epsilon(\mathbf{k}) + \lambda |\boldsymbol{\gamma}(\mathbf{k})|$ (band index  $n = \lambda = \pm$  - helicity)

The original Rashba model: 
$$\begin{split} \gamma(\boldsymbol{k}) &= a(k_y \hat{x} - k_x \hat{y}) \\ \xi_\lambda(\boldsymbol{k}) &= \epsilon(\boldsymbol{k}) + |a| \sqrt{k_x^2 + k_y^2} \end{split}$$



# Symmetry of the SO coupling

Point-group symmetry:  $g\gamma(g^{-1}k) = \gamma(k)$  (g - lattice rotation or reflection)

$$\begin{array}{lll} \frac{21 \text{ PGs in 3D}}{\textbf{O}} & \frac{\gamma_{3D}(k)}{a(k_x \hat{x} + k_y \hat{y} + k_z \hat{z})} \\ \textbf{C}_{4v} & a_1(k_y \hat{x} - k_x \hat{y}) + ia_2(k_+^4 - k_-^4)k_z \hat{z} \\ \textbf{T}_d & a[k_x(k_y^2 - k_z^2)\hat{x} + k_y(k_z^2 - k_x^2)\hat{y} + k_z(k_x^2 - k_y^2)\hat{z}] \\ \dots & \dots & \dots \end{array}$$

 $\begin{array}{ll} \underline{10 \text{ PGs in 2D}} & \underline{\gamma_{2D}(k)} \\ \mathbf{C}_1 & & \overline{(a_1k_x + a_2k_y)\hat{x} + (a_3k_x + a_4k_y)\hat{y} + (a_5k_x + a_6k_y)\hat{z}} \\ \mathbf{C}_2 & & (a_1k_x + a_2k_y)\hat{x} + (a_3k_x + a_4k_y)\hat{y} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

$$\mathbf{D}_4 = a(\kappa_y x - \kappa_x y) \\ \mathbf{D}_6 = a(k_y \hat{x} - k_x \hat{y})$$

# Symmetry of the SO coupling



SC in quantum wires: no reflection symmetry  $z \rightarrow -z$ due to substrate



# Superconducting pairing in nondegenerate bands



# Superconducting pairing in nondegenerate bands

Cooper pairing of the time-reversed states in the same band:

$$\hat{H}_{int} = \frac{1}{2\mathcal{V}} \sum_{\boldsymbol{k}\boldsymbol{k}'\boldsymbol{q}} \sum_{\boldsymbol{n}\boldsymbol{n}'} V_{\boldsymbol{n}\boldsymbol{n}'}(\boldsymbol{k},\boldsymbol{k}') \hat{c}^{\dagger}_{\boldsymbol{k}+\boldsymbol{q},\boldsymbol{n}} \hat{c}^{\dagger}_{\boldsymbol{k},\boldsymbol{n}} \hat{c}_{\boldsymbol{k}',\boldsymbol{n}'} \hat{c}_{\boldsymbol{k}'+\boldsymbol{q},\boldsymbol{n}'}$$

$$\hat{\tilde{c}}_{\boldsymbol{k},n}^{\dagger} = K \hat{c}_{\boldsymbol{k},n}^{\dagger} K^{-1} = t_n(\boldsymbol{k}) \ \hat{c}_{-\boldsymbol{k},n}^{\dagger},$$
hase factor,  $t_n(\boldsymbol{k}) = -t_n(-\boldsymbol{k})$ 

p

Mean field (M = # of nondegenerate bands crossing the Fermi level):

$$\hat{H}_{MF} = \frac{1}{2} \sum_{\boldsymbol{k} \in \text{BZ}} \sum_{n=1}^{M} \left[ \Delta_n(\boldsymbol{k}) \hat{c}^{\dagger}_{\boldsymbol{k},n} \hat{c}^{\dagger}_{\boldsymbol{k},n} + \Delta_n^*(\boldsymbol{k}) \hat{c}_{\boldsymbol{k},n} \hat{c}_{\boldsymbol{k},n} \right]$$

Gap functions are even:  $\Delta_n(\mathbf{k}) = \Delta_n(-\mathbf{k})$ 

# Superconducting pairing in nondegenerate bands

Symmetry properties:  $K: \Delta_n(\mathbf{k}) \to \Delta_n^*(\mathbf{k})$ 

$$g \in \mathbb{G}: \ \Delta_n(\boldsymbol{k}) \to \Delta_n(g^{-1}\boldsymbol{k})$$

Basis-function expansion (in IREP  $\Gamma$ ):  $\Delta_n(\mathbf{k}) = \sum_{a=1}^{d_{\Gamma}} \eta_{n,a} \phi_a(\mathbf{k})$  $Md_{\Gamma}$  order parameter components

Example:  $\mathbb{G}_{2D} = \mathbf{D}_4$  (e.g. oxide interfaces)

| Г     | $d_{\Gamma}$ | $\phi_{\Gamma}(oldsymbol{k}) = \phi_{\Gamma}(-oldsymbol{k})$ |
|-------|--------------|--------------------------------------------------------------|
| $A_1$ | 1            | 1                                                            |
| $A_2$ | 1            | $k_x k_y (k_x^2 - k_y^2)$                                    |
| $B_1$ | 1            | $k_{x}^{2} - k_{y}^{2}$                                      |
| $B_2$ | 1            | $k_x k_y$                                                    |
| E     | 2            | _                                                            |

# Superconducting pairing in two-band model

Band representation: 
$$\Delta_+(\mathbf{k}) = \Delta_+(-\mathbf{k}), \quad \Delta_-(\mathbf{k}) = \Delta_-(-\mathbf{k})$$

Spin representation:

$$\hat{\Delta}_{\alpha\beta} = \Delta_s(\mathbf{k})(i\hat{\sigma}_2)_{\alpha\beta} + \underbrace{\Delta_t(\mathbf{k})\hat{\boldsymbol{\gamma}}(\mathbf{k})}_{\mathbf{d}(\mathbf{k})=-\mathbf{d}(-\mathbf{k})}(i\hat{\boldsymbol{\sigma}}\hat{\sigma}_2)_{\alpha\beta} \qquad \text{singlet-triplet mixing}$$

$$\Delta_s(\boldsymbol{k}) = \frac{\Delta_+(\boldsymbol{k}) + \Delta_-(\boldsymbol{k})}{2}, \quad \Delta_t(\boldsymbol{k}) = \frac{\Delta_+(\boldsymbol{k}) - \Delta_-(\boldsymbol{k})}{2}$$

This talk:

 Unusual nonuniform states: helical, phase solitons, zero-field instabilities

Not today:

- ► Topology in normal state: Berry flux, Z<sub>2</sub> invariants
- Topology in SC state: bulk-boundary correspondence, Majorana quasiparticles
- Magnetoelectric effect
- Unusual effects of disorder

# Ginzburg-Landau free energy

Simplest case: unit IREP, two bands:  $n = \lambda = \pm \Rightarrow \eta_+(\mathbf{r}), \eta_-(\mathbf{r})$ 

Ζ

2D SC in a parallel field

GL free energy density:  $F = F_+ + F_- + F_m$ Intraband:

$$F_{\lambda} = (\text{uniform terms}) + K_{\lambda} |\nabla \eta_{\lambda}|^{2} + \underbrace{\tilde{K}_{\lambda} \operatorname{Im} [\eta_{\lambda}^{*}(\boldsymbol{H} \times \boldsymbol{\nabla})_{z} \eta_{\lambda}]}_{\text{Lifshitz invariant}} + L_{\lambda} H^{2} |\eta_{\lambda}|^{2}$$

$$K_{\lambda} \sim \frac{N_{F,\lambda}}{T_{c0}^{2}} v_{F,\lambda}^{2}, \quad |\tilde{K}_{\lambda}| \sim \frac{N_{F,\lambda}}{T_{c0}^{2}} \mu_{B} v_{F,\lambda}, \quad L_{\lambda} \sim \frac{N_{F,\lambda}}{T_{c0}^{2}} \mu_{B}^{2}$$

Interband pair tunneling:  $F_m = \gamma_m (\eta_+^* \eta_- + \eta_-^* \eta_+)$ 

Lifshitz invariants  $\Rightarrow$  nonuniform instability

## Low fields: helical state

Helical state - stable at low field

$$\eta_{\lambda}(\boldsymbol{r}) = \eta_{\lambda} e^{iqx}$$

$$q = C_1 H, \quad T_c(H) = T_{c0} - C_2 H^2$$
  $C_{1,2} = C_{1,2}(\alpha_{\pm}, K_{\pm}, \tilde{K}_{\pm}, L_{\pm})$ 

No supercurrent in the helical state:  $j_x = -\frac{c}{\mathcal{V}}\frac{\partial \mathcal{F}}{\partial A_x} = \frac{2e}{\mathcal{V}}\frac{\partial \mathcal{F}}{\partial q} = 0$ 

Origin of the modulation: band displacement and deformation by H $\xi_{\lambda}(\mathbf{k}) \rightarrow \Xi_{\lambda}(\mathbf{k}) = \xi_{\lambda}(\mathbf{k}) - \lambda \mu_{B} \hat{\gamma}(\mathbf{k}) H, \quad \Xi_{\lambda}(\mathbf{k}) \neq \Xi_{\lambda}(-\mathbf{k})$ 



## (Possible) phase diagram in 2D



(from D. Agterberg and R. Kaur, PRB 75, 064511 (2007))

#### High fields: phase soliton lattice

High fields: competing phases?

London approximation:  $\eta_{\lambda}(\boldsymbol{r}) = |\eta_{\lambda}|e^{i\varphi_{\lambda}(x)}$ 

Supercurrent:  $j_x = -4e \sum_{\lambda} K_{\lambda} |\eta_{\lambda}|^2 \nabla_x \varphi_{\lambda} + 2eH \sum_{\lambda} \tilde{K}_{\lambda} |\eta_{\lambda}|^2 = 0$ current conservation + boundary conditions

$$\begin{aligned} \nabla_x \varphi_+ &= \frac{1}{1+\rho} \nabla_x \theta + q, \quad \nabla_x \varphi_- = -\frac{\rho}{1+\rho} \nabla_x \theta + q \\ \theta &= \varphi_+ - \varphi_-, \quad \rho = \frac{K_+ |\eta_+|^2}{K_- |\eta_-|^2}, \quad q = \frac{H}{2} \frac{\sum_\lambda \tilde{K}_\lambda |\eta_\lambda|^2}{\sum_\lambda K_\lambda |\eta_\lambda|^2} \end{aligned}$$

 $\varphi_+$  and  $\varphi_-$  are locked ( $\theta = 0$  or  $\pi$ )  $\Rightarrow$  helical state  $\nabla_x \theta \neq 0 \Rightarrow$  phase soliton state

## High fields: phase soliton lattice

London free energy density:

$$f = (\dots) + \frac{1}{2} (\nabla_x \theta)^2 + V_0 (1 - \cos \theta) - \underbrace{h(\nabla_x \theta)}_{\text{bias}}$$
$$h = \frac{H}{2} \left( \frac{\tilde{K}_+}{K_+} - \frac{\tilde{K}_-}{K_-} \right), \quad V_0 \propto |\gamma_m|$$

Sine-Gordon equation

$$\nabla_x^2 \theta - V_0 \sin \theta = 0$$

single soliton (
$$\gamma_m < 0$$
):  
 $\theta(x) = \pi + 2 \arcsin \tanh(x/\xi_s)$   
 $\xi_s = 1/\sqrt{V_0}$ , energy =  $\epsilon_1$ 

At low soliton density  $n_s$ :  $F_{solitons} - F_{no \ solitons} = (\epsilon_1 - 2\pi h)n_s + ...$ 



## Zero-field nonuniform superconducting states

Lifshitz gradient terms are possible even at H = 0!

GL energy for a tetragonal SC, point group  $C_{4v}$ :  $F = F_+ + F_- + F_m + F_L$ 

Additional Lifshitz invariant:  $F_L = K_L \operatorname{Re}(\eta_+^* \nabla_z \eta_- - \eta_-^* \nabla_z \eta_+)$ 

Zero-field nonuniform instability:  $\eta_{\lambda} = \eta_{\lambda,0} e^{iqz}$  if  $K_L > K_{L,c}$ 

Attempt at microscopic derivation:

$$\hat{H}_{int} = \frac{1}{2\mathcal{V}} \sum_{\boldsymbol{k}\boldsymbol{k}'\boldsymbol{q}} \sum_{\lambda\lambda'} V_{\lambda\lambda'}(\boldsymbol{k}, \boldsymbol{k}'; \boldsymbol{q}) \hat{c}^{\dagger}_{\boldsymbol{k}+\boldsymbol{q},\lambda} \hat{\tilde{c}}^{\dagger}_{\boldsymbol{k},\lambda} \hat{\tilde{c}}_{\boldsymbol{k}',\lambda'} \hat{c}_{\boldsymbol{k}'+\boldsymbol{q},\lambda'}$$

*q*-expansion:  $V_{\lambda\lambda'}(\boldsymbol{k}, \boldsymbol{k}'; \boldsymbol{q}) = v_{\lambda\lambda'}(\boldsymbol{k}, \boldsymbol{k}') + i\boldsymbol{b}_{\lambda\lambda'}(\boldsymbol{k}, \boldsymbol{k}')\boldsymbol{q} + \mathcal{O}(q^2)$ treat as a perturbation

## Zero-field nonuniform superconducting states

Correction to the free energy =



Magnitude of the Lifshitz term:  $K_L = \frac{1}{2}N_+N_-\ln^2\left(\frac{2e^{\mathbb{C}}\epsilon_c}{\pi T_c}\right)|\boldsymbol{\beta}|$ 

 $m{eta} = \langle m{b}_{+-}(\hat{m{k}}, \hat{m{k}}') 
angle_{\hat{m{k}}, \hat{m{k}}'}$  - invariant polar vector (for  $\mathbf{C}_{4v}$ :  $m{eta} \parallel \hat{z}$ )

 $\beta \neq 0$  in pyroelectric crystals:  $\mathbb{G} = \mathbf{C}_1, \mathbf{C}_s, \mathbf{C}_2, \mathbf{C}_{2v}, \mathbf{C}_4, \mathbf{C}_{4v}, \mathbf{C}_3, \mathbf{C}_{3v}, \mathbf{C}_6, \mathbf{C}_{6v}$  Other types of zero-field Lifshitz invariants:

weak SO coupling + spin-triplet pairing:  $\hat{\Delta}(\mathbf{k}, \mathbf{r}) = \mathbf{d}(\mathbf{k}, \mathbf{r})(i\hat{\sigma}\hat{\sigma}_2)$ 

in IREP 
$$\Gamma$$
:  $d(\mathbf{k}, \mathbf{r}) = \sum_{a=1}^{d_{\Gamma}} \eta_a(\mathbf{r}) \varphi_a(\mathbf{k}), \quad \varphi_a(\mathbf{k}) = -\varphi_a(-\mathbf{k})$ 

e.g., 3-component order parameter  $\eta = (\eta_1, \eta_2, \eta_3)$  in a cubic crystal  $\mathbb{G} = \mathbf{O}, \quad \Gamma = F_1, \quad \gamma(\mathbf{k}) = \gamma_0 \mathbf{k}, \quad \varphi_{a,i}(\mathbf{k}) \propto e_{aij}\hat{k}_j$ 

Lifshitz invariant:  $F_L = K_L(\eta_1^* \nabla_y \eta_3 + \eta_2^* \nabla_z \eta_1 + \eta_3^* \nabla_x \eta_2 + c.c.)$ 

LI magnitude depends on the SO band splitting:  $K_L \propto |\gamma_0|$ 

In the presence of the Lifshitz gradient terms:

- Stable SC states, H T phase diagram, in 2D, 3D?
- Single vortex structure? Abrikosov vortex lattice structure?
- Nonequilibrium properties (TDGL)?

Same questions – in other SC systems with "built-in" periodic instabilities

e.g. for the Fulde-Ferrell-Larkin-Ovchinnikov state (high-field paramagnetically-limited BCS):

$$F_{gradient} = -K_2 |\boldsymbol{D}\eta|^2 + K_4 |\boldsymbol{D}^2\eta|^2$$

## Conclusions

- Absence of inversion symmetry + electron-lattice spin-orbit coupling = nondegenerate electron bands
- Momentum-space symmetry of the SC states in noncentrosymmetric crystals differs from the standard centrosymmetric case
- The SC order parameter in noncentrosymmetric SCs has at least two components, one per each helicity band
- Linear gradient terms in the GL energy (Lifshitz invariants) are responsible for a variety of new effects, e.g. nonuniform SC states, even at zero applied field

Supported by

