DIMENSION REDUCTION FOR THE LANDAU-DE GENNES THEORY OF NEMATIC LIQUID CRYSTALS.

Dmitry Golovaty

The University of Akron

Joint with A. Montero (Catolica) and P. Sternberg (Indiana)

May 1, 2017

Phase Transitions Models, Banff

Dmitry Golovaty (UA)

May 1, 2017 1 / 33

NEMATIC LIQUID CRYSTALS

FIGURE: Logs in the Spirit Lake, Mt. St. Helens.

Since head and tail are equiprobable $\implies \rho(-\mathbf{n}, x) = \rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Since head and tail are equiprobable $\implies \rho(-\mathbf{n}, x) = \rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second moment

$$M(x) = \int_{\mathbb{S}^2} (\mathbf{n} \otimes \mathbf{n})
ho(\mathbf{n}, x) d\mathbf{n}$$

<u>Note:</u> $M^{T}(x) = M(x)$ and $\operatorname{tr} M(x) = 1$ for all $x \in \Omega$.

Since head and tail are equiprobable $\implies \rho(-\mathbf{n}, x) = \rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second moment

$$M(x) = \int_{\mathbb{S}^2} (\mathbf{n} \otimes \mathbf{n})
ho(\mathbf{n}, x) d\mathbf{n}$$

<u>Note:</u> $M^{T}(x) = M(x)$ and $\operatorname{tr} M(x) = 1$ for all $x \in \Omega$.

LC is isotropic at x if $\rho(\mathbf{n}, x) \equiv \frac{1}{4\pi} \Longrightarrow M(x) = M_{iso} = \frac{1}{3}I.$

Since head and tail are equiprobable $\implies \rho(-\mathbf{n}, x) = \rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second moment

$$M(x) = \int_{\mathbb{S}^2} (\mathbf{n} \otimes \mathbf{n}) \rho(\mathbf{n}, x) d\mathbf{n}$$

<u>Note</u>: $M^{T}(x) = M(x)$ and tr M(x) = 1 for all $x \in \Omega$.

LC is isotropic at x if $\rho(\mathbf{n}, x) \equiv \frac{1}{4\pi} \Longrightarrow M(x) = M_{iso} = \frac{1}{3}I$.

Q-tensor: $Q(x) = M(x) - M_{iso}$ so that Q vanishes in the isotropic state.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_1 = \lambda_2 \Rightarrow Q = S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}\right)$, where $S := \frac{3\lambda_3}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^2$ is the nematic director.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_1 = \lambda_2 \Rightarrow Q = S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}\right)$, where $S := \frac{3\lambda_3}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^2$ is the nematic director.

Biaxial nematic: no repeated eigenvalues \Rightarrow $Q = S_1 \left(\mathbf{e}_1 \otimes \mathbf{e}_1 - \frac{1}{3} \mathbf{I} \right) + S_3 \left(\mathbf{e}_3 \otimes \mathbf{e}_3 - \frac{1}{3} \mathbf{I} \right)$, where $S_1 := 2\lambda_1 + \lambda_3$ and $S_3 = \lambda_1 + 2\lambda_3$ are biaxial order parameters.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_1 = \lambda_2 \Rightarrow Q = S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}\right)$, where $S := \frac{3\lambda_3}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^2$ is the nematic director.

Biaxial nematic: no repeated eigenvalues \Rightarrow $Q = S_1 \left(\mathbf{e}_1 \otimes \mathbf{e}_1 - \frac{1}{3} \mathbf{I} \right) + S_3 \left(\mathbf{e}_3 \otimes \mathbf{e}_3 - \frac{1}{3} \mathbf{I} \right)$, where $S_1 := 2\lambda_1 + \lambda_3$ and $S_3 = \lambda_1 + 2\lambda_3$ are biaxial order parameters.

Isotropic: all eigenvalues are equal zero $\Rightarrow Q = 0$.

By construction, $\lambda_i \in \left[-\frac{1}{3}, \frac{2}{3}\right]$, where i = 1, 2, 3.

LANDAU-DE GENNES MODEL

Bulk elastic energy density:

$$f_e(Q, \nabla Q) := \frac{L_1}{2} |\nabla Q|^2 + \frac{L_2}{2} Q_{ik,j} Q_{ij,k} + \frac{L_3}{2} Q_{ij,j} Q_{ik,k} + \frac{L_4}{2} Q_{lk} Q_{ij,k} Q_{ij,l}$$

LANDAU-DE GENNES MODEL

Bulk elastic energy density:

$$f_e(Q, \nabla Q) := \frac{L_1}{2} |\nabla Q|^2 + \frac{L_2}{2} Q_{ik,j} Q_{ij,k} + \frac{L_3}{2} Q_{ij,j} Q_{ik,k} + \frac{L_4}{2} Q_{lk} Q_{ij,k} Q_{ij,l}$$

Bulk Landau-de Gennes energy density:

$$f_{LdG}(Q) := a \operatorname{tr} \left(Q^2\right) + \frac{2b}{3} \operatorname{tr} \left(Q^3\right) + \frac{c}{2} \left(\operatorname{tr} \left(Q^2\right)\right)^2$$

Here a(T) is temperature-dependent, c > 0, and $f_{LdG} \ge 0$ by adding an appropriate constant. Function of eigenvalues of Q only. Depending on T, minimum is either isotropic or nematic w/specific s.

LANDAU-DE GENNES MODEL

Bulk elastic energy density:

$$f_e(Q, \nabla Q) := \frac{L_1}{2} |\nabla Q|^2 + \frac{L_2}{2} Q_{ik,j} Q_{ij,k} + \frac{L_3}{2} Q_{ij,j} Q_{ik,k} + \frac{L_4}{2} Q_{lk} Q_{ij,k} Q_{ij,l}$$

Bulk Landau-de Gennes energy density:

$$f_{LdG}(Q) := \operatorname{atr} \left(Q^2\right) + \frac{2b}{3} \operatorname{tr} \left(Q^3\right) + \frac{c}{2} \left(\operatorname{tr} \left(Q^2\right)\right)^2$$

Here a(T) is temperature-dependent, c > 0, and $f_{LdG} \ge 0$ by adding an appropriate constant. Function of eigenvalues of Q only. Depending on T, minimum is either isotropic or nematic w/specific s.

Surface energy density (Either strong or weak anchoring):

$$f_{s}(Q) := f(Q, \nu)$$

on the boundary of the container and $\nu \in \mathbb{S}^2$ is a normal to the surface of the liquid crystal.

NEMATIC FILM

 $\ensuremath{\operatorname{Figure:}}$ Geometry of the problem.

Here $\Omega \subset \mathbf{R}^2$ and h > 0 is small.

Nematic energy functional:

$$E[Q] := \int_{\Omega \times [0,h]} \left\{ f_e(Q, \nabla Q) + f_{LdG}(Q) \right\} \, dV + \int_{\Omega \times \{0,h\}} f_s(Q, \hat{z}) \, dA$$

Nematic energy functional:

$$E[Q] := \int_{\Omega \times [0,h]} \left\{ f_e(Q, \nabla Q) + f_{LdG}(Q) \right\} \, dV + \int_{\Omega \times \{0,h\}} f_s(Q, \hat{z}) \, dA$$

Uniaxial data on the lateral boundary of the film:

$$Q|_{\partial\Omega imes [0,h]} = g \in H^{1/2}(\partial\Omega;\mathcal{A}).$$

Nematic energy functional:

$$E[Q] := \int_{\Omega \times [0,h]} \left\{ f_e(Q, \nabla Q) + f_{LdG}(Q) \right\} \, dV + \int_{\Omega \times \{0,h\}} f_s(Q, \hat{z}) \, dA$$

Uniaxial data on the lateral boundary of the film:

$$Q|_{\partial\Omega\times[0,h]}=g\in H^{1/2}(\partial\Omega;\mathcal{A}).$$

Admissible class:

$$\mathcal{C}^{g}_{h} := \left\{ Q \in \mathcal{H}^{1}\left(\Omega \times [0,h];\mathcal{A}\right) : Q|_{\partial\Omega \times [0,h]} = g
ight\},$$

where \mathcal{A} is the set of three-by-three symmetric traceless matrices.

OSIPOV-HESS SURFACE ENERGY

"Bare" surface energy (Osipov-Hess):

 $f_{s}(Q, \hat{z}) := c_{1}(Q\hat{z} \cdot \hat{z}) + c_{2}Q \cdot Q + c_{3}(Q\hat{z} \cdot \hat{z})^{2} + c_{4}|Q\hat{z}|^{2}$

where c_i , $i = 1, \ldots, 4$ are constants.

OSIPOV-HESS SURFACE ENERGY

"Bare" surface energy (Osipov-Hess):

 $f_{s}(Q, \hat{z}) := c_{1}(Q\hat{z} \cdot \hat{z}) + c_{2}Q \cdot Q + c_{3}(Q\hat{z} \cdot \hat{z})^{2} + c_{4}|Q\hat{z}|^{2}$

where c_i , $i = 1, \ldots, 4$ are constants.

Observe that:

$$Q \cdot Q = 2|Q\hat{z}|^2 - (Q\hat{z} \cdot \hat{z})^2 + Q_2 \cdot Q_2,$$

where

$$Q_2 := \left(\mathbf{I} - \hat{z} \otimes \hat{z}\right) Q \left(\mathbf{I} - \hat{z} \otimes \hat{z}\right).$$

OSIPOV-HESS SURFACE ENERGY

"Bare" surface energy (Osipov-Hess):

 $f_{s}(Q, \hat{z}) := c_{1}(Q\hat{z} \cdot \hat{z}) + c_{2}Q \cdot Q + c_{3}(Q\hat{z} \cdot \hat{z})^{2} + c_{4}|Q\hat{z}|^{2}$

where c_i , $i = 1, \ldots, 4$ are constants.

Observe that:

$$Q \cdot Q = 2|Q\hat{z}|^2 - (Q\hat{z} \cdot \hat{z})^2 + Q_2 \cdot Q_2,$$

where

$$Q_2 := (\mathbf{I} - \hat{z} \otimes \hat{z}) Q (\mathbf{I} - \hat{z} \otimes \hat{z}).$$

Q is traceless \Rightarrow

 $\operatorname{tr} Q_2 + Q\hat{z} \cdot \hat{z} = 0.$

In terms of x and Q_2 :

 $f_{s}(Q,\hat{z}) = c_{1}(Q\hat{z}\cdot\hat{z}) + c_{2}Q_{2}\cdot Q_{2} + (c_{3}-c_{2})(Q\hat{z}\cdot\hat{z})^{2} + (2c_{2}+c_{4})|Q\hat{z}|^{2}$

This expression has a family of surface-energy-minimizing tensors that is

parameterized by at least one free eigenvaluenormal to the surface of the liquid crystal is an eigenvector

as long as $c_2 = 0$, $\alpha = c_3 + c_4 > 0$, and $\gamma = c_4 > 0$.

In terms of x and Q_2 :

 $f_{s}(Q,\hat{z}) = c_{1}(Q\hat{z}\cdot\hat{z}) + c_{2}Q_{2}\cdot Q_{2} + (c_{3}-c_{2})(Q\hat{z}\cdot\hat{z})^{2} + (2c_{2}+c_{4})|Q\hat{z}|^{2}$

This expression has a family of surface-energy-minimizing tensors that is

parameterized by at least one free eigenvaluenormal to the surface of the liquid crystal is an eigenvector

as long as $c_2 = 0$, $\alpha = c_3 + c_4 > 0$, and $\gamma = c_4 > 0$. Then the surface energy has the form

$$f_{s}(Q,\hat{z}) = lpha \left[(Q\hat{z}\cdot\hat{z}) - eta
ight]^2 + \gamma | (\mathbf{I} - \hat{z}\otimes\hat{z}) \, Q\hat{z} |^2$$

where $\beta = -\frac{c_1}{2(c_3+c_4)}$.

NONDIMENSIONALIZATION

Let $L_4 = 0$ and

$$ilde{x}=rac{x}{D}, \ ilde{y}=rac{y}{D}, \ ilde{z}=rac{z}{h}, \ F_{\epsilon}=rac{2}{L_{1}h}E,$$

where $D := \operatorname{diam}(\Omega)$. Set

$$\xi = \frac{L_1}{2D^2}, \ \epsilon = \frac{h}{D}, \ \delta = \sqrt{\frac{2\xi}{c}}$$
$$K_2 = \frac{L_2}{L_1}, \ K_3 = \frac{L_3}{L_1}$$
$$A = \frac{a}{c}, \ B = \frac{b}{c}$$
$$\tilde{\alpha} = \frac{\alpha}{\xi}, \ \tilde{\gamma} = \frac{\gamma}{\xi}$$

$$F_{\epsilon}[Q] = \int_{\Omega \times [0,1]} \left(f_{\epsilon}(\nabla Q) + \frac{1}{\delta^2} f_{LdG}(Q) \right) \, dV + \frac{1}{\epsilon} \int_{\Omega \times \{0,1\}} f_{s}(Q,\hat{z}) \, dA,$$

where

$$\begin{split} f_{e}(\nabla Q) &:= \left[|\nabla_{xy} Q|^{2} + K_{2} Q_{ik,j} Q_{ij,k} + K_{3} Q_{ij,j} Q_{ik,k} \right] \\ &+ \frac{2}{\epsilon} \left[K_{2} Q_{i3,j} Q_{ij,3} + K_{3} Q_{ij,j} Q_{i3,3} \right] \\ &+ \frac{1}{\epsilon^{2}} \left[|Q_{z}|^{2} + (K_{2} + K_{3}) Q_{i3,3}^{2} \right], \\ f_{LdG}(Q) &= 2A \operatorname{tr} \left(Q^{2} \right) + \frac{4}{3} B \operatorname{tr} \left(Q^{3} \right) + \left(\operatorname{tr} \left(Q^{2} \right) \right)^{2}, \\ f_{5}(Q, \hat{z}) &= \alpha \left[(Q\hat{z} \cdot \hat{z}) - \beta \right]^{2} + \gamma |(\mathbf{I} - \hat{z} \otimes \hat{z}) Q\hat{z}|^{2}. \end{split}$$

Suppose for simplicity that $\mathcal{K}_2=\mathcal{K}_3=0$ then for every $\mathcal{Q}\in\mathcal{C}_1^g$

$$\begin{split} F_{\epsilon}[Q] &= \int_{\Omega \times [0,1]} \left\{ |Q_{x}|^{2} + |Q_{y}|^{2} + \frac{1}{\epsilon^{2}} |Q_{z}|^{2} \\ &+ \frac{1}{\delta^{2}} \left(2A \operatorname{tr} \left(Q^{2}\right) + \frac{4}{3} B \operatorname{tr} \left(Q^{3}\right) + \left(\operatorname{tr} \left(Q^{2}\right)\right)^{2} \right) \right\} \, dV \\ &+ \frac{1}{\epsilon} \int_{\Omega \times \{0,1\}} \left(\alpha \left[\left(Q\hat{z} \cdot \hat{z}\right) - \beta \right]^{2} + \gamma |(\mathbf{I} - \hat{z} \otimes \hat{z}) \, Q\hat{z}|^{2} \right) \, dA, \end{split}$$

and set

$$f_s(Q,\hat{z}) =: f_s^{(0)}(Q,\hat{z}) + \epsilon f_s^{(1)}(Q,\hat{z})$$

—this allows for different asymptotic regimes for α and $\gamma.$

$$F_0[Q] := \begin{cases} 2 \int_{\Omega} \left\{ |\nabla_{xy}Q|^2 + \frac{1}{\delta^2} f_{LdG}(Q) + f_s^{(1)}(Q, \hat{z}) \right\} dA & \text{if } Q \in H_g^1, \\ +\infty & \text{otherwise.} \end{cases}$$

Here

$$H^1_g := \left\{ Q \in H^1(\Omega; \mathcal{D}) : Q|_{\partial\Omega} = g
ight\}$$

and

$$\mathcal{D}:=\left\{ \mathcal{Q}\in\mathcal{A}:\mathcal{Q}\in \mathrm{argmin}_{\mathcal{Q}\in\mathcal{A}}f^{(0)}_{s}(\mathcal{Q})
ight\} ,$$

for some boundary data $g:\partial\Omega
ightarrow\mathcal{D}.$

THEOREM (G, MONTERO, STERNBERG (2015))

Fix $g: \partial \Omega \to D$ such that H_g^1 is nonempty. Then Γ -lim_{ϵ} $F_{\epsilon} = F_0$ weakly in C_1^g . Furthermore, if a sequence $\{Q_{\epsilon}\}_{\epsilon>0} \subset C_1^g$ satisfies a uniform energy bound $F_{\epsilon}[Q_{\epsilon}] < C_0$ then there is a subsequence weakly convergent in C_1^g to a map in H_g^1 .

Proof.

Idea: can use a trivial recovery sequence. Indeed, if $Q_{\epsilon} \equiv Q \in C_1^g \setminus H_g^1$ then $\lim_{\epsilon \to 0} F_{\epsilon}[Q_{\epsilon}] = +\infty = F_0[Q]$ and when $Q_{\epsilon} \equiv Q \in H_g^1$ then $F_{\epsilon}[Q_{\epsilon}] = F_0[Q_{\epsilon}] = F_0[Q]$ for all ϵ .

$$f_s^{(0)} = \alpha \left[(Q\hat{z} \cdot \hat{z}) - \beta \right]^2 + \gamma | (\mathbf{I} - \hat{z} \otimes \hat{z}) Q\hat{z} |^2 \text{ and } f_s^{(1)} \equiv 0 \quad \Rightarrow$$

(i). Admissible tensors satisfy $Q\hat{z} = \beta\hat{z}$ and

(ii). There are two types of \mathcal{D} -valued uniaxial Dirichlet data on $\partial \Omega$:

$$f_s^{(0)} = \alpha \left[(Q\hat{z} \cdot \hat{z}) - \beta \right]^2 + \gamma | (\mathbf{I} - \hat{z} \otimes \hat{z}) Q\hat{z} |^2 \text{ and } f_s^{(1)} \equiv 0 \quad \Rightarrow$$

(i). Admissible tensors satisfy $Q\hat{z} = \beta\hat{z}$ and

(ii). There are two types of \mathcal{D} -valued uniaxial Dirichlet data on $\partial \Omega$:

• $Q = -3\beta \left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}\right)$, where $\mathbf{n} \perp \hat{z}$ is any \mathbb{S}^1 -valued field on $\partial \Omega$.

$$f_s^{(0)} = \alpha \left[(Q\hat{z} \cdot \hat{z}) - \beta \right]^2 + \gamma | (\mathbf{I} - \hat{z} \otimes \hat{z}) Q\hat{z} |^2 \text{ and } f_s^{(1)} \equiv 0 \quad \Rightarrow$$

(i). Admissible tensors satisfy $Q\hat{z} = \beta\hat{z}$ and

(ii). There are two types of \mathcal{D} -valued uniaxial Dirichlet data on $\partial \Omega$:

Can represent $Q \in H^1_g$ as

$$Q = \left(egin{array}{ccc} p_1 - rac{eta}{2} & p_2 & 0 \ p_2 & -p_1 - rac{eta}{2} & 0 \ 0 & 0 & eta \end{array}
ight).$$

Can represent $Q \in H^1_g$ as

$$Q = \left(egin{array}{ccc} p_1 - rac{eta}{2} & p_2 & 0 \ p_2 & -p_1 - rac{eta}{2} & 0 \ 0 & 0 & eta \end{array}
ight).$$

Then

with

$$F_0[Q] = ilde{F}_0[\mathbf{p}] := \int_\Omega \left\{ 2|
abla \mathbf{p}|^2 + rac{1}{\delta^2} W(|\mathbf{p}|)
ight\} dV,$$

where $\mathbf{p} = (p_1, p_2)$ and

$$W(t)=4t^4+ ilde{C}t^2+ ilde{D},$$
 $ilde{C}=6eta^2-4Beta+4A$ and $ilde{D}\in\mathbb{R}.$

$$Q|_{\partial\Omega imes [0,1]} = rac{3}{2}eta\left(\hat{z}\otimes\hat{z}-rac{1}{3}\mathsf{I}
ight),$$

admissible functions satisfy the boundary condition

 $\mathbf{p}|_{\partial\Omega} = \mathbf{0}.$

$$egin{aligned} & \mathcal{Q}|_{\partial\Omega imes [0,1]} = rac{3}{2}eta\left(\hat{z}\otimes\hat{z} - rac{1}{3}\mathbf{I}
ight), \end{aligned}$$

admissible functions satisfy the boundary condition

$$\mathbf{p}|_{\partial\Omega}=\mathbf{0}.$$

The minimizer of

$$ilde{\mathcal{F}}_0[\mathbf{p}] = \int_\Omega \left\{ 2 |
abla \mathbf{p}|^2 + rac{1}{\delta^2} W(|\mathbf{p}|)
ight\} \, dV$$

then has a constant angular component \Rightarrow scalar minimization problem for $\rho:=|\mathbf{p}|$ and

$$egin{aligned} & \mathcal{Q}|_{\partial\Omega imes \left[0,1
ight] }=rac{3}{2}eta\left(\hat{z}\otimes\hat{z}-rac{1}{3} extbf{I}
ight) , \end{aligned}$$

admissible functions satisfy the boundary condition

$$\mathbf{p}|_{\partial\Omega}=\mathbf{0}.$$

The minimizer of

$$ilde{\mathcal{F}}_0[\mathbf{p}] = \int_\Omega \left\{ 2 |
abla \mathbf{p}|^2 + rac{1}{\delta^2} W(|\mathbf{p}|)
ight\} \, dV$$

then has a constant angular component \Rightarrow scalar minimization problem for $\rho:=|\mathbf{p}|$ and

9 If
$$\tilde{C} \ge 0$$
 then the minimizer $p \equiv 0$.

$$egin{aligned} & \mathcal{Q}|_{\partial\Omega imes [0,1]} = rac{3}{2}eta\left(\hat{z}\otimes\hat{z} - rac{1}{3}\mathbf{I}
ight), \end{aligned}$$

admissible functions satisfy the boundary condition

$$\mathbf{p}|_{\partial\Omega}=\mathbf{0}.$$

The minimizer of

$$ilde{\mathcal{F}}_0[\mathbf{p}] = \int_\Omega \left\{ 2 |
abla \mathbf{p}|^2 + rac{1}{\delta^2} W(|\mathbf{p}|)
ight\} \, dV$$

then has a constant angular component \Rightarrow scalar minimization problem for $\rho:=|\mathbf{p}|$ and

If \$\tilde{C} \ge 0\$ then the minimizer \$p \equiv 0\$.
If \$\tilde{C} < 0\$ then the minimizer \$p\$ solves the problem

$$-\Delta p + rac{1}{\delta^2} W'(p) = 0 ext{ in } \Omega, \quad p = 0 ext{ on } \partial \Omega.$$

Now suppose

$$\mathcal{Q}|_{\partial\Omega imes [0,1]} = -3eta\left(\mathbf{n}\otimes\mathbf{n}-rac{1}{3}\mathbf{I}
ight),$$

where $\mathbf{n}: \partial \Omega \to \mathbb{S}^1$.

We have

$$\mathbf{p}=-3\beta\left(n_1^2-\frac{1}{2},n_1n_2\right),\,$$

on $\partial\Omega$ where $|\mathbf{p}| = \frac{3\beta}{2}$. If \mathbf{p} is smooth and nonvanishing, it has a well-defined winding number $d \in \mathbb{Z}$. We set the degree of g to be equal to d/2. Then \mathbf{p} must vanish somewhere within a vortex core structure of a characteristic size of δ in Ω .

Topologically nontrivial boundary data will cause the director to "escape" from the *xy*-plane to the *z*-direction. The requirement that Q_0 takes values in \mathcal{D} forces the escape to happen through biaxial states that are heavily penalized by the Landau-de Gennes energy.

FIGURE: Geometry of the target space.

Topologically nontrivial boundary data will cause the director to "escape" from the *xy*-plane to the *z*-direction. The requirement that Q_0 takes values in \mathcal{D} forces the escape to happen through biaxial states that are heavily penalized by the Landau-de Gennes energy.

FIGURE: Geometry of the target space.

Degree of biaxiality:

$$\xi(Q)^2 := 1 - 6 \frac{\left(\operatorname{tr} Q^3\right)^2}{\left(\operatorname{tr} Q^2\right)^3} = 1 - 27 \frac{\beta^2 \left(4p^2 - \beta^2\right)^2}{(4p^2 + 3\beta^2)^3}$$

where $\xi(Q) = 0$ implies that Q is uniaxial.

GENERAL SURFACE

FIGURE: Geometry of the problem.

$$\Omega_h := \{X \in \mathbb{R}^3 : X = x + ht\nu(x) \text{ for } x \in \mathcal{M}, \ t \in (-1, 1)\},$$

 $\mathcal{M}_{\pm h} := \{x \pm h\nu(x) : x \in \mathcal{M}\}$

Minimize

$$E[Q] := \int_{\Omega_h} \{f_e(\nabla Q) + f_{LdG}(Q)\} \, dV + \int_{\mathcal{M}_{-h} \cup \mathcal{M}_h} f_s(Q, \nu) \, dA.$$

in the class

$${\mathcal C}^{{\mathcal g}}_h := \left\{ Q \in {\mathcal H}^1 \left(\Omega_h ; {\mathcal A}
ight) : Q|_{\Omega^{\mathrm{lat}}_h} = {\mathcal g}
ight\},$$

of admissible functions. Here ${\cal A}$ is the set of three-by-three symmetric traceless matrices.

COORDINATE SYSTEM

Let $au: U imes [-1,1] o \mathbb{R}^3$ given by

 $X(u,t) = x(u) + ht\nu(x(u)),$

such that

$$X_t = h\nu, \qquad D_u X = D_u x (\mathbf{I} + htA),$$

where

 $A = -\mathbb{I}^{-1}\mathbb{II},$

is the matrix of the shape operator $\nabla_{\mathcal{M}}\nu$ and \mathbb{I} and \mathbb{II} are the first and second fundamental forms for \mathcal{M} . Here

 $(\nabla_{\mathcal{M}}\nu)\nu = 0, \quad (\nabla_{\mathcal{M}}\nu)\mathbf{d}_1 = \kappa_1\mathbf{d}_1, \quad (\nabla_{\mathcal{M}}\nu)\mathbf{d}_2 = \kappa_2\mathbf{d}_2.$

 κ_i and \mathbf{d}_i , i = 1, 2 are the principal curvatures and directions at x(u), respectively.

Given $X \in \Omega_h$, let $x = \operatorname{Proj}_{\mathcal{M}} X$ and $P_X = \mathbf{I} - \nu(x) \otimes \nu(x)$. Then $\nabla \mathbf{a} = \nabla \mathbf{a} (\mathbf{I} - P_X) + \nabla \mathbf{a} P_X.$

so that

$$|\nabla \mathbf{a}|^2 = \nabla \mathbf{a} \cdot \nabla \mathbf{a} = |\nabla \mathbf{a} (\mathbf{I} - P_X)|^2 + |\nabla \mathbf{a} P_X|^2.$$

Further

$$\nabla \mathbf{a} \left(I - P_X \right) = \frac{1}{h} \mathbf{a}_t \otimes \nu,$$
$$\nabla \mathbf{a} P_X = D_u \mathbf{a} \left(I + htA \right)^{-1} (D_u x)^{-1},$$

Note: Setting h = 0 implies

$$abla \mathsf{P}_{\mathsf{X}} = D_{\mathsf{u}} \mathsf{a} (D_{\mathsf{u}} \mathsf{x})^{-1} =
abla_{\mathcal{M}} \mathsf{a}$$

NONDIMENSIONAL ENERGY FUNCTIONAL

$$F_{\epsilon}[Q] = \int_{\Omega_1} \left(f_{\epsilon}(\nabla Q) + \frac{1}{\delta^2} f_{LdG}(Q) \right) \, dV + \frac{1}{\epsilon} \int_{\mathcal{M}_{-1} \cup \mathcal{M}_1} f_{s}(Q, \nu) \, dA,$$

Expanding in ε , we have

$$\begin{split} f_{\varepsilon}(\nabla Q) &= \frac{1}{2} \sum_{i=1}^{3} \left\{ \left| \nabla_{\mathcal{M}} Q_{i} + \frac{1}{\varepsilon} Q_{i,t} \otimes \nu \right|^{2} \right. \\ &\left. + M_{2} \left(\operatorname{div}_{\mathcal{M}} Q_{i} + \frac{1}{\varepsilon} Q_{i,t} \cdot \nu \right)^{2} \right. \\ &\left. + M_{3} \left(\nabla_{\mathcal{M}} Q_{i} + \frac{1}{\varepsilon} Q_{i,t} \otimes \nu \right) \cdot \left(\nabla_{\mathcal{M}} Q_{i}^{T} + \frac{1}{\varepsilon} \nu \otimes Q_{i,t} \right) \right\} \\ &\left. + O(\varepsilon), \end{split}$$

$$F_0[Q] := \begin{cases} \int_{\mathcal{M}} \left\{ f_e^0(\nabla_{\mathcal{M}} Q) + \frac{1}{\delta^2} f_{LdG}(Q) + 2f_s^{(1)}(Q,\nu) \right\} dS & \text{if } Q \in H_g^1, \\ +\infty & \text{otherwise.} \end{cases}$$

Here

$$f_e^0(\nabla_{\mathcal{M}}Q,\nu) := \min_{B\in\mathcal{A}} f_e(B\otimes \nu + \nabla_{\mathcal{M}}Q)$$

and the space

 $H^1_g := \left\{ Q \in H^1(\mathcal{M}; \mathcal{A}) : Q|_{\partial \mathcal{M}} = g, f_s^{(0)}(Q(x), \nu(x)) = 0 \text{ for a.e. } x \in \bar{\mathcal{M}} \right\}$

for some uniaxial boundary data $g \in H^{1/2}(\partial \mathcal{M}; \mathcal{A})$.

Note that, generally,

 $f_e^0(\nabla_{\mathcal{M}} Q) \neq |\nabla_{\mathcal{M}} Q|^2 + M_2 |\mathrm{div}_{\mathcal{M}} Q|^2 + M_3 \sum_{i=1}^3 \nabla_{\mathcal{M}} Q_i \cdot (\nabla_{\mathcal{M}} Q_i)^T.$

- True when $M_2 = M_3 = 0$.
- Lemma: Suppose that $M_3 = 0$ and $M_2 > -\frac{3}{5}$. Then

$$\begin{split} f_e^0 \left(\nabla_{\mathcal{M}} Q, \nu \right) &= \frac{1}{2} \left\{ |\nabla_{\mathcal{M}} Q|^2 + \frac{2M_2(M_2+1)}{M_2+2} |\mathrm{div}_{\mathcal{M}} Q|^2 \\ &- \frac{M_2^2}{(M_2+2)(2M_2+3)} (\nu \cdot \mathrm{div}_{\mathcal{M}} Q)^2 \right\}. \end{split}$$

Theorem (G, Montero, Sternberg (2016))

Fix $g \in H^{1/2}(\partial \mathcal{M}; \mathcal{A})$ such that the set H_g^1 is nonempty. Assume that $-1 < M_3 < 2$, and $-\frac{3}{5} - \frac{1}{10}M_3 < M_2$. Then Γ -lim_{ε} $F_{\varepsilon} = F_0$ weakly in C_1^g . Furthermore, if a sequence $\{Q_{\varepsilon}\}_{\varepsilon>0} \subset C_1^g$ satisfies a uniform energy bound $F_{\varepsilon}[Q_{\varepsilon}] < C_0$ then there is a subsequence weakly convergent in C_1^g to a map in H_g^1 .

EXAMPLE

 ${\mathcal M}$ is a surface of revolution:

$$\Psi(s,\theta) = \begin{pmatrix} a(s)\cos\theta\\a(s)\sin\theta\\b(s) \end{pmatrix},$$

where $\theta \in [0, 2\pi]$ and $\mathbf{r}(s) := (a(s), b(s))$, $s \in [0, L]$ is a smooth curve in \mathbb{R}^2 .

FIGURE: Radial Geometry.

Set $\mathbf{r}'(s) = (\cos \phi(s), \sin \phi(s))$ and introduce the eigenframe

$$\mathbf{T}(s,\theta) = \begin{pmatrix} \cos\phi(s)\cos\theta\\ \cos\phi(s)\sin\theta\\ \sin\phi(s) \end{pmatrix}, \quad \mathbf{N}(s,\theta) = \begin{pmatrix} -\sin\theta\\ \cos\theta\\ 0 \end{pmatrix},$$
$$\nu(s,\theta) = \begin{pmatrix} -\sin\phi(s)\cos\theta\\ -\sin\phi(s)\sin\theta\\ \cos\phi(s) \end{pmatrix}.$$

FIGURE: Eigenframe.

Q can be expressed in the form

 $Q = p_1(\mathsf{T} \otimes \mathsf{T} - \mathsf{N} \otimes \mathsf{N}) + p_2(\mathsf{T} \otimes \mathsf{N} + \mathsf{N} \otimes \mathsf{T}) + \frac{3\beta}{2} \left(\nu \otimes \nu - \frac{1}{3} I \right).$

With $\beta = -1/3$, $f_s^{(1)} \equiv 0$, and $M_2 = M_3 = 0$:

$$\begin{split} |\nabla_{\mathcal{M}}Q|^2 &= |\mathbf{p}_{,s}|^2 + \frac{1}{a^2}|\mathbf{p}_{,\theta}|^2 + \frac{4\cos\phi}{a^2}\left(p_1p_{2,\theta} - p_2p_{1,\theta}\right) \\ &+ \left(\frac{4}{a^2} - 3\kappa_N^2 + \kappa_T^2\right)|\mathbf{p}|^2 - p_1\left(\kappa_N^2 - \kappa_T^2\right) := f_{el}(\nabla\mathbf{p},\mathbf{p}), \\ &f_{LdG}(Q) \to f_{LdG}(|\mathbf{p}|), \end{split}$$

so that

$$E_0[Q] \to E_0[\mathbf{p}] = \int_{s_0}^{s_0+L} \int_0^{2\pi} \left(f_{el}(\nabla \mathbf{p}, \mathbf{p}) + \frac{1}{\delta^2} f_{LdG}(|\mathbf{p}|) \right) a(s) d\theta ds.$$

FIGURE: Minimizing configurations.

Dmitry Golovaty (UA)

May 1, 2017 31 / 33

- Assume that \mathcal{M} is a truncated cone: $\mathbf{r}(s) = (\cos \phi_0, \sin \phi_0)s$, where $s \in [s_0, s_0 + L]$.
- Impose natural boundary conditions on **p** on each orifice of the cone.
- Let $\delta \to 0$ so that $|\mathbf{p}| = const$; set $|\mathbf{p}| = 1$. Then

 $\mathbf{p} = (\cos \Psi(s, \theta), \sin \Psi(s, \theta)).$

It follows that, up to a constant,

$$E_0[\Psi] = \int_{s_0}^{s_0+L} \int_0^{2\pi} \left(\Psi_{,s}^2 + \frac{1}{a^2(s)} \Psi_{,\theta}^2 + \frac{4\cos\phi_0}{a^2(s)} \Psi_{,\theta} - \frac{\sin^2\phi_0}{a^2(s)}\cos\Psi \right) a(s)d\theta \, ds$$

Can assume that $\Psi_{,s} \equiv 0$, then need to study

$$E_0[\Psi] = \int_0^{2\pi} \left(\Psi_{,\theta}^2 + 4\cos\phi_0\Psi_{,\theta} - \sin^2\phi_0\cos\Psi \right) \, d\theta,$$

subject to $\Psi(2\pi) = \Psi(0) + 2\pi k$ for some $k \in \mathbb{Z}$.

FIGURE: Energies of possible competitors.