Dimension reduction for the Landau-de Gennes theory of nematic liquid crystals.

Dmitry Golovaty

The University of Akron
Joint with A. Montero (Catolica) and P. Sternberg (Indiana)

May 1, 2017

Phase Transitions Models, Banff

Nematic Liquid Crystals

Figure: Logs in the Spirit Lake, Mt. St. Helens.

Q-TENSOR THEORY

Let $\Omega \subset \mathbb{R}^{3}$ and $\rho(\mathbf{n}, x)$ be a pdf of molecular orientations at $x \in \Omega$, where $\mathbf{n} \in \mathbb{S}^{2}$.

Q-TENSOR THEORY

Let $\Omega \subset \mathbb{R}^{3}$ and $\rho(\mathbf{n}, x)$ be a pdf of molecular orientations at $x \in \Omega$, where $\mathbf{n} \in \mathbb{S}^{2}$.

Since head and tail are equiprobable $\Longrightarrow \rho(-\mathbf{n}, x)=\rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Q-TENSOR THEORY

Let $\Omega \subset \mathbb{R}^{3}$ and $\rho(\mathbf{n}, x)$ be a pdf of molecular orientations at $x \in \Omega$, where $\mathbf{n} \in \mathbb{S}^{2}$.

Since head and tail are equiprobable $\Longrightarrow \rho(-\mathbf{n}, x)=\rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second moment

$$
M(x)=\int_{\mathbb{S}^{2}}(\mathbf{n} \otimes \mathbf{n}) \rho(\mathbf{n}, x) d \mathbf{n}
$$

Note: $M^{T}(x)=M(x)$ and $\operatorname{tr} M(x)=1$ for all $x \in \Omega$.

Q-TENSOR THEORY

Let $\Omega \subset \mathbb{R}^{3}$ and $\rho(\mathbf{n}, x)$ be a pdf of molecular orientations at $x \in \Omega$, where $\mathbf{n} \in \mathbb{S}^{2}$.

Since head and tail are equiprobable $\Longrightarrow \rho(-\mathbf{n}, x)=\rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second moment

$$
M(x)=\int_{\mathbb{S}^{2}}(\mathbf{n} \otimes \mathbf{n}) \rho(\mathbf{n}, x) d \mathbf{n}
$$

Note: $M^{T}(x)=M(x)$ and $\operatorname{tr} M(x)=1$ for all $x \in \Omega$.
LC is isotropic at x if $\rho(\mathbf{n}, x) \equiv \frac{1}{4 \pi} \Longrightarrow M(x)=M_{\text {iso }}=\frac{1}{3} \mathrm{I}$.

Q-TENSOR THEORY

Let $\Omega \subset \mathbb{R}^{3}$ and $\rho(\mathbf{n}, x)$ be a pdf of molecular orientations at $x \in \Omega$, where $\mathbf{n} \in \mathbb{S}^{2}$.

Since head and tail are equiprobable $\Longrightarrow \rho(-\mathbf{n}, x)=\rho(\mathbf{n}, x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second moment

$$
M(x)=\int_{\mathbb{S}^{2}}(\mathbf{n} \otimes \mathbf{n}) \rho(\mathbf{n}, x) d \mathbf{n}
$$

Note: $M^{T}(x)=M(x)$ and $\operatorname{tr} M(x)=1$ for all $x \in \Omega$.
LC is isotropic at x if $\rho(\mathbf{n}, x) \equiv \frac{1}{4 \pi} \Longrightarrow M(x)=M_{\text {iso }}=\frac{1}{3} \mathrm{I}$.
Q-tensor: $Q(x)=M(x)-M_{\text {iso }}$ so that Q vanishes in the isotropic state.

Nematic Q-TENSor

$Q \in M_{\text {sym }}^{3 \times 3}$ is a traceless tensor \Rightarrow eigenvalues satisfy $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ with a mutually orthonormal eigenframe $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$.

Nematic Q-TENsor

$Q \in M_{\text {sym }}^{3 \times 3}$ is a traceless tensor \Rightarrow eigenvalues satisfy $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ with a mutually orthonormal eigenframe $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_{1}=\lambda_{2} \Rightarrow$ $Q=S\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)$, where $S:=\frac{3 \lambda_{3}}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^{2}$ is the nematic director.

Nematic Q-TENsor

$Q \in M_{\text {sym }}^{3 \times 3}$ is a traceless tensor \Rightarrow eigenvalues satisfy $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ with a mutually orthonormal eigenframe $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_{1}=\lambda_{2} \Rightarrow$ $Q=S\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)$, where $S:=\frac{3 \lambda_{3}}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^{2}$ is the nematic director.

Biaxial nematic: no repeated eigenvalues \Rightarrow $Q=S_{1}\left(\mathbf{e}_{1} \otimes \mathbf{e}_{1}-\frac{1}{3} \mathbf{I}\right)+S_{3}\left(\mathbf{e}_{3} \otimes \mathbf{e}_{3}-\frac{1}{3} \mathbf{I}\right)$, where $S_{1}:=2 \lambda_{1}+\lambda_{3}$ and $S_{3}=\lambda_{1}+2 \lambda_{3}$ are biaxial order parameters.

Nematic Q-TEnsor

$Q \in M_{\text {sym }}^{3 \times 3}$ is a traceless tensor \Rightarrow eigenvalues satisfy $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ with a mutually orthonormal eigenframe $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_{1}=\lambda_{2} \Rightarrow$ $Q=S\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)$, where $S:=\frac{3 \lambda_{3}}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^{2}$ is the nematic director.

Biaxial nematic: no repeated eigenvalues \Rightarrow
$Q=S_{1}\left(\mathbf{e}_{1} \otimes \mathbf{e}_{1}-\frac{1}{3} \mathbf{I}\right)+S_{3}\left(\mathbf{e}_{3} \otimes \mathbf{e}_{3}-\frac{1}{3} \mathbf{I}\right)$, where $S_{1}:=2 \lambda_{1}+\lambda_{3}$ and $S_{3}=\lambda_{1}+2 \lambda_{3}$ are biaxial order parameters.

Isotropic: all eigenvalues are equal zero $\Rightarrow Q=0$.
By construction, $\lambda_{i} \in\left[-\frac{1}{3}, \frac{2}{3}\right]$, where $i=1,2,3$.

Landau-de Gennes Model

Bulk elastic energy density:

$$
f_{e}(Q, \nabla Q):=\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} Q_{i k, j} Q_{i j, k}+\frac{L_{3}}{2} Q_{i j, j} Q_{i k, k}+\frac{L_{4}}{2} Q_{l k} Q_{i j, k} Q_{i j, l}
$$

Landau-de Gennes Model

Bulk elastic energy density:

$$
f_{e}(Q, \nabla Q):=\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} Q_{i k, j} Q_{i j, k}+\frac{L_{3}}{2} Q_{i j, j} Q_{i k, k}+\frac{L_{4}}{2} Q_{l k} Q_{i j, k} Q_{i j, l}
$$

Bulk Landau-de Gennes energy density:

$$
f_{L d G}(Q):=a \operatorname{tr}\left(Q^{2}\right)+\frac{2 b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{2}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}
$$

Here $a(T)$ is temperature-dependent, $c>0$, and $f_{L d G} \geq 0$ by adding an appropriate constant. Function of eigenvalues of Q only. Depending on T, minimum is either isotropic or nematic $w /$ specific s.

Landau-de Gennes Model

Bulk elastic energy density:

$$
f_{e}(Q, \nabla Q):=\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} Q_{i k, j} Q_{i j, k}+\frac{L_{3}}{2} Q_{i j, j} Q_{i k, k}+\frac{L_{4}}{2} Q_{l k} Q_{i j, k} Q_{i j, l}
$$

Bulk Landau-de Gennes energy density:

$$
f_{L d G}(Q):=a \operatorname{tr}\left(Q^{2}\right)+\frac{2 b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{2}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}
$$

Here $a(T)$ is temperature-dependent, $c>0$, and $f_{L d G} \geq 0$ by adding an appropriate constant. Function of eigenvalues of Q only. Depending on T, minimum is either isotropic or nematic $w /$ specific s.

Surface energy density (Either strong or weak anchoring):

$$
f_{s}(Q):=f(Q, \nu)
$$

on the boundary of the container and $\nu \in \mathbb{S}^{2}$ is a normal to the surface of the liquid crystal.

Nematic Film

Figure: Geometry of the problem.

Here $\Omega \subset \mathbf{R}^{2}$ and $h>0$ is small.

Nematic energy functional:

$$
E[Q]:=\int_{\Omega \times[0, h]}\left\{f_{e}(Q, \nabla Q)+f_{L d G}(Q)\right\} d V+\int_{\Omega \times\{0, h\}} f_{s}(Q, \hat{z}) d A
$$

Nematic energy functional:

$$
E[Q]:=\int_{\Omega \times[0, h]}\left\{f_{e}(Q, \nabla Q)+f_{L d G}(Q)\right\} d V+\int_{\Omega \times\{0, h\}} f_{s}(Q, \hat{z}) d A
$$

Uniaxial data on the lateral boundary of the film:

$$
\left.Q\right|_{\partial \Omega \times[0, h]}=g \in H^{1 / 2}(\partial \Omega ; \mathcal{A}) .
$$

Nematic energy functional:

$$
E[Q]:=\int_{\Omega \times[0, h]}\left\{f_{e}(Q, \nabla Q)+f_{L d G}(Q)\right\} d V+\int_{\Omega \times\{0, h\}} f_{s}(Q, \hat{z}) d A
$$

Uniaxial data on the lateral boundary of the film:

$$
\left.Q\right|_{\partial \Omega \times[0, h]}=g \in H^{1 / 2}(\partial \Omega ; \mathcal{A}) .
$$

Admissible class:

$$
\mathcal{C}_{h}^{g}:=\left\{Q \in H^{1}(\Omega \times[0, h] ; \mathcal{A}):\left.Q\right|_{\partial \Omega \times[0, h]}=g\right\}
$$

where \mathcal{A} is the set of three-by-three symmetric traceless matrices.

Osipov-Hess surface energy

"Bare" surface energy (Osipov-Hess):

$$
f_{s}(Q, \hat{z}):=c_{1}(Q \hat{z} \cdot \hat{z})+c_{2} Q \cdot Q+c_{3}(Q \hat{z} \cdot \hat{z})^{2}+c_{4}|Q \hat{z}|^{2}
$$

where $c_{i}, i=1, \ldots, 4$ are constants.

Osipov-Hess surface energy

"Bare" surface energy (Osipov-Hess):

$$
f_{s}(Q, \hat{z}):=c_{1}(Q \hat{z} \cdot \hat{z})+c_{2} Q \cdot Q+c_{3}(Q \hat{z} \cdot \hat{z})^{2}+c_{4}|Q \hat{z}|^{2}
$$

where $c_{i}, i=1, \ldots, 4$ are constants.
Observe that:

$$
Q \cdot Q=2|Q \hat{z}|^{2}-(Q \hat{z} \cdot \hat{z})^{2}+Q_{2} \cdot Q_{2},
$$

where

$$
Q_{2}:=(\mathbf{I}-\hat{z} \otimes \hat{z}) Q(\mathbf{I}-\hat{z} \otimes \hat{z}) .
$$

Osipov-Hess surface energy

"Bare" surface energy (Osipov-Hess):

$$
f_{s}(Q, \hat{z}):=c_{1}(Q \hat{z} \cdot \hat{z})+c_{2} Q \cdot Q+c_{3}(Q \hat{z} \cdot \hat{z})^{2}+c_{4}|Q \hat{z}|^{2}
$$

where $c_{i}, i=1, \ldots, 4$ are constants.

Observe that:

$$
Q \cdot Q=2|Q \hat{z}|^{2}-(Q \hat{z} \cdot \hat{z})^{2}+Q_{2} \cdot Q_{2},
$$

where

$$
Q_{2}:=(\mathbf{I}-\hat{z} \otimes \hat{z}) Q(\mathbf{I}-\hat{z} \otimes \hat{z}) .
$$

Q is traceless \Rightarrow

$$
\operatorname{tr} Q_{2}+Q \hat{z} \cdot \hat{z}=0 .
$$

In terms of x and Q_{2} :
$f_{s}(Q, \hat{z})=c_{1}(Q \hat{z} \cdot \hat{z})+c_{2} Q_{2} \cdot Q_{2}+\left(c_{3}-c_{2}\right)(Q \hat{z} \cdot \hat{z})^{2}+\left(2 c_{2}+c_{4}\right)|Q \hat{z}|^{2}$
This expression has a family of surface-energy-minimizing tensors that is
(1) parameterized by at least one free eigenvalue
(2) normal to the surface of the liquid crystal is an eigenvector as long as $c_{2}=0, \alpha=c_{3}+c_{4}>0$, and $\gamma=c_{4}>0$.

In terms of x and Q_{2} :

$$
f_{s}(Q, \hat{z})=c_{1}(Q \hat{z} \cdot \hat{z})+c_{2} Q_{2} \cdot Q_{2}+\left(c_{3}-c_{2}\right)(Q \hat{z} \cdot \hat{z})^{2}+\left(2 c_{2}+c_{4}\right)|Q \hat{z}|^{2}
$$

This expression has a family of surface-energy-minimizing tensors that is
(1) parameterized by at least one free eigenvalue
(2) normal to the surface of the liquid crystal is an eigenvector
as long as $c_{2}=0, \alpha=c_{3}+c_{4}>0$, and $\gamma=c_{4}>0$. Then the surface energy has the form

$$
f_{s}(Q, \hat{z})=\alpha[(Q \hat{z} \cdot \hat{z})-\beta]^{2}+\gamma|(\mathbf{I}-\hat{z} \otimes \hat{z}) Q \hat{z}|^{2}
$$

where $\beta=-\frac{c_{1}}{2\left(c_{3}+c_{4}\right)}$.

Nondimensionalization

Let $L_{4}=0$ and

$$
\tilde{x}=\frac{x}{D}, \tilde{y}=\frac{y}{D}, \tilde{z}=\frac{z}{h}, F_{\epsilon}=\frac{2}{L_{1} h} E,
$$

where $D:=\operatorname{diam}(\Omega)$. Set

$$
\begin{gathered}
\xi=\frac{L_{1}}{2 D^{2}}, \epsilon=\frac{h}{D}, \delta=\sqrt{\frac{2 \xi}{c}} \\
K_{2}=\frac{L_{2}}{L_{1}}, K_{3}=\frac{L_{3}}{L_{1}} \\
A=\frac{a}{c}, B=\frac{b}{c} \\
\tilde{\alpha}=\frac{\alpha}{\xi}, \tilde{\gamma}=\frac{\gamma}{\xi}
\end{gathered}
$$

Nondimensional energy

$$
F_{\epsilon}[Q]=\int_{\Omega \times[0,1]}\left(f_{e}(\nabla Q)+\frac{1}{\delta^{2}} f_{L d G}(Q)\right) d V+\frac{1}{\epsilon} \int_{\Omega \times\{0,1\}} f_{s}(Q, \hat{z}) d A
$$

where

$$
\begin{aligned}
& f_{e}(\nabla Q):=\left[\left|\nabla_{x y} Q\right|^{2}+K_{2} Q_{i k, j} Q_{i j, k}+K_{3} Q_{i j, j} Q_{i k, k}\right] \\
& +\frac{2}{\epsilon}\left[K_{2} Q_{i 3, j} Q_{i j, 3}+K_{3} Q_{i j, j} Q_{i 3,3}\right] \\
& +\frac{1}{\epsilon^{2}}\left[\left|Q_{z}\right|^{2}+\left(K_{2}+K_{3}\right) Q_{i 3,3}^{2}\right], \\
& f_{L d G}(Q)=2 A \operatorname{tr}\left(Q^{2}\right)+\frac{4}{3} B \operatorname{tr}\left(Q^{3}\right)+\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}, \\
& f_{s}(Q, \hat{z})=\alpha[(Q \hat{z} \cdot \hat{z})-\beta]^{2}+\gamma|(\mathbf{I}-\hat{z} \otimes \hat{z}) Q \hat{z}|^{2} .
\end{aligned}
$$

Assumptions

Suppose for simplicity that $K_{2}=K_{3}=0$ then for every $Q \in \mathcal{C}_{1}^{g}$

$$
\begin{aligned}
F_{\epsilon}[Q]= & \int_{\Omega \times[0,1]}\left\{\left|Q_{x}\right|^{2}+\left|Q_{y}\right|^{2}+\frac{1}{\epsilon^{2}}\left|Q_{z}\right|^{2}\right. \\
& \left.+\frac{1}{\delta^{2}}\left(2 A \operatorname{tr}\left(Q^{2}\right)+\frac{4}{3} B \operatorname{tr}\left(Q^{3}\right)+\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}\right)\right\} d V \\
& +\frac{1}{\epsilon} \int_{\Omega \times\{0,1\}}\left(\alpha[(Q \hat{z} \cdot \hat{z})-\beta]^{2}+\gamma|(\mathbf{I}-\hat{z} \otimes \hat{z}) Q \hat{z}|^{2}\right) d A
\end{aligned}
$$

and set

$$
f_{s}(Q, \hat{z})=: f_{s}^{(0)}(Q, \hat{z})+\epsilon f_{s}^{(1)}(Q, \hat{z})
$$

-this allows for different asymptotic regimes for α and γ.

Limiting PROBLEM

Let

$$
F_{0}[Q]:= \begin{cases}2 \int_{\Omega}\left\{\left|\nabla_{x y} Q\right|^{2}+\frac{1}{\delta^{2}} f_{L d G}(Q)+f_{s}^{(1)}(Q, \hat{z})\right\} d A & \text { if } Q \in H_{g}^{1} \\ +\infty & \text { otherwise }\end{cases}
$$

Here

$$
H_{g}^{1}:=\left\{Q \in H^{1}(\Omega ; \mathcal{D}):\left.Q\right|_{\partial \Omega}=g\right\}
$$

and

$$
\mathcal{D}:=\left\{Q \in \mathcal{A}: Q \in \operatorname{argmin}_{Q \in \mathcal{A}} f_{s}^{(0)}(Q)\right\}
$$

for some boundary data $g: \partial \Omega \rightarrow \mathcal{D}$.

Theorem (G, Montero, Sternberg (2015))

Fix $g: \partial \Omega \rightarrow \mathcal{D}$ such that H_{g}^{1} is nonempty. Then Γ - $\lim _{\epsilon} F_{\epsilon}=F_{0}$ weakly in \mathcal{C}_{1}^{g}. Furthermore, if a sequence $\left\{Q_{\epsilon}\right\}_{\epsilon>0} \subset \mathcal{C}_{1}^{g}$ satisfies a uniform energy bound $F_{\epsilon}\left[Q_{\epsilon}\right]<C_{0}$ then there is a subsequence weakly convergent in \mathcal{C}_{1}^{g} to a map in H_{g}^{1}.

Proof.

Idea: can use a trivial recovery sequence. Indeed, if $Q_{\epsilon} \equiv Q \in \mathcal{C}_{1}^{g} \backslash H_{g}^{1}$ then $\lim _{\epsilon \rightarrow 0} F_{\epsilon}\left[Q_{\epsilon}\right]=+\infty=F_{0}[Q]$ and when $Q_{\epsilon} \equiv Q \in H_{g}^{1}$ then
$F_{\epsilon}\left[Q_{\epsilon}\right]=F_{0}\left[Q_{\epsilon}\right]=F_{0}[Q]$ for all ϵ.

Asymtotic Regime

Let

$$
f_{s}^{(0)}=\alpha[(Q \hat{z} \cdot \hat{z})-\beta]^{2}+\gamma|(\mathbf{I}-\hat{z} \otimes \hat{z}) Q \hat{z}|^{2} \text { and } f_{s}^{(1)} \equiv 0 \Rightarrow
$$

(i). Admissible tensors satisfy $Q \hat{z}=\beta \hat{z}$ and
(ii). Thera are two types of \mathcal{D}-valued uniaxial Dirichlet data on $\partial \Omega$:

Asymtotic Regime

Let

$$
f_{s}^{(0)}=\alpha[(Q \hat{z} \cdot \hat{z})-\beta]^{2}+\gamma|(\mathbf{I}-\hat{z} \otimes \hat{z}) Q \hat{z}|^{2} \text { and } f_{s}^{(1)} \equiv 0 \Rightarrow
$$

(i). Admissible tensors satisfy $Q \hat{z}=\beta \hat{z}$
and
(ii). Thera are two types of \mathcal{D}-valued uniaxial Dirichlet data on $\partial \Omega$:

- $Q=-3 \beta\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)$, where $\mathbf{n} \perp \hat{z}$ is any \mathbb{S}^{1}-valued field on $\partial \Omega$.

Asymtotic Regime

Let

$$
f_{s}^{(0)}=\alpha[(Q \hat{z} \cdot \hat{z})-\beta]^{2}+\gamma|(\mathbf{I}-\hat{z} \otimes \hat{z}) Q \hat{z}|^{2} \text { and } f_{s}^{(1)} \equiv 0 \Rightarrow
$$

(i). Admissible tensors satisfy $Q \hat{z}=\beta \hat{z}$
and
(ii). Thera are two types of \mathcal{D}-valued uniaxial Dirichlet data on $\partial \Omega$:

- $Q=-3 \beta\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)$, where $\mathbf{n} \perp \hat{z}$ is any \mathbb{S}^{1}-valued field on $\partial \Omega$.
- $Q=\frac{3 \beta}{2}\left(\hat{z} \otimes \hat{z}-\frac{1}{3} I\right)$.

Can represent $Q \in H_{g}^{1}$ as

$$
Q=\left(\begin{array}{ccc}
p_{1}-\frac{\beta}{2} & p_{2} & 0 \\
p_{2} & -p_{1}-\frac{\beta}{2} & 0 \\
0 & 0 & \beta
\end{array}\right) .
$$

Can represent $Q \in H_{g}^{1}$ as

$$
Q=\left(\begin{array}{ccc}
p_{1}-\frac{\beta}{2} & p_{2} & 0 \\
p_{2} & -p_{1}-\frac{\beta}{2} & 0 \\
0 & 0 & \beta
\end{array}\right)
$$

Then

$$
F_{0}[Q]=\tilde{F}_{0}[\mathbf{p}]:=\int_{\Omega}\left\{2|\nabla \mathbf{p}|^{2}+\frac{1}{\delta^{2}} W(|\mathbf{p}|)\right\} d V
$$

where $\mathbf{p}=\left(p_{1}, p_{2}\right)$ and

$$
W(t)=4 t^{4}+\tilde{C} t^{2}+\tilde{D}
$$

with $\tilde{C}=6 \beta^{2}-4 B \beta+4 A$ and $\tilde{D} \in \mathbb{R}$.

If

$$
\left.Q\right|_{\partial \Omega \times[0,1]}=\frac{3}{2} \beta\left(\hat{z} \otimes \hat{z}-\frac{1}{3} \mathbf{I}\right),
$$

admissible functions satisfy the boundary condition

$$
\left.\mathbf{p}\right|_{\partial \Omega}=\mathbf{0}
$$

$$
\left.Q\right|_{\partial \Omega \times[0,1]}=\frac{3}{2} \beta\left(\hat{z} \otimes \hat{z}-\frac{1}{3} \mathbf{I}\right),
$$

admissible functions satisfy the boundary condition

$$
\left.\mathbf{p}\right|_{\partial \Omega}=\mathbf{0}
$$

The minimizer of

$$
\tilde{F}_{0}[\mathbf{p}]=\int_{\Omega}\left\{2|\nabla \mathbf{p}|^{2}+\frac{1}{\delta^{2}} W(|\mathbf{p}|)\right\} d V
$$

then has a constant angular component \Rightarrow scalar minimization problem for $p:=|\mathbf{p}|$ and

$$
\left.Q\right|_{\partial \Omega \times[0,1]}=\frac{3}{2} \beta\left(\hat{z} \otimes \hat{z}-\frac{1}{3} \mathbf{I}\right),
$$

admissible functions satisfy the boundary condition

$$
\left.\mathbf{p}\right|_{\partial \Omega}=\mathbf{0}
$$

The minimizer of

$$
\tilde{F}_{0}[\mathbf{p}]=\int_{\Omega}\left\{2|\nabla \mathbf{p}|^{2}+\frac{1}{\delta^{2}} W(|\mathbf{p}|)\right\} d V
$$

then has a constant angular component \Rightarrow scalar minimization problem for $p:=|\mathbf{p}|$ and
(1) If $\tilde{C} \geq 0$ then the minimizer $p \equiv 0$.

$$
\left.Q\right|_{\partial \Omega \times[0,1]}=\frac{3}{2} \beta\left(\hat{z} \otimes \hat{z}-\frac{1}{3} \mathbf{I}\right),
$$

admissible functions satisfy the boundary condition

$$
\left.\mathbf{p}\right|_{\partial \Omega}=\mathbf{0}
$$

The minimizer of

$$
\tilde{F}_{0}[\mathbf{p}]=\int_{\Omega}\left\{2|\nabla \mathbf{p}|^{2}+\frac{1}{\delta^{2}} W(|\mathbf{p}|)\right\} d V
$$

then has a constant angular component \Rightarrow scalar minimization problem for $p:=|\mathbf{p}|$ and
(1) If $\tilde{C} \geq 0$ then the minimizer $p \equiv 0$.
(2) If $\tilde{C}<0$ then the minimizer p solves the problem

$$
-\Delta p+\frac{1}{\delta^{2}} W^{\prime}(p)=0 \text { in } \Omega, \quad p=0 \text { on } \partial \Omega
$$

Now suppose

$$
\left.Q\right|_{\partial \Omega \times[0,1]}=-3 \beta\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right),
$$

where $\mathbf{n}: \partial \Omega \rightarrow \mathbb{S}^{1}$.
We have

$$
\mathbf{p}=-3 \beta\left(n_{1}^{2}-\frac{1}{2}, n_{1} n_{2}\right)
$$

on $\partial \Omega$ where $|\mathbf{p}|=\frac{3 \beta}{2}$. If \mathbf{p} is smooth and nonvanishing, it has a well-defined winding number $d \in \mathbb{Z}$. We set the degree of g to be equal to $d / 2$. Then \mathbf{p} must vanish somewhere within a vortex core structure of a characteristic size of δ in Ω.

Figure: Geometry of the target space.

Topologically nontrivial boundary data will cause the director to "escape" from the $x y$-plane to the z-direction. The requirement that Q_{0} takes values in \mathcal{D} forces the escape to happen through biaxial states that are heavily penalized by the Landau-de Gennes energy.

Figure: Geometry of the target space.

Topologically nontrivial boundary data will cause the director to "escape" from the $x y$-plane to the z-direction. The requirement that Q_{0} takes values in \mathcal{D} forces the escape to happen through biaxial states that are heavily penalized by the Landau-de Gennes energy.

Degree of biaxiality:

$$
\xi(Q)^{2}:=1-6 \frac{\left(\operatorname{tr} Q^{3}\right)^{2}}{\left(\operatorname{tr} Q^{2}\right)^{3}}=1-27 \frac{\beta^{2}\left(4 p^{2}-\beta^{2}\right)^{2}}{\left(4 p^{2}+3 \beta^{2}\right)^{3}}
$$

where $\xi(Q)=0$ implies that Q is uniaxial.

General Surface

Figure: Geometry of the problem.

$$
\begin{gathered}
\Omega_{h}:=\left\{X \in \mathbb{R}^{3}: X=x+h t \nu(x) \text { for } x \in \mathcal{M}, t \in(-1,1)\right\} \\
\mathcal{M}_{ \pm h}:=\{x \pm h \nu(x): x \in \mathcal{M}\}
\end{gathered}
$$

Variational Problem

Minimize

$$
E[Q]:=\int_{\Omega_{h}}\left\{f_{e}(\nabla Q)+f_{L d G}(Q)\right\} d V+\int_{\mathcal{M}_{-h} \cup \mathcal{M}_{h}} f_{s}(Q, \nu) d A .
$$

in the class

$$
\mathcal{C}_{h}^{g}:=\left\{Q \in H^{1}\left(\Omega_{h} ; \mathcal{A}\right):\left.Q\right|_{\Omega_{h}^{\text {lat }}}=g\right\}
$$

of admissible functions. Here \mathcal{A} is the set of three-by-three symmetric traceless matrices.

Coordinate System

Let $\tau: U \times[-1,1] \rightarrow \mathbb{R}^{3}$ given by

$$
X(u, t)=x(u)+h t \nu(x(u))
$$

such that

$$
X_{t}=h \nu, \quad D_{u} X=D_{u} x(\mathbf{I}+h t A)
$$

where

$$
A=-\mathbb{I}^{-1} \mathbb{I I},
$$

is the matrix of the shape operator $\nabla_{\mathcal{M}} \nu$ and \mathbb{I} and $\mathbb{I I}$ are the first and second fundamental forms for \mathcal{M}. Here

$$
\left(\nabla_{\mathcal{M}} \nu\right) \nu=0, \quad\left(\nabla_{\mathcal{M}} \nu\right) \mathbf{d}_{1}=\kappa_{1} \mathbf{d}_{1}, \quad\left(\nabla_{\mathcal{M}} \nu\right) \mathbf{d}_{2}=\kappa_{2} \mathbf{d}_{2}
$$

κ_{i} and $\mathbf{d}_{i}, i=1,2$ are the principal curvatures and directions at $x(u)$, respectively.

Given $X \in \Omega_{h}$, let $x=\operatorname{Proj}_{\mathcal{M}} X$ and $P_{X}=\mathbf{I}-\nu(x) \otimes \nu(x)$. Then

$$
\nabla \mathbf{a}=\nabla \mathbf{a}\left(\mathbf{I}-P_{X}\right)+\nabla \mathbf{a} P_{X}
$$

so that

$$
|\nabla \mathbf{a}|^{2}=\nabla \mathbf{a} \cdot \nabla \mathbf{a}=\left|\nabla \mathbf{a}\left(\mathbf{I}-P_{X}\right)\right|^{2}+\left|\nabla \mathbf{a} P_{X}\right|^{2}
$$

Further

$$
\begin{gathered}
\nabla \mathbf{a}\left(I-P_{X}\right)=\frac{1}{h} \mathbf{a}_{t} \otimes \nu, \\
\nabla \mathbf{a} P_{X}=D_{u} \mathbf{a}(I+h t A)^{-1}\left(D_{u} x\right)^{-1}
\end{gathered}
$$

Note: Setting $h=0$ implies

$$
\nabla \mathbf{a} P_{X}=D_{u} \mathbf{a}\left(D_{u} x\right)^{-1}=\nabla_{\mathcal{M}} \mathbf{a}
$$

Nondimensional Energy Functional

$$
F_{\epsilon}[Q]=\int_{\Omega_{1}}\left(f_{e}(\nabla Q)+\frac{1}{\delta^{2}} f_{L d G}(Q)\right) d V+\frac{1}{\epsilon} \int_{\mathcal{M}_{-1} \cup \mathcal{M}_{1}} f_{s}(Q, \nu) d A
$$

Expanding in ε, we have

$$
\begin{aligned}
f_{e}(\nabla Q)= & \frac{1}{2} \sum_{i=1}^{3}\left\{\left|\nabla_{\mathcal{M}} Q_{i}+\frac{1}{\varepsilon} Q_{i, t} \otimes \nu\right|^{2}\right. \\
& +M_{2}\left(\operatorname{div}_{\mathcal{M}} Q_{i}+\frac{1}{\varepsilon} Q_{i, t} \cdot \nu\right)^{2} \\
+ & \left.M_{3}\left(\nabla_{\mathcal{M}} Q_{i}+\frac{1}{\varepsilon} Q_{i, t} \otimes \nu\right) \cdot\left(\nabla_{\mathcal{M}} Q_{i}^{T}+\frac{1}{\varepsilon} \nu \otimes Q_{i, t}\right)\right\}
\end{aligned}
$$

Limiting PROBLEM

Let
$F_{0}[Q]:= \begin{cases}\int_{\mathcal{M}}\left\{f_{e}^{0}\left(\nabla_{\mathcal{M}} Q\right)+\frac{1}{\delta^{2}} f_{L d G}(Q)+2 f_{s}^{(1)}(Q, \nu)\right\} d S & \text { if } Q \in H_{g}^{1}, \\ +\infty & \text { otherwise } .\end{cases}$
Here

$$
f_{e}^{0}\left(\nabla_{\mathcal{M}} Q, \nu\right):=\min _{B \in \mathcal{A}} f_{e}\left(B \otimes \nu+\nabla_{\mathcal{M}} Q\right)
$$

and the space
$H_{g}^{1}:=\left\{Q \in H^{1}(\mathcal{M} ; \mathcal{A}):\left.Q\right|_{\partial \mathcal{M}}=g, f_{s}^{(0)}(Q(x), \nu(x))=0\right.$ for a.e. $\left.x \in \overline{\mathcal{M}}\right\}$ for some uniaxial boundary data $g \in H^{1 / 2}(\partial \mathcal{M} ; \mathcal{A})$.

Note that, generally,

$$
f_{e}^{0}\left(\nabla_{\mathcal{M}} Q\right) \neq\left|\nabla_{\mathcal{M}} Q\right|^{2}+M_{2}\left|\operatorname{div}_{\mathcal{M}} Q\right|^{2}+M_{3} \sum_{i=1}^{3} \nabla_{\mathcal{M}} Q_{i} \cdot\left(\nabla_{\mathcal{M}} Q_{i}\right)^{T}
$$

- True when $M_{2}=M_{3}=0$.
- Lemma: Suppose that $M_{3}=0$ and $M_{2}>-\frac{3}{5}$. Then

$$
\begin{aligned}
f_{e}^{0}\left(\nabla_{\mathcal{M}} Q, \nu\right)=\frac{1}{2}\left\{\left|\nabla_{\mathcal{M}} Q\right|^{2}\right. & +\frac{2 M_{2}\left(M_{2}+1\right)}{M_{2}+2}\left|\operatorname{div}_{\mathcal{M}} Q\right|^{2} \\
& \left.-\frac{M_{2}^{2}}{\left(M_{2}+2\right)\left(2 M_{2}+3\right)}\left(\nu \cdot \operatorname{div}_{\mathcal{M}} Q\right)^{2}\right\}
\end{aligned}
$$

Theorem (G, Montero, Sternberg (2016))

Fix $g \in H^{1 / 2}(\partial \mathcal{M} ; \mathcal{A})$ such that the set H_{g}^{1} is nonempty. Assume that $-1<M_{3}<2$, and $-\frac{3}{5}-\frac{1}{10} M_{3}<M_{2}$. Then 「-lim $F_{\varepsilon}=F_{0}$ weakly in \mathcal{C}_{1}^{g}. Furthermore, if a sequence $\left\{Q_{\varepsilon}\right\}_{\varepsilon>0} \subset \mathcal{C}_{1}^{g}$ satisfies a uniform energy bound $F_{\varepsilon}\left[Q_{\varepsilon}\right]<C_{0}$ then there is a subsequence weakly convergent in \mathcal{C}_{1}^{g} to a map in H_{g}^{1}.

Example

\mathcal{M} is a surface of revolution:

$$
\Psi(s, \theta)=\left(\begin{array}{c}
a(s) \cos \theta \\
a(s) \sin \theta \\
b(s)
\end{array}\right)
$$

where $\theta \in[0,2 \pi]$ and $\mathbf{r}(s):=(a(s), b(s)), s \in[0, L]$ is a smooth curve in \mathbb{R}^{2}.

Figure: Radial Geometry.

Set $\mathbf{r}^{\prime}(s)=(\cos \phi(s), \sin \phi(s))$ and introduce the eigenframe

$$
\begin{gathered}
\mathbf{T}(s, \theta)=\left(\begin{array}{c}
\cos \phi(s) \cos \theta \\
\cos \phi(s) \sin \theta \\
\sin \phi(s)
\end{array}\right), \quad \mathbf{N}(s, \theta)=\left(\begin{array}{c}
-\sin \theta \\
\cos \theta \\
0
\end{array}\right), \\
\nu(s, \theta)=\left(\begin{array}{c}
-\sin \phi(s) \cos \theta \\
-\sin \phi(s) \sin \theta \\
\cos \phi(s)
\end{array}\right) .
\end{gathered}
$$

Figure: Eigenframe.
Q can be expressed in the form

$$
\left.Q=p_{1}(\mathbf{T} \otimes \mathbf{T}-\mathbf{N} \otimes \mathbf{N})+p_{2}(\mathbf{T} \otimes \mathbf{N}+\mathbf{N} \otimes \mathbf{T})+\frac{3 \beta}{2}\left(\nu \otimes \nu-\frac{1}{3}\right\lrcorner\right)
$$

With $\beta=-1 / 3, f_{s}^{(1)} \equiv 0$, and $M_{2}=M_{3}=0$:

$$
\begin{gathered}
\left|\nabla_{\mathcal{M}} Q\right|^{2}=\left|\mathbf{p}_{, s}\right|^{2}+\frac{1}{a^{2}}\left|\mathbf{p}_{, \theta}\right|^{2}+\frac{4 \cos \phi}{a^{2}}\left(p_{1} p_{2, \theta}-p_{2} p_{1, \theta}\right) \\
+\left(\frac{4}{a^{2}}-3 \kappa_{N}^{2}+\kappa_{T}^{2}\right)|\mathbf{p}|^{2}-p_{1}\left(\kappa_{N}^{2}-\kappa_{T}^{2}\right):=f_{e l}(\nabla \mathbf{p}, \mathbf{p}) \\
f_{L d G}(Q) \rightarrow f_{L d G}(|\mathbf{p}|)
\end{gathered}
$$

so that

$$
E_{0}[Q] \rightarrow E_{0}[\mathbf{p}]=\int_{s_{0}}^{s_{0}+L} \int_{0}^{2 \pi}\left(f_{e l}(\nabla \mathbf{p}, \mathbf{p})+\frac{1}{\delta^{2}} f_{L d G}(|\mathbf{p}|)\right) a(s) d \theta d s
$$

Figure: Minimizing configurations.

- Assume that \mathcal{M} is a truncated cone: $\mathbf{r}(s)=\left(\cos \phi_{0}, \sin \phi_{0}\right) s$, where $s \in\left[s_{0}, s_{0}+L\right]$.
- Impose natural boundary conditions on \mathbf{p} on each orifice of the cone.
- Let $\delta \rightarrow 0$ so that $|\mathbf{p}|=$ const; set $|\mathbf{p}|=1$. Then

$$
\mathbf{p}=(\cos \Psi(s, \theta), \sin \Psi(s, \theta))
$$

It follows that, up to a constant,

$$
E_{0}[\Psi]=\int_{s_{0}}^{s_{0}+L} \int_{0}^{2 \pi}\left(\psi_{, s}^{2}+\frac{1}{a^{2}(s)} \psi_{, \theta}^{2}+\frac{4 \cos \phi_{0}}{a^{2}(s)} \Psi_{, \theta}-\frac{\sin ^{2} \phi_{0}}{a^{2}(s)} \cos \psi\right) a(s) d \theta d s
$$

Can assume that $\Psi_{, s} \equiv 0$, then need to study

$$
E_{0}[\Psi]=\int_{0}^{2 \pi}\left(\Psi_{, \theta}^{2}+4 \cos \phi_{0} \Psi_{, \theta}-\sin ^{2} \phi_{0} \cos \Psi\right) d \theta
$$

subject to $\Psi(2 \pi)=\Psi(0)+2 \pi k$ for some $k \in \mathbb{Z}$.

Figure: Energies of possible competitors.

