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Motivation from 3D Ginzburg-Landau
Consider the standard 3D GL functional,

G3Dκ,H(ψ,A) =

∫
Ω

[
|(∇− iκHA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

]
dx

+ κ2H2

∫
R3

|curlA− ex3 |2 dx ,

with ground state energy g0(κ,H).

Theorem [F-Kachmar-Persson]
Suppose H − κ ≥ o(κ) as κ→∞. Then the GL ground state energy
satisfies,

g0(κ,H) =
√
κH

∫
∂Ω

E (b, ν(x)) dσ(x) + E2|Ω| [κ− H]2+

+ o(max
(
κ2, κ[κ− H]2+

)
.

Here b = min
(
κ/H, 1

)
, dσ(x) is the surface measure on the boundary of

Ω and ν(x) is the angle of the tangent plane to ex3 .
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Setup of surface energy I
Let ν ∈ [0, π2 ], and ` > 0. We introduce the set

D` = (0,∞)× (−`, `)× (−`, `),

and the magnetic potential Aν defined on
R3

+ = {(x1, x2, x3) ∈ R3, x1 > 0} by

A = Aν =

 0
0

−x1 cos ν + x2 sin ν

 ,

for which the associated magnetic field is the constant unit vector that
makes an angle ν with the x2x3 plane

B = Bν = ∇× Aν =

 sin ν
cos ν

0

 .
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Setup of surface energy II
We consider the following reduced Ginzburg-Landau-type energy functional

Eb,ν,`(ϕ) =

∫
D`

(
|(−i∇+ Aν)ϕ|2 − b|ϕ|2 +

b

2
|ϕ|4

)
dx ,

for ϕ in the space

S` =
{
ϕ ∈ L2(D`), (−i∇+ Aν)ϕ ∈ L2(D`), ϕ = 0 on ∂D`\{x1 = 0}

}
.

Furthermore, we define

E (b, ν, `) = inf
ϕ∈S`
Eb,ν,`(ϕ),

and (for those values of b where the limit exists, i.e. b ≤ 1) :

e(b, ν) = lim
`→∞

1

4`2
E (b, ν, `).
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The spectral quantity Θ0

Consider the harmonic oscillator on the half-axis R+ = {t ∈ R, t > 0}

H(ξ) = − d2

dt2
+ (t − ξ)2 in L2(R+),

with Neumann boundary condition u′(0) = 0, and for ξ ∈ R.
This operator has compact resolvent and its eigenvalues are simple. Let
µ1(ξ) denote the first eigenvalue of H(ξ). Then, Θ0 is defined as

Θ0 = inf
ξ∈R

µ1(ξ).

Søren Fournais (Aarhus University) Surface Superconductivity in 3D Banff, May 2017 5 / 18



The linear problem

Consider the Schrödinger operator with constant magnetic field on the
half-space R+,

L(ν) = (−i∇+ Aν)2 in L2(R3
+) ,

with Neumann realization.
Let ζ(ν) = inf SpecL(ν).

Lemma Let Θ0 be the universal constant introduced above. The function
[0, π/2] 3 ν 7→ ζ(ν) is monotone non-decreasing, and we have that
ζ(0) = Θ0 and ζ(π/2) = 1.

This lemma tells us that only the range b ∈ (Θ0, 1) is interesting for the
non-linear problem.
More precisely,

E (b, ν, `) = 0 for b ≤ ζ(ν).
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Theorem [F-Miqueu-Pan]
For all b ∈ (Θ0, 1), the function (0, π2 ) 3 ν 7→ e(b, ν) is monotone
non-decreasing.

Remark That b 7→ e(b, ν) is monotone non-decreasing is obvious by
differentiation.
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The special case ν = 0
Notice that for ν = 0

Eb,ν=0,`(ϕ) =

∫
[−`,`]2

∫ +∞

0

{
|(−i∇− x1ex3)ϕ|2 − b|ϕ|2 +

b

2
|ϕ|4

}
.

Here, one can apply the similar argument from the 2D-Ginzburg-Landau
functional by Correggi and Rougerie to obtain a dimensional reduction by
a ‘separation of variables’

Theorem
For ν = 0 and b ∈ (Θ0, 1] we have e(b, ν = 0) = E 1D

0 .
Here E 1D

0 is defined by

E 1D
0 = inf

ξ∈R

(
inf

f ∈H1(R+)
E1D
b,ξ (f )

)
,

with

E1D
b,ξ (f ) :=

∫ ∞
0
|f ′(t)|2 + (t − ξ)2|f (t)|2 − b|f (t)|2 +

b

2
|f (t)|4 dt.
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Mononicity Proof

Recall/generalize

Eb,ν,`(ϕ) =

∫
D`

(
|(−i∇+ Aν)ϕ|2 − b|ϕ|2 +

b

2
|ϕ|4

)
dx ,

Here D` := R+ × `A, and A := [−1, 1]2. The boundary energy density is

e(b, ν) = lim
`→∞

1

4`2
E (b, ν, `) = lim

`→∞

1

|D` ∩ {x1 = 0}|
E (b, ν, `).

Generalizes (with unchanged limit !) to

Cylinders R+ × A` with ‘general’ A (thermodynamic limit).

Cylinders, where the cylinder axis has a fixed non-zero angle to the
plane {x1 = 0}.
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Monotonicity proof II

Define the functional

Ẽb,ν,α,L,L3(ϕ̃) =

∫
D̃L,L3,α

|D1ϕ̃|2 + tan2(ν)|D2ϕ̃|2 + |(D3 + v1)ϕ̃|2

−b|ϕ̃|2 +
b

2
tan(ν)|ϕ̃|4 dv1dv2dv3,

with
D̃ = D̃L,L3,α = D̃L,α × (−L3, L3),

with

D̃L,α =

{
v1 > −v2, |(tanα)v1 − v2| ≤

L√
2

(1 + tanα)

}
,

Let Ẽ (b, ν, α, L, L3) be the corresponding ground state energy.

Søren Fournais (Aarhus University) Surface Superconductivity in 3D Banff, May 2017 10 / 18



Monotonicity proof III
Composing the changes of variables

x1 = −u1 cos(ν)− u2 sin(ν)
x2 = u1 sin(ν)− u2 cos(ν)
x3 = u3

and


u1 = −v1

u2 = v2
− tan(ν)

u3 = v3

on easily finds

Lemma
In the case where α = arctan(tan2(ν)), L3 = `, and L =

√
2` sin(ν) we

have

Ẽ (b, ν, α, L, L3) = E (b, ν, `).

In particular, still with this special relation between the parameters,

√
2 sin(ν)

Ẽ (b, ν, α, L, L3)

4LL3
=

E (b, ν, `)

4`2
.
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Monotonicity proof - ‘differentiation’

∆b,ν(ε) = e(b, ν + ε)− e(b, ν)

=

√
2

4
lim

L→+∞

(
sin(ν + ε)

Ẽ (b, ν + ε, L)

4L2
− sin(ν)

Ẽ (b, ν, L)

4L2

)
.

q
We take ε > 0 and we are looking for a positive lower bound for ∆b,ν(ε) in
order to prove the monotonicity. We will use a minimizer (which exists) of
Ẽb,ν+ε,L that we denote ϕmin. Therefore we have

Ẽb,ν,L(ϕmin) ≥ Ẽ (b, ν, L) and Ẽb,ν+ε,L(ϕmin) = Ẽ (b, ν + ε, L).
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Differentiation II

Therefore,

∆b,ν(ε) ≥
√

2

4
lim

L→+∞

( 1

L2
(sin(ν + ε)− sin(ν))Ẽ (b, ν + ε, L)

1

L2
sin(ν)(tan2(ν + ε)− tan2(ν))

∫
D̃`,ν
|D2ϕ

min|2 dv

1

L2
sin(ν)

b

2
(tan(ν + ε)− tan(ν))

∫
D̃`,ν
|ϕmin|4 dv

)
.

For ε ≥ 0 and small enough, we have tan2(ν + ε)− tan2(ν) ≥ 0 so that

the term lim
L→+∞

√
2

4L2

∫
D̃`,ν

(ν + ε)(tan2(ν + ε)− tan2(ν))|D2ϕ
min|2 dv is

positive and we can discard it in the lower bound.
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Differentiation III

Using a Ginzburg-Landau equation

∆b,ν(ε) ≥
√

2

4

b

2

(
sin(ν)(tan(ν + ε)− tan(ν))

− (sin(ν + ε)− sin(ν)) tan(ν + ε)
)

lim
L→+∞

1

L2

∫
D̃`,ν
|ϕmin|4 dv .

But by differentiation,

sin(ν)(tan(ν + ε)− tan(ν))− (sin(ν + ε)− sin(ν)) tan(ν + ε) ≈ tan2(ν)ε,

for small ε.
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Lattice states

Consider the square DR = (0,R)2 in the {x1 = 0}-plane. Flux through DR ,

Φ :=

∫
DR

B · ex1 = R2 sin ν
assume
∈ 2πZ.

Consider the magnetic periodic boundary conditions on DR :

ψ(x1, x2 + R, x3) = ψ(x1, x2, x3)e iRx3 sin ν , ψ(x1, x2, x3 + R) = ψ(x1, x2, x3).

Let Hper be the operator (−i∇+ Aν)2 on R+ × DR with Neumann
boundary condition at x1 = 0 and periodic magnetic boundary conditions
on R+ × ∂DR .
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Lemma For ν ∈ (0, π/2) and assuming R2 sin ν
2π ∈ Z we have that

ζ(ν,R) := inf SpecHper

is a discrete eigenvalue of Hper.
Furthermore,

ζ(ν,R) = ζ(ν).
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Let Ψper be an associated eigenfunction. We can extend it to R3
+ by

magnetic periodicity.
Then we see that

|DnR |−1Eb,ν,nR(Ψ) = |DnR |−1

∫
DnR

(
|(−i∇+ Aν)Ψ|2 − b|Ψ|2 +

b

2
|Ψ|4

)
dx

= |DR |−1

∫
DR

(
|(−i∇+ Aν)Ψ|2 − b|Ψ|2 +

b

2
|Ψ|4

)
dx

= |DR |−1

(
b

2
‖Ψ‖4

4 − (b− ζ(ν))‖Ψ‖2
2

)
.

By replacing Ψ by λΨ and optimizing in λ, we get for b ∈ (ζ(ν), 1),

e(b, ν) ≤ −(b− ζ(ν))2

2b

‖Ψ‖4
2

|DR |‖Ψ‖4
4

.
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Of course, we can also study other lattice geometries than squares.

The projection of the magnetic field on the plane {x1 = 0} specifies a
direction. Therefore, the orientation of the lattices is important.
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