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Motivation from 3D Ginzburg-Landau
Consider the standard 3D GL functional,

2
G2 A) = [ [I(7 = inHAYI = 2lof? + 7 1ul*] o

+ /@2H2/ lcurl A — ey, |? dx,
R3

with ground state energy go(k, H).

Theorem [F-Kachmar-Persson]

Suppose H — k > o(k) as k — oo. Then the GL ground state energy
satisfies,

go(k, H) = ViH /aQ E (b, 1(x)) do(x) + B9 [+ — HI2

+ o(max (K2, k[ — H]3) .

Here b = min (x/H,1), do(x) is the surface measure on the boundary of
Q and v(x) is the angle of the tangent plane to e,,.
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Setup of surface energy |
Let v € [0, 5], and £ > 0. We introduce the set

Dy = (0,00) x (—£,0) x (—£,0),

and the magnetic potential A, defined on
Ri = {(x1,x2,x3) € R*,x; > 0} by

0
A=A = 0 ,
—X1 COSV + Xosinv

for which the associated magnetic field is the constant unit vector that
makes an angle v with the x»x3 plane

sinv
B=B,=VxA,=| cosv
0
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Setup of surface energy Il

We consider the following reduced Ginzburg-Landau-type energy functional

. b
Gunile) = [ (119 + A6 — ol + 2ol ax,
4

for ¢ in the space

Sp={p € 2(Dy),(—iV + A,)p € L*(Dy), o = 0 on 9D;\{x; = 0}} .

f urtherlnore, we define
E b /) = inf ((: v y
( U, ) Ig 3 b, ,Z(SO)

and (for those values of b where the limit exists, i.e. b <1) :

o0 442
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|
The spectral quantity ©

Consider the harmonic oscillator on the half-axis Ry = {t € R, t > 0}
2
dt?
with Neumann boundary condition ¢/(0) = 0, and for £ € R.

This operator has compact resolvent and its eigenvalues are simple. Let
p1(€) denote the first eigenvalue of H(§). Then, ©g is defined as

H(E) = ——5 +(t=€)? in [2(Ry),

©o = gig]& pa(§)-
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The linear problem

Consider the Schrodinger operator with constant magnetic field on the
half-space R,
L(v)=(—iV+A,)? in*R3),
with Neumann realization.
Let {(v) = inf Spec L(v).

Lemma Let ©g be the universal constant introduced above. The function
[0,7/2] 2 v+ ((v) is monotone non-decreasing, and we have that

¢(0) = ©g and ¢(7/2) = 1.
This lemma tells us that only the range b € (©g, 1) is interesting for the

non-linear problem.
More precisely,

E(b,v,£) =0 for b < ((v).
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Theorem [F-Miqueu-Pan]

For all b € (©o, 1), the function (0,5) > v+ e(b, ) is monotone
non-decreasing.

Remark That b — e(b, ) is monotone non-decreasing is obvious by
differentiation.
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The special case v =0
Notice that for v =0

+o00 ) b
noate)= [ [T { U1 < men)ol? ~ vlol + Zlolt}.
602 Jo

Here, one can apply the similar argument from the 2D-Ginzburg-Landau
functional by Correggi and Rougerie to obtain a dimensional reduction by
a ‘separation of variables’

Theorem
For v =0 and b € (©g, 1] we have e(b,v = 0) = EZP.
Here EO1D is defined by
Eg° =inf [ inf &R(f
0T iw (fe/LI/T(JR+) ec(F) )
with

E20F) = [ 17 + (e IR — blF + (O e

Sgren Fournais (Aarhus University) Surface Superconductivity in 3D Banff, May 2017 8 /18



-
Mononicity Proof

Recall/generalize

. b
Euueo) = [ (1174 Aol bl + S1el*) ax
(4

Here Dy := R, x (A, and A := [~1,1]2. The boundary energy density is

. 1 1
6([171/) —le[T;O mE(b,IAK) le}ngom (b,l/,e).

Generalizes (with unchanged limit!) to

o Cylinders Ry x A; with ‘general’ A (thermodynamic limit).
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-
Mononicity Proof

Recall/generalize

. b
Euueo) = [ (1174 Aol bl + S1el*) ax
(4

Here Dy := R, x (A, and A := [~1,1]2. The boundary energy density is

. 1 1
e(b,l/) _le?;o mE(b,IAK) le}ngom (6,1/7@).

Generalizes (with unchanged limit!) to
o Cylinders Ry x A; with ‘general’ A (thermodynamic limit).

@ Cylinders, where the cylinder axis has a fixed non-zero angle to the
plane {x; = 0}.
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-
Monotonicity proof Il

Define the functional

EuvotisP) = [ D12 4+ an(0) Dapl? +|(Ds + )P

Di,i3,a
b
—b|<,5|2 + 5 tan(y)|g5|4 dvidvedvs,

with o B
D =D 130 =Dra x(—Ls,L3),
with

V2

Let E(b, v,a, L, L3) be the corresponding ground state energy.

~ L
DL,a = {Vl > —\Vvy, |(tan oz)vl — V2| < —(1 + tan Oé)},
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-
Monotonicity proof Ill

Composing the changes of variables

x1 = —uwycos(v)— uysin(v) uy = —v
xp = uysin(v) — uacos(v) and u = _t:f,(l,)
X3 = u3 u3 = v3

on easily finds

Lemma

In the case where o = arctan(tan?(v)), L3 = £, and L = /2¢sin(v) we
have

E(b,v,a, L, L3) = E(b,v,0).
In particular, still with this special relation between the parameters,

E(b,v,,L,L3)  E(b,v,¢)

V2sin(v) 4LLs =z
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Monotonicity proof - ‘differentiation’

Boule) = e(b,v+¢) — e(b,0)
V2 (sin(y+€)E(b,y+s, L) E(b, v, L)).

= — lim e —sin(v) e

4 [—+o0

q
We take € > 0 and we are looking for a positive lower bound for Ay ,(¢) in

order to prove the monotonicity. We will use a minimizer (which exists) of
Eo,u4¢,L that we denote ™. Therefore we have

Eour (™) > E(b,1,L) and  Eypier(e™™) = E(b,v +¢, L).
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N
Differentiation I

Therefore,

Apo(c) > ?LETOO(%(SM(V +e) —sin(v))E(b, v + ¢, L)

~

1 .

psi (v)(tan*(v +¢) —tanz(u))/v |Dy™ |2 dv
DZ,V

1 . b min |4

—sin(v)s(tan(v +¢) —tan(v)) [ [™"[*dv).

L 2 Dy

For € > 0 and small enough, we have tan?(v + ¢) — tan?(v) > 0 so that

the term Lli)rroo% (v 4e)(tan®(v +¢) — tan?(v))| Da™™ |2 dv is
DZ,V

positive and we can discard it in the lower bound.
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Differentiation |11

Using a Ginzburg-Landau equation
2
Ay (e) > %g(sin(y)(tan(y +¢) — tan(v))

L—4o00

— (sin(v + ¢) —sin(v)) tan(v + E)) lim é/ﬁe,u ™ (* dv.

But by differentiation,
sin(v)(tan(v + ¢) — tan(v)) — (sin(v + €) — sin(v)) tan(v + €) ~ tan?(v)e,

for small €. O
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Lattice states

Consider the square Dg = (0, R)? in the {x; = 0}-plane. Flux through Dg,

assume

¢:=/ B.-e, = R%*sinv € 277
Dg

Consider the magnetic periodic boundary conditions on Dg :
P(x1, %2 + R, x3) = (x1, x2, x3)e™5MY | 4h(x1, %0, 3 + R) = ¥(x1, X2, x3).
Let HP®T be the operator (—iV + A,)? on R, x Dg with Neumann

boundary condition at x; = 0 and periodic magnetic boundary conditions
on R, x 0Dg.
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Lemma For v € (0,7/2) and assuming W € Z we have that
¢(v, R) := inf Spec HP*"

is a discrete eigenvalue of HP®.
Furthermore,

(v, R) = ¢(v).
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Let WPS' be an associated eigenfunction. We can extend it to Ri by
magnetic periodicity.
Then we see that

_ _ . b
Dntl 65 (¥) = Doal ™ [ (117 + A~ 01V + 2101 ) ax

DnR
b
= |DR|—1/ <|(—/v + ANV — bV + —y\uy“) dx
Dr 2
AL
— 10el"* (1914 - (- CDIVIB).
By replacing W by AW and optimizing in A, we get for b € ({(v), 1),

(b= ¢ Vs
2 Dl V[

e(b,v) < —
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@ Of course, we can also study other lattice geometries than squares.
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@ Of course, we can also study other lattice geometries than squares.

@ The projection of the magnetic field on the plane {x; = 0} specifies a
direction. Therefore, the orientation of the lattices is important.
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