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OUTLINE (S /E-MATH

@ Introduction [FH]:
o Ginzburg-Landau (GL) theory and response of a superconductor to an
applied magnetic field.
o Surface superconductivity: GL asymptotics and Pan's conjecture.

o Main results & work in progress [CR1-3,CG]:
@ Energy and density asymptotics between H .o and H .3 [CR1-2];
® Curvature effects on surface superconductivity [CR3].
@ Effects of boundary singularities (corners) [CG].
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©® INTRODUCTION

SUPERCONDUCTIVITY (S /0-MATH

Certain materials which behave like metals at room
temperature become superconductors (zero resis-
tivity) below a certain 7. > 0 (ceramic compound
YBaQCU307 in flg) T

Resistivity / pQ.cm

o P T R R R
S0 70 S0 10 130 150 170 190 210 230 250 270 290
Temperature / K
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©® INTRODUCTION

SUPERCONDUCTIVITY S/ /E-MATH

Certain materials which behave like metals at room
temperature become superconductors (zero resis-
tivity) below a certain 7. > 0 (ceramic compound
YBaQCU307 in flg)

Temperature / K

o When a type-Il superconductor is
immersed in a magnetic field, the field
is expelled from the bulk.

o Strong magnetic fields can penetrate
the sample and eventually destroy
superconductivity.

o The response of a superconductor to

a magnetic field can be described by
the Ginzburg-Landau theory.

M. Correccl (Roma 1) SURFACE SUPERCONDUCTIVITY BIRS 05/05/2017 1/ 26



©® INTRODUCTION

GINZBURG-LANDAU THEORY (S /0-MATH

GL ENERGY FUNCTIONAL

The energy per unit length of a very long superconducting wire of (smooth
and simply connected) cross section {2 C R? is obtained by minimizing

QSL[\IJ,A}:/dr {\(V+iA)\II\2—/f2|\11\2+%KQ\\II\4+|curIA—hCX|2}
Q

©

Variational equations
—(V+iA)’ U =% (1-|¥P) T, inQ,

—V-tcurlA = ja[¥], in Q,
n-(V+iA)¥ =0, on 99,
curlA = hey, on 99.

|W|? relative density of superconducting electrons (Cooper pairs).

A magnetic potential with magnetic field h = curlA.

! penetration depth (k — oo = extreme type-Il superconductors).
Uniform applied magnetic field | to € of size hey.

© ©6 0 o
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©® INTRODUCTION

GL MINIMIZERS (S /B-MmATH
GEL[W] = /2 ar {J(V+iA) WP + 36 (1 |912)° + fcurlA [}
JS

PERFECTLY SUPERCONDUCTING STATE

In absence of applied field, the superconducting state |[¥| =1, A =0
(Meissner state) is the unique minimizer of the GL energy.
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©® INTRODUCTION

GL MINIMIZERS LS/l
GoL[w] = / dr {\(v +iA) W% — k202 4 L2t [curlA — hcxﬁ}
JQ

PERFECTLY SUPERCONDUCTING STATE

In absence of applied field, the superconducting state [V| =1, A =0
(Meissner state) is the unique minimizer of the GL energy.

NORMAL STATE

If hex > 1 and & fixed (huge applied field), the normal state ¥ = 0 with
curl A = hey is the unique minimizer of the GL energy.
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©® INTRODUCTION

GL MINIMIZERS (S /0-MATH
GoL[w] = / dr {w +iA) O — 2% + LR 0)* + |curl A — hcx\?}
JQ

PERFECTLY SUPERCONDUCTING STATE

In absence of applied field, the superconducting state [V| =1, A =0
(Meissner state) is the unique minimizer of the GL energy.

NORMAL STATE

If hex > 1 and « fixed (huge applied field), the normal state ¥ = 0 with
curl A = hey is the unique minimizer of the GL energy.

MIXED STATE

For intermediate applied fields, any minimizer (possibily non-unique) is a
mixed state satisfying 0 < |¥| < 1.
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©® INTRODUCTION

PHENOMENOLOGY (PHYSICS) LS/ /MR

o Superconductivity is first lost at isolated defects (vortices).

Vortices in Nb crystal
[Linc et al >00].
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©® INTRODUCTION

PHENOMENOLOGY (PHYSICS) LS/ /MR

o Superconductivity is first lost at isolated defects (vortices).

o For larger magnetic fields the number of vortices increases and
eventually vortices arrange in a triangular lattice, which was predicted
by ABRIKOSOV in 1957 and later observed by ESSMANN, TRAUBLE
in 1967.

L W
v B
o by s
AN AV =2 3%

JET
1 e 8 e e

Vortices in Nb crystal =
[LiNG et al *00]. Vortices in Pb at 1.1 K [EssMANN, TRAUBLE '67].
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©® INTRODUCTION

PHENOMENOLOGY (PHYSICS)

(O /EHNATH
o Before being totally lost, superconductivity survives at the boundary
(surface superconductivity) as predicted by SAINT-JAMES, DE

—

high

GENNES in 1963 and observed by STRONGIN et al in 1964.

- -

Pb island of superconductor at 4.32 K [NING ET AL "09].

Vortices and surface superconductivity on a Pb island
M. Correccl (Roma 1)

[Nine ET AL 09].
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©® INTRODUCTION

CRITICAL MAGNETIC FIELDS (S /EMATH

As k — oo, one can identify three bifurcation values (critical fields) for hey:

FIRST CRITICAL FIELD

If hey < Hei(k) = Cqlog k, one has || > 0, AGY ~ 0. Above Hy,
isolated defects of WS (vortices), where the superconductivity is lost, start
to appear [SANDIER, SERFATY '00].

SECOND CRITICAL FIELD

At Heo(r) ~ K2, superconductivity disappears in the bulk and becomes a
boundary phenomenon (surface superconductivity).

THIRD CRITICAL FIELD

If hex > Hes(k) = @61/{2 with Oy < 1 a universal constant (actually
@51 ~ 1.6946), the superconductivity is totally lost and W& = 0 with
h = hey is the unique minimizer [FOURNAIS, HELFFER ’06].
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©® INTRODUCTION

SECOND CRITICAL FIELD (S /EMATH

SECOND CRITICAL FIELD (MATHEMATICAL DEFINITION)
o No precise mathematical definition of H.o, but only the idea of a
vague transition from bulk to boundary behavior.
o Heo(k) = K% (can be taken as a definition).
o Agmon estimates yield an exponential decay of WCT far from 99,
provided heyx > Heo.

PROPOSITION (AGMON ESTIMATES [HELFFER, MORAME '01])
If hex = br? for some b > 1 and r large enough, 3A > 0 such that

/ dr eAfi dist(r,00) ’\I/GL(I‘)‘Q _ O(/{_l),
Q

|TCE(r)| = O(k™), for dist(r, 0Q) > 1.
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©® INTRODUCTION

BETWEEN H., AND H.3

CHANGE OF UNITS

(S /EMATH
oot v, A) = |

Q

dr {\(v +ihexA) B2 — k2T + k2|0t

+h2, |curlA — 1|2}
o We are interested in the regime H.o < heyx < Hes, i.e.,

hex = br2 |, 1<b<O,!
o A measured in units hey, i.e., A — hetA.

M. Correccl (Roma 1)
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©® INTRODUCTION

BETWEEN H., AND Hs LS/ /0-MATH

CHANGE OF UNITS

ESLW, Al = /er {’ <v +z'?2>\11

S |
~ 952 (219 — |w|*)

1
— JcurlA — 1
+€4 |cur | }

o We are interested in the regime Heo < hey < Hes, i€,

hex = bK?|, 1<b<Oy!

A measured in units hey, i.e., A — hedA.
Change of units to (g,b) with ¢ < 1:

e = (bs2)?
GL _

°o E7 = (\I/,A)Helgllel ESLW, A] and (WE, ASL) any minimizing pair.
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©® INTRODUCTION

HEURISTICS (BETWEEN He AND H.3) CS//BMAT

o Restriction to a neighborhood of 92 & tubular coordinates there:
(s,et) tangential and normal coordinates (rescaled).

o Gauge choice [FOURNAIS, HELFFER '10]
WO (r) = €Ny (s,t),  ACL(r) — (—t + O(e|loge])) 7(s)

where 7(s) is the unit vector tangential to 0f).

o The GL energy becomes up to o(1) error terms

1 rlool Clloge| ) o2 L2
/ ds/ dt 3|8 + (8 — it) ¥ + Tl = S|
g Jo 0 b b
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HEURISTICS (BETWEEN H.y AND H.s) LS/ /0MATH

o Restriction to a neighborhood of 92 & tubular coordinates there:
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where 7(s) is the unit vector tangential to 0f).

o In the regime 1 < b < ©,', |US"| is approx. constant in the
tangential direction, i.e.,
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o The GL energy becomes up to o(1) error terms

1 rloal Clloge| ) o2 L2
/ ds/ dt 3 10 + (05 — it) ¥ + L 1y|* = 2l
g Jo JO b ’
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oQ| [T :
E'/0 dt{l@f2+(t+a)2f2;b(2f2f4)}
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©® INTRODUCTION

EFFECTIVE 1D FUNCTIONAL S/ /iR

+o0o
&0 [ at{jasP ol - 4 22— )

o 3! minimizer fy, > 0 with energy Eollg
o fo.a is non-trivial iff =1 > pg (), where 1i(c) is the ground state
energy of H, = —9? + (t + )% in L?>(R™, dt) with Neumann b.c..
0 Oy = min up(«).
acR
o Forany 1 <b< @61, f0, is non-trivial and 3 a phase oy < 0

minimizing E%E over o € R. The corresponding profile is fo := fo,q,
and

EP = inf Egb = EgY
0 a€R 0, 0,0
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EFFECTIVE 1D FUNCTIONAL S/ /iR

+o0o
&0 [ at{jasP ol - 4 22— )

o 3! minimizer fy, > 0 with energy E&E.
o fo.a is non-trivial iff =1 > po (), where 1i(c) is the ground state
energy of H, = —9? + (t + )% in L?>(R™, dt) with Neumann b.c..
0 Oy = min up(«).
acR
o Forany 1 <b< @61, f0, is non-trivial and 3 a phase oy < 0

minimizing E%% over o € R. The corresponding profile is fo := fo,q,
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©® INTRODUCTION

PAST RESULTS S/ /iR

GL ENERGY ASYMPTOTICS

109 By
€

o [Pan ’02] ESL = +o(e ) for 1 <b< O, and E, < 0.

o [ALmoG, HELFFER '07; FOURNAIS, HELFFER, PERSSON '11]:

EGL _ ’aQ|E6D
c 5

for 1.25 < b < @51 by perturbative methods.

+0(1)
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©® INTRODUCTION

PAST RESULTS (S /B-maTH

GL ENERGY ASYMPTOTICS

Q|E
o [Pan '02] EGL = 19U
€

+o(e ) for L <b<©Oy! and E, < 0.

o [ALmoG, HELFFER '07; FOURNAIS, HELFFER, PERSSON '11]:

EGL _ ’aQ|E6D
c €

+0(1)

for 1.25 < b < @al by perturbative methods.

ORDER PARAMETER ASYMPTOTICS

o [FourNAls, HELFFER, PERSSON '11] If 1.25 < b < ©," the
density [L|2 is close to f2, i.e., (7 = dist(r,09), T = et)

[1wSH = 150 0P|

iy < N Ol gy 27

v
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©® INTRODUCTION

OPEN PROBLEMS (S /E-MATH

o Extend the GL energy asymptotics to the whole surface
superconductivity regime, i.e., for 1 < b < @Jl.

PAN’S CONJECTURE
[PAN ’02] The density |[#9E|2 is close to f2(0) in L>(09), i.e.,

L1 () — Fo(0)]| e ) = (1)

o A stronger version of Pan's conjecture is H|‘1’GL

- fUHL\"“(.Ag) = O<]‘)
in any boundary layer A. containing the bulk of superconductivity.

o Since fp > 0, Pan's conjecture would imply no vortices in A..
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® MaIN REsuLTs: ENERGY ASYMPTOTICS

ENERGY AND DENSITY ASYMPTOTICS (S /0-MATH

THEOREM (GL AsympTOTICS [MC, ROUGERIE '13])

Let Q C R? be any smooth simply connected domain. For any fixed

1<b< (—)a1 in the limit e — 0, one has

ON|ELP
B o) [IF = Ol = 0©

GL _
Est =

o For 1 <b<O;", fo>0and | fZ (t)HLQ(A ) o el/?,
o The above result is still compatible with vortices in A., as it is the
error O(1) in the energy asymptotics.
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® MAIN REsuLTs: DENSITY ASYMPTOTICS
REFINED 1D EFFECTIVE MODEL LS/ /B-MATH

o To prove a stronger estimate of WL, one has to refine the error term

O(1) = the e—dependent terms must be retained up to order ¢.
o If the terms of order ¢ are retained, the 1D effective energy becomes
(in the disc case, i.e., k(s) = k constant)

collogel|
o= [ aa-ekn {lo + var - 5 2 - )

0

where V. , is approximately a translated harmonic potential:

t+a—2Lekt?)?
Vea(t) = W = (t+ a)? + O(e| logel).

o For 1 <b <Oy the minimizer fi o, of &2 [f] is not trivial and the
corresponding energy is E,}/,% 3 an optimal phase (k) minimizing
Eé% w.rt o € R. The associated profile is fj := f; o) and

E, (k) = min ER
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® MAIN REsuLTs: DENSITY ASYMPTOTICS

REFINED ENERGY ASYMPTOTICS (S /IHNATH

THEOREM (ENERGY ASYMPTOTICS [MC, ROUGERIE '14])

Let Q2 ¢ R? be any smooth simply connected domain with boundary
curvature k(s). For any fixed |1 < b < ©,*

in the limit € — 0, one has

1 o9
pet =2 [ s Bu(k() + Olelog )

o Expanding further E,(k(s)), one gets [MC, ROUGERIE '15]

Q) ElD 129]
o = OUEC i) [ dokts) + ol
0

gcorr[f()} - /0 dtf{(f6)2 + (_('YO(t + O‘O) - % + if(?) fOQ} :
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® MAIN REsuLTs: DENSITY ASYMPTOTICS

REFINED ENERGY ASYMPTOTICS

LS/ /E-mATi

THEOREM (ENERGY ASYMPTOTICS [MC, ROUGERIE '14])

Let Q C R? be any smooth simply connected domain with boundary
curvature k(s). For any fixed|1 < b < 0,

in the limit e — 0, one has

1 rloQ
ESL — 5/0 ds E, (k(s)) + O(e| loge|™)

o Expanding further E,(k(s)), one gets [MC, ROUGERIE '15]

Q| ELP
’80 — 27Tgcorr {fO] + 0(1)

GL _
Byt =

gcorl‘[fd = /0 dtt{(f6)2 + (7a0(t +Oé()) - % + %foz) f()z} :
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® MAIN REsuLTs: DENSITY ASYMPTOTICS

PROOF OF PAN’S CONJECTURE (S /IHNATH

THEOREM (DENSITY ASYMPTOTICS [MC, ROUGERIE '14])

Let Q2 C R? be any smooth simply connected domain. For any fixed

1<b< @al in the limit € — 0, one has

|| W] — fo (0) = O(e"/*|loge|)

|0 00

o Stronger result [|[U%"| — f; (et) HLOO (4, = 0(1) in any suitable

boundary layer Ay C {dist(r,92) < Ce/|logel|}.
o Since fy(0) > 0, the degree of UL along 992 is well defined and

\Q| Qg
5

deg (PC,00) = + O(e%/* log £|™)
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® MAaIN REsuLTs: CURVATURE CORRECTIONS

CURVATURE CORRECTIONS (S /0-MATH

o To leading order WG| ~ fo(dist(r, 9S2)/c) and superconductivity is
uniformly distributed in the boundary layer. Any lower order effect of
the curvature?

o Recalling that E!P (k) = EP + ck&eon|fo] + O(e3/%|log e]>).

THEOREM (CURVATURE CORRECTIONS [MC, ROUGERIE '15])

Forany 1 <b < @al as ¢ — 0 and for any “rectangular” set D

/ dr | @G
D

with C1(b) = —2bELP > 0 and Co(b) = 2bEeor: | fol.

1 20y (b)|02 N D) +52(12(b)/ ds k(s) + o(c?)
oDNON)
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® MAaIN REsuLTs: CURVATURE CORRECTIONS
SIGN OF THE CORRECTION LS/ /MR

o The sign of C5(b) determines whether superconductivity is attracted
or repelled by points of large curvature.

o Asb— (051) ", fo — 0 and Eeorr[fo] — 0 but Eeore[fo] > 0.
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® MAaIN REsuLTs: CURVATURE CORRECTIONS
SIGN OF THE CORRECTION LS/ /MR

o The sign of C5(b) determines whether superconductivity is attracted
or repelled by points of large curvature.

o Asb— (051) ", fo — 0 and Eeorr[fo] — 0 but Eeore[fo] > 0.

o Forany 1 <b < @61, only numerics [BHARATHIGANESH, MC,
ROUGERIE in progress]:
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® MaIN REsuLTs: EFFECT oF CORNERS

EFFECT OF CORNERS (S /0-MATH

o So far we have considered only domains with smooth boundary. What
happens if the boundary is not smooth but contains corners?

o The presence of corners might
affect the boundary
distribution of
superconductivity.

o The third critical field H.3 can also be shifted because of corners.

o From now on we will assume that the boundary of Q is a Lipschitz
boundary with finitely many corners.

o The normal n(s) as well as tubular coordinates and the curvature k(s)
are all defined only a.e., with jumps at corners.
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® MaIN REsuLTs: EFFECT oF CORNERS

H.; WITH CORNERS LS/ /AT
o If we decrease he, from huge values:
) 2
ectw] = [ ar {|(V+i%) 9] - 9P} = (¥|H. - | W)
o The ground state v of H. is localized on a scale £ and blowing up a
new effective problem emerges, i.e., the magnetic Laplacian on a
sector with opening angle .
o The ground state energy (1) /e? of H. is mostly unknown, but

o () — 0 as ¥ — 0 [BONNAILLIE-NOFEL, DAUGE ’06];
o y(m) = ©g and ¥(V) < Oq if ¥ < § + 0 [BONNAILLIE-NOEL 05];
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® MaIN REsuLTs: EFFECT oF CORNERS

H.; WITH CORNERS LS/ /AT
o If we decrease he, from huge values:
otw)~ [ ar {|(V+i8) W[ wE) = (] k)
o The ground state v of H. is localized on a scale ¢ and blowing up a
new effective problem emerges, i.e., the magnetic Laplacian on a
sector with opening angle .
o The ground state energy (1) /e? of H. is mostly unknown, but
o () — 0 as ¥ — 0 [BONNAILLIE-NOFEL, DAUGE ’06];
o y(m) =6¢ and y(¥) < Og if I < § +0 [BONNAILLIE NoOEL ’05];
CONJECTURE ((*) [BONNAILLIE-NOEL, DAUGE ’07])
Motivated by numerical computations, one expects that
o (W) is increasing in ¥;
° "y(ﬁ) < O ford < m;
o ¥(¥) =0 ford >

v
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® MaIN REsuLTs: EFFECT oF CORNERS

A NEW CRITICAL FIELD Hooper? (S /B-MmATH

H.3 WITH CORNERS |BONNAILLIE-NOEL, FOURNAIS ’07|

Assuming (), in presence of corners of angles ¥; < 7

(3—/\ L 724—0()

with A, = min; A\(¥;).

o According to the conjecture (%), A, < Og and therefore H_s is larger
in presence of corners.

o Before disappearing, superconductivity gets concentrated near the
corner with smallest opening angle and UG decays exponentially in
the distance from that corner.

o What happens to surface superconductivity? is there another field
Heo < Heomer < Heg marking the transition from boundary to corner
concentration?
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® MaIN REsuLTs: EFFECT oF CORNERS

SURFACE SUPERCONDUCTIVITY (S /0-MATH

THEOREM (GL AsymproTICS [MC, GIACOMELLI '16])

Let ) C R? be a bounded simply connected domain, whose boundary is a

curvilinear polygon, then for any |1 < b < @al ,ase — 0,
OQ|EP
gor = P | o(j1ogep?)
€

Jlwerel” - g2 (=)

O(e|loge|) < Hf2 <M)‘

€7

LZ(Q)

L2(Q)

o The presence of corners has no effect to leading order.

o H¢s is unaffected but, if (%) is correct, one would expect that, in
presence of at least one acute angle,

H(:()rner = 661572 -+ 0(1)
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® MaIN REsuLTs: EFFECT oF CORNERS

EFFECT OF CORNERS (S /0-MATH

o The curvature k(s) for a Lipschitz boundary is still bounded and
integrable, and therefore we might expect the same energy
asymptotics up to order 1:

? 10Q] EgP
€

peL L ~Eanlfi] [ dsk(s)+o(1)
J O smooth

M. Correccl (Roma 1) SURFACE SUPERCONDUCTIVITY BIRS 05/05/2017 23 / 26



® MaIN REsuLTs: EFFECT oF CORNERS

EFFECT OF CORNERS (S /B-maTH

o The curvature k(s) for a Lipschitz boundary is still bounded and
integrable, and therefore we might expect the same energy
asymptotics up to order 1:

2 09| B3P

poL 2 — Eeomlfo] / ds k(s) + o(1)
J O smooth

THEOREM (GL REFINED ASYMPT. [MC, GIACOMELLI '16])

Under the same hypothesis above, as ¢ — 0,

1D
EEGL _ ‘aQ‘ EO
3

o9
= gcorr[fd /0 ds k‘(S) a4 Z Ecorners (ﬁj) =+ 0(1)
J

where 1) are the opening angles of the corners and the integral of k(s) is
meant in Lebesgue sense.
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® MaIN REsuLTs: EFFECT oF CORNERS

CORNER ENERGY (S /B-maTH

o The corner energy is defined implicitly as

Ecomers(9) := liminf (EFY — 20EP)
{—00 ¢

where T'; is a sector of angle ¥ and side length ¢, and
ERL = megllf(m /U dr {\(v +Lirh) WP — L (22 - \@\4)} :
o U satisfies mixed boundary conditions, i.e., the support of ¥ does not
intersect the arc of I'y.
o We can show that Ecomers()) is bounded above and below but we can
not prove that the limit £ — oo exists, although we do expect it.

o The energy 2/E}P has to be subtracted because each edge of the
sector gives a contribution /E(P to the energy, due to Neumann
boundary conditions there.
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® MaIN REsuLTs: EFFECT oF CORNERS

CORNER ENERGY (S /B-maTH

o The corner energy is defined implicitly as

Ecomers(9) := liminf (BT — 20EP)
{—00 g

where T'; is a sector of angle ¥ and side length ¢, and
ESL = inf / ar {|(V+ dirt) W]’ = & 21w - |9)Y) }.
ot [ an {9 i) 9Pl - iy
o U satisfies mixed boundary conditions, i.e., the support of ¥ does not
intersect the arc of I'y.

o We can show that Ecomers()) is bounded above and below but we can
not prove that the limit £ — oo exists, although we do expect it.

o The energy 2/E}P has to be subtracted because each edge of the
sector gives a contribution /E(P to the energy, due to Neumann
boundary conditions there.

o |s there another way of characterizing Fcorners /
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® MaIN REsuLTs: EFFECT oF CORNERS

CORNER ENERGY (S /B-maTH

o The Gauss-Bonnet theorem suggests that the additional contributions
due to the presence of corners sum up to reconstruct 27 and, since

/ dsk(s)+ > (m—0;) =2,
0€) smooth j ’

09| Eq”

ECL ~
c €

|09
— Ecorr [fO] /0 ds k(S) + Z Ecorners (197)

J

M. Correccl (Roma 1) SURFACE SUPERCONDUCTIVITY BIRS 05/05/2017 25 / 26



® MaIN REsuLTs: EFFECT oF CORNERS

CORNER ENERGY (S /B-maTH

o The Gauss-Bonnet theorem suggests that the additional contributions
due to the presence of corners sum up to reconstruct 27 and, since

/ dsk(s)+ > (m—0;) =2,
0€) smooth j ’

09| Eq”

ESL ~
© €

|02
— Ecorr [f()] /0 ds k‘(S) =+ gcorr[fd 2(197 - 7T)

J

CONJECTURE (CORNER ENERGY [MC, GIACOMELLI '16])
We conjecture that for any ¥ € [0, 27)

’ Ecorncrs(ﬁ) = (19 - W)gcorr[f()} ‘
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® MaIN REsuLTs: EFFECT oF CORNERS

CORNER ENERGY (S /B-maTH

o The Gauss-Bonnet theorem suggests that the additional contributions
due to the presence of corners sum up to reconstruct 27 and, since

/ dsk(s)+ > (m—0;) =2,
0€) smooth j ’

o0 EID |09
EgGL =~ u - gcorr[fO] / ds ]C(S) + gCOIT[fO} Z(ﬁ] N ﬂ-)
€ 0 J
o We can actually prove that Eomers(m —€) = —eEeorr[fo] + 0(1).

e—0

CONJECTURE (CORNER ENERGY [MC, GIACOMELLI '16])
We conjecture that for any ¥ € [0, 27)

’Ecorners(ﬁ) = (19 - W)gcorr[fO} ‘
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PERSPECTIVES (S /B-maTH

o Derive the first order corrections to the GL order parameter in
presence of corners [MC, GIACOMELLI in progress|;

o Proof of Pan's conjecture in presence of corners = existence and
asymptotic value of Heomer-
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PERSPECTIVES (S /B-maTH

o Derive the first order corrections to the GL order parameter in
presence of corners [MC, GIACOMELLI in progress|;

o Proof of Pan's conjecture in presence of corners = existence and
asymptotic value of Heomer-

%7// yor /é /é alteritlicre,”

M. Correccl (Roma 1) SURFACE SUPERCONDUCTIVITY BIRS 05/05/2017 26 / 26



HEURISTICS (AROUND H,3) LS/ /MR

o Suppose we decrease hqy from huge values: above H.3 the normal
state is the unique minimizer and curlAG" = 1, with £5% = 0.

o When hey is lowered below H.s, in first approximation curl AGL = 1
and UEL is small, so that the energy to minimize is linear

L ar {17+ 9 = i} = (v - | w)
o When \g(e) — bé < 0, with \g(g) the ground state energy of H.7

o The ground state v of H. is localized on a scale ¢ and blowing up on
that scale one finds 2 alternative effective problems...
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HEURISTICS (AROUND H,3) LS/ /MR

o Suppose we decrease hqy from huge values: above H.3 the normal
state is the unique minimizer and curlAG" = 1, with £5% = 0.

o When hey is lowered below H.s, in first approximation curl AGL = 1
and UEL is small, so that the energy to minimize is linear

L ar {17+ 9 = i} = (v - | w)
o When \g(e) — bé < 0, with \g(g) the ground state energy of H.7

o The ground state v of H. is localized on a scale ¢ and blowing up on
that scale one finds 2 alternative effective problems...

MAGNETIC LAPLACIAN ON THE PLANE/HALF-PLANE
o H. on R%* with Neumann b.c., A\g(¢) = ©pe~2 and 7. lives on 9.

o H. on R? (or on R*" with Dirichlet b.c.), Ao(¢) = =2 and 1. lives in
the interior of €.
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SKETCH OF THE PROOF (S /0-MATH

@ Restriction to the boundary layer + magnetic field replacement.

©® MAGNETIC FIELD REPLACEMENT [FOURNAIS, HELFFER 10|
o Agmon estimates = restriction to the boundary layer (with
et = dist(r,09Q), o = es) A, = {O <o < @,O <t < co|logs|} :
o Gauge choice + elliptic estimates = up to error terms of order O(e),
ECL s given by (with 1) = e~7%=WGL)

o] = e Va2 Lz L
Gunlt] = [ doar{i(v —ites) ul? - 1o + ot}

v
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SKETCH OF THE PROOF (S /0-MATH

@ Restriction to the boundary layer + magnetic field replacement.
@ Upper bound (trivial): test & on Yyl (0, t) ~ fo(t)e @07,

©® MAGNETIC FIELD REPLACEMENT [FOURNAIS, HELFFER 10|
o Agmon estimates = restriction to the boundary layer (with
et = dist(r,00), 0 =es) A. = {0 <o < ‘88—9',0 <t < co|logs|} :

o Gauge choice + elliptic estimates = up to error terms of order O(e),
ECL s given by (with 1) = e~7%=WGL)

1 1
Gunlt] = [ dode{I(V - ter) P = 31 + plu'}

v
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SKETCH OF THE PROOF (S /B-maTH

@ Restriction to the boundary layer + magnetic field replacement.
@ Upper bound (trivial): test & on Yyl (0, t) ~ fo(t)e @07,

o Lower bound:
® Energy splitting.
@ Use of the potential function.
® Positivity of the cost function.

©® MAGNETIC FIELD REPLACEMENT [FOURNAIS, HELFFER 10|
o Agmon estimates = restriction to the boundary layer (with
et = dist(r,00), 0 =es) A. = {0 <o < ‘88—9',0 <t < co|logs|} :

o Gauge choice + elliptic estimates = up to error terms of order O(e),
ECL s given by (with 1) = e~7%=WGL)

e eyl — Pt Lt
Gunlt] = [ dodt{I(V - ter) P = 31 + vt}

M. Correccl (Roma 1) SURFACE SUPERCONDUCTIVITY BIRS 05/05/2017 26 / 26



ENERGY ASYMPTOTICS: LOWER BounDp  [©/ /I-MATi
ewivl = [ dadt{|<v—itenw\2—%\wm;bw}

® ENERGY SPLITTING
o If 1 <b< Oyt one can set (0, t) = fo(t)e (0, t).
o Using the variational equation of f, and its boundary conditions

o0
Enpl¥)] = |€|E3D + Ev)]

with j(v) = % (vVv* — v*Vv) the superconducting current and

Ev] = /dadt fg {|Vv|2 —2(t+ap)es - j+ %f& (1 — |112)2}

o It remain to bound £[v] and we will eventually show that £[v] > 0.

v
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ENERGY ASYMPTOTICS: LOWER BounD  [©/ /N8I
Ev] = /TR . dodt f§ {\V?)\Q —2(t+ ao)es - j+ %bfﬁ (1— |U\2)2}

® USE OF THE POTENTIAL FUNCTION

o The field 2(t + ag) fZe, is divergence free so that one can find F such
that V- F = 2(t + ap) f2e,, e.g., the potential function

Folt) = 2 /0 dy (7 + a0) f2(n).

o Fy(0) = Fy(400) = 0 (by optimality of ap), F{j(0) < 0 and Fj has a
unique extreme point = Fj < 0.
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ENERGY ASYMPTOTICS: LOWER BounD  [©/ /N8I
Ev] = /TR . dodt f§ {\V?)\Q —2(t+ ao)es - j+ %bfﬁ (1— |U\2)2}

® USE OF THE POTENTIAL FUNCTION

o The field 2(t + ag) fZe, is divergence free so that one can find F such
that V- F = 2(t + ag) f2e,, e.g., the potential function

FMU=2Adnm+a®ﬁM)

o Fy(0) = Fy(400) = 0 (by optimality of ap), F{j(0) < 0 and Fj has a
unique extreme point = Fj < 0.

o Stokes formula yields
1
sm—/' dodt { 12(6) [VoP + Fo(t) + — &) (1 - o]?)?
JRXR+ 2b

with 1 = curl(j) the vorticity measure
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ENERGY ASYMPTOTICS: LOWER BounD  [©/ /N8I
_ 2 2 . 1 5 22
gm_/R . dedt f; {\W\ 72(t+040)eg-,]+%]‘0 (1— o) }

® USE OF THE POTENTIAL FUNCTION

o The field 2(t + ap) fie, is divergence free so that one can find F' such
that V- F = 2(t + ay) fie,, e.g., the potential function

Folt) = 2 /0 dy (5 + a0) f2(n).

o Fy(0) = Fy(+00) = 0 (by optimality of ), F5(0) < 0 and Fp has a
unique extreme point = Fj < 0.

o Stokes formula yields
&bl > [ dodt {£3@) Vel + Fot)lul}
RxR+

with o = curl(j) the vorticity measure, satisfying || < |Vov|?.
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_ 2 2 . 1 5 22
gm_/R . dedt f; {\W\ 72(t+040)eg-,]+%]‘0 (1— o) }

® USE OF THE POTENTIAL FUNCTION

o The field 2(t + ap) fie, is divergence free so that one can find F' such
that V- F = 2(t + ay) fie,, e.g., the potential function

Folt) = 2 /0 dy (5 + a0) f2(n).

o Fy(0) = Fy(+00) = 0 (by optimality of ), F5(0) < 0 and Fp has a
unique extreme point = Fj < 0.

o Stokes formula yields
Elo] > / dodt (f2(t) + Fo(t)) |Vol?
RxR+t

with o = curl(j) the vorticity measure, satisfying || < |Vovl|?.
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ENERGY ASYMPTOTICS: LOWER BounDp  [©/ /I-MATi

® POSITIVITY OF THE COST FUNCTION
o We define the vortex cost function as

Ko(t) = f5(t) + Fo(t)

olf1<bh<O ! Ky(t) = 0}, for any t € RT, which allows to
conclude that £[u] > 0 and the lower bound is proven.

o Optimality condition + variational equation for f imply a remarkable
identity for Fy(t) yielding

Ko(t) = (1 - §) f3(8) + (t + a0) f§ () + 55/ (£) — f3"(2)
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® POSITIVITY OF THE COST FUNCTION
o We define the vortex cost function as

Ko(t) = f5(t) + Fo(t)

olf1<bh<O ! Ky(t) = 0}, for any t € RT, which allows to
conclude that £[u] > 0 and the lower bound is proven.

o Optimality condition + variational equation for f imply a remarkable
identity for Fy(t) yielding

Ko(t) = (1= 3) f5(0) + (t + a0)® f3(2) + 5.5 () — £3°(2)
o Kp(0) >0 and Ky(+o0) =0 = if K < 0 somewhere 3ty > 0 global
minimum for Ko and K{(to) = 0. Since K = 2fof} +2(t + ag) f3

one has fy(to) = —(to + a0) fo(to)
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® POSITIVITY OF THE COST FUNCTION
o We define the vortex cost function as

Ko(t) = f5(t) + Fo(t)

olf1<bh<O ! Ky(t) = 0}, for any t € RT, which allows to
conclude that £[u] > 0 and the lower bound is proven.

o Optimality condition + variational equation for f imply a remarkable
identity for Fy(t) yielding

Ko(t) = (1 — §) f8(t) + (t+ a0)” F () + 555 (8) — f5° (1)
o Kp(0) > 0 and Ky(+o0) =0 = if K < 0 somewhere 3ty > 0 global

minimum for Ko and K{(to) = 0. Since K = 2fof} +2(t + ag) f3
one has fj(to) = —(to + o) fo(to) and

Ko(to) = (1 —3) f5(to) + 553 (to) >0
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