# Droplet phase in a nonlocal isoperimetric problem under confinement

Stan Alama

McMaster University

Banff, 2017

with Lia Bronsard (McMaster), Rustum Choksi (McGill), and Ihsan Topaloglu (VCU)

12 Floréal, 225 (12/8/225)

# Diblock Copolymers

> Polymer strands composed of two monomers *A*, *B* glued together.



Monomers of the same type attract; of opposite type repel.

(b)

- ▶ Diffuse-interface energy (Ohta-Kawasaki) model,  $u : \Omega = \mathbb{T}^3 \to \mathbb{R}$  phase function.
- u = 1 in pure *A*-phase, u = 0 in pure *B*-phase.



Images from S. Darling, Energy Environ Sci. (2009)

► Γ-convergence → sharp interface model, a nonlocal isoperimetric problem (NLIP).



 $f_A$  denotes the volume fraction of A-type monomers.

Images from S. Darling, Energy Environ Sci. (2009)

# The Nonlocal Isoperimetric Problem (NLIP)

Seek periodic patterns,  $u \in BV(\mathbb{T}^3; \{0, 1\})$  on unit torus  $\mathbb{T}^3$ , with given mass  $m = \int_{\mathbb{T}^3} u \, dx$ ,

$$\begin{split} \mathcal{E}_{\gamma}(u) &= \int_{\mathbb{T}^3} |\nabla u| + \gamma \big\| u - m \big\|_{H^{-1}}^2 \\ &= \int_{\mathbb{T}^n} |\nabla u| + \gamma \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) u(x) u(y) \, dx \, dy \end{split}$$

- The first term is perimeter of the interfaces.
  - $u \in BV(\mathbb{T}^n; \{0, 1\})$  is a characteristic function,  $u = \chi_E$
  - The total variation  $|\nabla u|(\mathbb{T}^3) = \int_{\mathbb{T}^3} |\nabla u| = \operatorname{Per}_{\mathbb{T}^3}(E)$ .
- The second term introduces nonlocal interactions; G is the (periodic, mean-zero) Laplace Green's function.
- *E*<sub>γ</sub> is obtained as a Γ-limit of Ohta-Kawasaki mean-field model.
- Extensive literature: Acerbi-Fusco-Morini, Alberti-Choksi-Otto, Bonacini-Cristoferi, Choksi-Glasner, Choksi-Peletier, Choksi-Ren, Choksi-Sternberg, Frank-Lieb-Nam, Goldman-Muratov-Serfaty, Knüpfer-Muratov, Lu-Otto, Muratov, Ren-Wei, Sternberg-Topalaglu,...

# How to Influence Phase Separation?

- Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.
- By adjusting the density of the nanoparticles we hope to confine the domains to specified regions and select a different minimizing morphology.

Study by the research group of Fredrickson: first column shows **low-density**, second column shows **high-density** of nanoparticles.





# Sharp Interface Model with Confinement

**Confinement:** seek to alter minimizing configurations via nanoparticles, coated to prefer one of the phases.

**Set-up:** Minimize over periodic configurations  $u \in BV(\mathbb{T}^n; \{0, 1\})$  with given mass  $m = \frac{1}{|\mathbb{T}^n|} \int_{\mathbb{T}^n} u$ ,

$$\mathsf{E}_{\gamma,\sigma}(u) := \int_{\mathbb{T}^n} |\nabla u| + \gamma \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) u(x) u(y) \, dx \, dy$$
$$- \sigma \int_{\mathbb{T}^n} u(x) \, \rho(x) \, dx$$

Here, *G* is the (periodic, mean-zero) Laplace Green's function, and  $\mu \in \mathscr{P}_{ac}(\mathbb{T}^n)$  represents the limiting nanoparticle density as a measure.

- The first term and second are exactly as in the NLIP, perimeter and nonlocal interactions.
- ▶ The third term models nanoparticle interactions.  $\rho \in L^{\infty}(\mathbb{T}^n)$  gives the density of nanoparticles, which attract the phase u = 1.
- E<sub>γ,σ</sub> is obtained as a Γ-limit of Ohta-Kawasaki with the inclusion of a large number of nanoparticles of negligible volume. Ginzburg-Qiu-Balacz; A-B-T

$$\mathsf{E}_{\gamma,\sigma}(u) := \int_{\mathbb{T}^3} |\nabla u| + \gamma \int_{\mathbb{T}^3} \int_{\mathbb{T}^3} u(x)u(y)G(x,y)\,dxdy - \sigma \int_{\mathbb{T}^3} u\,\rho(x)\,dx$$

We seek a regime in which all three terms (perimeter, nonlocal, confinement) are felt. We choose the "droplet scaling" (Choksi-Peletier):

- Assume the volume ratio (of phase A to phase B) is very small.
- Expect small balls of phase A in a sea of phase B.
- > Advantage: treat droplets as particles in an appropriate limit.
- ► Introduce small length scale parameter (droplet radius)  $0 < \eta \ll 1$ , assume total mass  $m = M\eta^3$ , for fixed M.
- ▶ We rescale the order parameter, to have mass *M* but concentrate on its support,

$$v(x) = \frac{u(x)}{\eta^3}, \quad \int_{\mathbb{T}^3} v = M.$$

► Choose the "critical scaling"  $\gamma = \eta^{-3}$ ,  $\sigma = \eta^{-1}$ , so that all terms in the energy contribute at the same scale.

The energy transforms to...

$$\mathsf{E}_{\eta}(\mathbf{v}) := \eta \int_{\mathbb{T}^3} |\nabla \mathbf{v}| + \eta \int_{\mathbb{T}^3} \int_{\mathbb{T}^3} \mathbf{v}(x) \mathbf{v}(y) G(x, y) \, dx dy - \int_{\mathbb{T}^3} \mathbf{v}(x) \rho(x) \, dx$$
  
with  $\int_{\mathbb{T}^3} \mathbf{v} = \mathbf{M}$ .

**Heuristics**:

- $v \sim \sum_{i=1}^{n} m^{i} \delta_{x_{i}}$ , with  $M = \sum_{i} m^{i}$ .
- > First term wants to minimize droplet perimeter (spheres?)
- ▶ Droplet centers  $x_i$  sample nanoparticle density  $\rho(x_i)$ , seek maxima of  $\rho(x)$ .
- For simplicity, assume  $\rho$  attains its max at the origin, with

$$\rho(\mathbf{x}) = \rho_{max} - \rho_1 |\mathbf{x}|^2 + o(|\mathbf{x}|^2)$$

Will all the mass simply form a single droplet at the origin? And if not, how does it split?

Choksi-Peletier: Same scaling limit, but no confinement,  $\rho = 0$ . Droplets form uniform lattice on  $\mathbb{T}^3$  [Coulomb repulsion].

Recall:

$$\mathsf{E}_{\eta}(\mathbf{v}) = \eta \int_{\mathbb{T}^3} |\nabla \mathbf{v}| + \eta \int_{\mathbb{T}^3} \int_{\mathbb{T}^3} \mathbf{v}(\mathbf{x}) \mathbf{v}(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} - \int_{\mathbb{T}^3} \mathbf{v}(\mathbf{x}) \rho(\mathbf{x}) \, d\mathbf{x}, \quad \int_{\mathbb{T}^3} \mathbf{v} = M$$

Assume v forms n droplets near the origin (max point of  $\rho$ ),

$$\mathbf{v}(\mathbf{x}) = \mathbf{v}_{\eta}(\mathbf{x}) = \sum_{i=1}^{n} \eta^{-3} \mathbf{z}_i \left( \frac{\mathbf{x} - \mathbf{x}_i}{\eta} \right) ,$$

with  $z_i(x)$  compactly supported,  $z_i(x) \in \{0, 1\}$ , and  $\int_{\mathbb{R}^3} z_i = m_i$ , and each  $x_i = x_i^{\eta} \to 0$  (to maximize  $\rho(x)$ .)

- ▶ At what rate do  $x_i \rightarrow 0$ ? Scale  $x_i = \delta y_i$ , with  $\delta = \delta(\eta) \rightarrow 0$ .
- ► For  $|x_i x_j|$  small,  $\eta G(x_i, x_j) \sim \eta |x_i x_j|^{-1} = O(\eta \delta^{-1})$

• Also, 
$$\rho(\mathbf{x}_i) = \rho_{max} - \delta^2 |\mathbf{y}_i|^2 + o(\delta^2)$$
  
 $E_{\eta}(\mathbf{v}) \simeq \sum_{i=1}^n \underbrace{\left[ \int_{\mathbb{R}^3} |\nabla \mathbf{z}_i| + \|\mathbf{z}_i\|_{H^{-1}(\mathbb{R}^3)}^2 \right]}_{\text{self-energy}} + \frac{\eta}{\delta} \sum_{i \neq j} \frac{m_i m_j}{4\pi |\mathbf{y}_i - \mathbf{y}_j|} + \delta^2 \rho_1 \sum_{i=1}^n m^i y_i^2 - M \rho_{max}$ 

Thus, the optimal separation scale is  $\delta = O(\eta^{1/3})...$ 

#### Droplets accumulate at max of $\rho$

Droplets have "radii"  $O(\eta)$ , and are separated by  $\delta = O(\eta^{1/3})$ ,

$$\mathbf{v}(\mathbf{x}) = \mathbf{v}_{\eta}(\mathbf{x}) = \sum_{i=1}^{n} \eta^{-3} \mathbf{z}_i \left( \frac{\mathbf{x} - \mathbf{x}_i}{\eta} \right),$$



- To construct a complementing lower bound we use a Concentration Compactness type lemma by Frank-Lieb.
- But why should there be more than one droplet?

# The blowup problem

To understand the splitting of the droplets, we look at the "self-energy" terms. The droplet "profiles"  $z_i$  minimize (for  $m = m^i$ )

$$e_0(m) = \inf\left\{\int_{\mathbb{R}^3} |\nabla z| + \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{z(x)z(y)}{4\pi |x-y|} : z \in BV(\mathbb{R}^3; \{0, 1\}), \int_{\mathbb{R}^3} z = m\right\}.$$

#### Theorem (Lu-Otto, Knupfer-Muratov)

There exist constants  $0 < m_{c_1} \leq m_{c_2} \leq m_{c_3}$  such that

- For  $m \leq m_{c_2}$ , there exists a minimizer of  $e_0(m)$ ;
- For m ≤ m<sub>c1</sub> the minimizer is a ball;
- For  $m > m_{c_3}$  the minimum is not attained.
- The nonexistence of a minimizer is due to splitting of the mass into pieces. So when our M is large, the minimizers  $v_{\eta}$  must split into several pieces, each of which is small enough that the minimizer  $e_0(m^i)$  exists!
- This is also related to Gamow's Liquid Drop model for nuclei (1930). (Frank-Killip-Nam, Bonacini-Cristoferi)

Recall:

$$\mathsf{E}_{\eta}(v) = \eta \int_{\mathbb{T}^{3}} |\nabla v| + \eta \int_{\mathbb{T}^{3}} \int_{\mathbb{T}^{3}} v(x)v(y)G(x, y) \, dx \, dy - \int_{\mathbb{T}^{3}} v(x)\rho(x) \, dx, \quad \int_{\mathbb{T}^{3}} v = M \\ \rho(x) = \rho_{\max} - \rho_{1}|x|^{2} + o(|x|^{2})$$

**Define:**  $\mathcal{M}_0 := \{M > 0 : e_0(M) \text{ admits a minimizer}\}.$ Let  $v_\eta$  minimize  $E_\eta$ . Then along a subsequence of  $\eta \to 0$ , there exists  $n \in \mathbb{N}$ , points  $\{y_i\}_{i=1,\dots,n}$  in  $\mathbb{R}^3$ , and masses  $m^i \in \mathcal{M}_0, \sum_{i=1}^n m^i = M$ , with:

- ►  $v_{\eta} \sum_{i=1}^{n} m^{i} \delta_{\eta^{1/3} y_{i}} \rightharpoonup 0$  in the sense of measures;
- The energy admits an asymptotic expansion,

$$E_{\eta}(v_{\eta}) = \sum_{i=1}^{n} \left[ e_0(m^i) - m^i \rho_{max} \right] + \eta^{2/3} F_0(y_1, \ldots, y_n; m^1, \ldots, m^n) + o\left(\eta^{2/3}\right),$$

where

$$F_0(y_1,\ldots,y_n;m^1,\ldots,m^n) = \rho_1 \sum_{i=1}^n m^i |y_i|^2 + \frac{1}{4\pi} \sum_{\substack{i,j=1\\i\neq j}}^n \frac{m^i m^j}{|y_i-y_j|}.$$

▶ The renormalized droplet centers  $y^1, \ldots, y^n$  minimize the energy  $F_0$  for given  $\{m^i\}, n$ .

#### Lower Bound

Take a minimizing sequence  $v_{\eta} = \eta^{-3} \chi_{\Omega_{\eta}}$ , and blow up at order  $\eta$ ,  $E_{\eta} = \eta^{-1} \Omega_{\eta} \subset \mathbb{R}^3$ 

Frank-Lieb: after translation by  $y_{\eta} \in \mathbb{R}^{3}$ , there is concentration:

 $F_{\eta} := E_{\eta} \cap B_R \to E, \ G_{\eta} := E_{\eta} \cap B_R^c \to 0$  locally,

 $|E| \in (0, M]$ ,  $\lim_{\eta \to 0} (\operatorname{Per}(E_{\eta}) - \operatorname{Per}(F_{\eta}) - \operatorname{Per}(G_{\eta})) = 0.$ 

- If |E| = M, the sequence converges, and there is no splitting.
- ▶ If |E| < M, we repeat with  $G_\eta$  replacing  $E_\eta$ , to get a sequence of droplet sets, each of which will be minimizers for the NLIP in  $\mathbb{R}^3$ .
- > Problem: How to control errors  $o(\eta^{2/3})$  to get 2nd Gamma limit?
- $u_{\eta}$  and rescaled limits do solve an NLIP, so they are  $\omega$ -minimizers of the perimeter functional.
- ► By regularity theory,  $F_{\eta} \rightarrow E$  in  $C^{1,\alpha}$  (de Giorgi-Miranda, Tamanini, Acerbi-Fusco-Morini)
- So in fact  $Per(E_{\eta}) = Per(F_{\eta}) + Per(G_{\eta})$ , and *a forteriori* no error is introduced by the splitting of mass.

# Remarks

- ▶ If  $M \in M_0$ , then there is no splitting of the droplets, and a single droplet center concentrates at the origin (where  $\rho$  is maximized.)
- Although stated for minimizers, the energy decomposition may be proved in the more general framework of *□*-convergence.
- ► The case without the nanoparticle confinement was studied by Choksi-Peletier. In that case, the droplets remain O(1) apart, there is no  $\eta^{1/3}$  length scale involved, and the second order term in the energy is governed by the purely Coulombic repulsion term given by G(x, y).
- Ditto for piecewise constant ρ: the droplets will distribute themselves in the region of strongest nanoparticle density, according to the Coulomb repulsion (as in Choksi-Peletier).
- The two-scale concentration recalls many features of the 2D Ginzburg-Landau energy with magnetic field: vortices accumulating at minima of the Meissner field [Sandier–Serfaty]
- ► A slightly different scaling done by Goldman-Muratov-Serfaty on the 2D NLIP allows for a divergent number of droplets, "Abrikosov lattice".
- ▶ The droplet interaction energy  $F_0$  is of an attractive+repulsive form which recalls studies of flocking and other models of self-assembly. (Burchard-Choksi-Topolaglu)

#### Remarks, II

• We may treat more general  $\rho(x)$ : either with nondegenerate global max at the origin, or of the form

$$\rho(\mathbf{x}) := (\rho(\mathbf{0}) - \rho_1 |\mathbf{x}|^q + o(|\mathbf{x}|^q)), \quad q > 2.$$

In the latter case, we obtain a droplet interaction energy of the form:

$$\mathsf{F}_{\mathsf{0}}(v) := \rho_{1} \sum_{i=1}^{n} m^{i} |x_{i}|^{q} + \frac{1}{4\pi} \sum_{\substack{i,j=1\\i\neq j}}^{n} \frac{m^{i} m^{j}}{|x_{i} - x_{j}|}$$

Droplets will converge to the max of  $\rho$  at the rate  $\eta^{1/q+1}$ .

• What do minimizers of  $F_0$  look like? Here are q = 2 and q = 10:

