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Overview

Results from a simulation study of a method of es-
timating transition matrices for high-dimensional
autoregressive time series models are presented.
The simulation study is part of a broader project
in which such autoregressive models are candi-
date methods of graph construction for mod-
eling neural functional connections from multi-
electrode array electrocorticography recordings.

Background

Multielectrode array (MEA) devices record electri-
cal voltage activity in a brain region or neural cul-
ture over time, and can comprise anywhere from 100
to over 1000 electrodes. One problem arising from
MEA data is how to form graphs on the electrode
array that estimate functional connections – areas
or neurons that activate in sequence.

Figure 1: MEA data example – raw voltage, spike train, and
time-frequency data for two seconds on one channel of 120-
channel device, shown below with electrode configuration.

Estimation problem

A broad aim is to use a combination of the high-frequency components of time-frequency data from MEA
recordings to estimate temporal correlations between electrodes.
Xt ∈ Rp: vector of measurements on p channels at time t. A vector autoregressive model of order one is:

Xt = AXt−1 + Ut , Ut
iid∼ Np(0,Σ) , det(I −Az) 6= 0 ∀ |z| ≤ 1

In graph construction the transition matrix coefficients are interpreted:
aij 6= 0 ⇐⇒ electrode i at time t ← electrode j at time t− 1

With data comprising observations at N + 1 evenly-spaced times, the V AR(1) model is
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writing this compactly as Y = XA′ +E and vectorizing yields a regression with correlated errors:
vecY = (Ip ⊗X)vecA′ + vecE i.e., Y = Xβ + E

To obtain a sparse graph, a natural approach is to use an L1-penalized least-squares-type estimator

β̂ = arg min
β

{ 1
N
‖Y − Xβ‖2

2 + λ‖β‖1

}
(LS)

which is consistent (under technical conditions on X,Y , and λ) per [1].

Union of Intersections for Vector Autoregression (UoIV AR)

UoIV AR is a two-step procedure for estimating the transition matrix A: first (selection) compute support
sets on a regularization path λ using bolasso; then (estimation) compute bagged OLS estimates on supports
chosen by cross-validation. This is a modification of the UoI method [2] adapted to vector autoregression.

Selection

Result: Support sets S1, . . . , Sk on
regularization path

Data: (X,Y );
path (λ1, . . . , λk);
boostrap samples B1
for b = 1 to B1 do
bootstrap sample (X∗,Y ∗);
compute (Y∗,X ∗) = (vecY , I ⊗X∗);
for i = 1 to k do
compute lasso estimate β̂(λi);
compute lasso support Sbλi = {j | β̂(λi)

j 6= 0};
end

end
compute bolasso support Si = ⋂B1

b=1S
b
i ;

Estimation

Result: UoI estimate β̂
Data: (X,Y ); (λ1, . . . , λk); S1, . . . , Sk;

boostrap samples B2
for b = 1 to B2 do
training bootstrap sample (X∗,Y ∗)1;
test bootstrap sample (X∗,Y ∗)2;
compute (Y∗,X ∗)i = (vecY ∗, I ⊗X∗)i;
for i = 1 to k do
compute OLS estimate β̂(λi) on (Y∗,X ∗Si)1;
compute prediction error ei on (Y∗,X ∗)2;

end
compute J = arg minj ej;
set β̂b = β̂λJ;

end
compute β̂ = B−1

2
∑B2
b=1 β̂b

Numerical experiment

UoIV AR estimates were computed on 100 synthetic
datasets and compared with (LS) and a modified
(LS) estimator using the minimax concave penalty.

Simulation
•Time series dimension p = 160
•Block-diagonal covariance Σ = B ⊗ I
•Fixed transition matrix A comprising p
randomly positioned nonzero coefficients
(edges)

•Methods are compared with respect to R2,
false positive rate |Sβ̂\Sβ||Sβ̂|

, selection accuracy

1− |(Sβ̂\Sβ)∪(Sβ\Sβ̂)|
|Sβ|+|Sβ̂|

, and the average estimate
across all datasets (Fig. 2 histograms, top)

Figure 2: UoIV AR outperforms other methods on synthetic data
with respect to selection accuracy and bias.
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