Non-Gaussian Processes

- Why do you need models for Non-Gaussian Processes?
 - Point predictions are quite robust to model misspecification
 - Correct estimation of non-Gaussian processes leads to big improvement in estimates of variability
 - Identify outlying regions, spatial outliers (Palacios and Steel, 2006)
- What features do you need your model to capture?
 - Non-Gaussian and/or non-stationary
 - \circ $\,$ Sharp vs smooth changes in the field over space $\,$
 - Low frequency vs high frequency signal
 - o Interpolation versus parameter (effect) inference
 - Non-Gaussian models can look like Gaussian model. Often the problem is that you only have one replication.
- Approaches: SPDE/process convolution versus transforming Gaussian
 - Drawback with transformed Gaussian fields is that you can't change the conditionals.
 - Need models that account for sharp transitions
 - Gaussian models are too smooth to allow for this
- Non normal likelihood with a non-normal latent field
 - Need to distinguish between non-Gaussian data (easy) and non-Gaussian latent fields (hard)
 - If you have binary data for example, getting these covariance models to work will be challenging
 - Do you even need a heavy tailed process when the data are binary?
- Computation
 - 1st question for any new model: Can you estimate the model parameters? Easy to create a new fancy model, but in practice they are very hard to estimate
 - How difficult are the computations for these models?
 As the number of locations increases, it can get computationally intensive
 - How to extend to big data?
 - Extra computational complexity if you move from 1-D to 2-D MRF
 - How do you know that you are getting the answer correctly from a computational method if there is only one way to compute it?
- Diagnostics
 - How to figure out whether we are modeling the complex dependencies correctly
 - Problem is high dimensional: Maybe we can think about conditional distributions to simplify the diagnostic problem
 - Need something that looks like replicates