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1. K3 theories and their generic space of states
[ ]

1. Assumptions: Superconformal field theories

(2-dim. Euclidean) Unitary SCFT (in fact, spacetime SUSY plus N = (2, 2) worldsheet SUSY)

Data: @ SPACE OF STATES: a unitary C-vector space (I, (-, )
(the Neveu-Schwarz sector)
@ some OBSERVABLES: commuting linear operators H, Jo; H, Jo on H
(2H = Ly — 2Jp etc.)

-
such that:
@ H, U, ﬁ, Jo are self-adjoint, diagonalizable, H > 0, H >0,

spec(H — H) Uspec(Jo — Jo) C Z, spec(Jo) Uspec(do) C 37
@ there is a well-defined ﬁ—partition function

Z(T7 Z) = try ((—1)J07J~0yJ0*C/6.7J~0*C/6qHaﬁ) 7
where 7, z € C, Im(7) > 0, q := exp(27iT), y := exp(27iz),

2(r,2) = Z(r+1,2) = (exp (22 - @))”3 Z(-1,2).

T T

c € R: CENTRAL CHARGE
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1. Assumptions: Superconformal field theories

(2-dim. Euclidean) Unitary SCFT (in fact, spacetime SUSY plus N = (2, 2) worldsheet SUSY)

Data: @ SPACE OF STATES: a unitary C-vector space (I, (-, )
(the Neveu-Schwarz sector)
@ some OBSERVABLES: commuting linear operators H, Jo; H, Jo on H
(2H = Ly — 2Jp etc.)

-
such that:
@ H, U, ﬁ, Jo are self-adjoint, diagonalizable, H > 0, H >0,

spec(H — H) Uspec(Jo — Jo) C Z, spec(Jo) Uspec(do) C 37
@ there is a well-defined ﬁ—partition function
Z(r,2) = tra ((=1)b~hyhlogh-c/oghgh)

where 7, z € C, Im(7) > 0, q := exp(27iT), y := exp(27iz),

2(r,2) = Z(r+1,2) = (exp (22 - @))”3 Z(-1,2).

T T

¢ € R: CENTRAL CHARGE; x(H) := Z(7,0) WITTEN INDEX.
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1. K3 theories and their generic space of states
L]

1. K3 theories

Definition
A K3 THEORY is a superconformal field theory as above at c = 6
with Witten index y(H) = 24.

Result:
[Seiberg88,Cecotti90,Aspinwall /Morrison94,Nahm /W01]
There is an 80-dimensional moduli space My; of K3 theories,

Mis =0+ (4,20, Z\OH 2R 1) 020),
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1. K3 theories and their generic space of states

Definition
A K3 THEORY is a superconformal field theory as above at c = 6
with Witten index y(H) = 24.

Result:
[Seiberg88,Cecotti90,Aspinwall /Morrison94,Nahm /W01]
There is an 80-dimensional moduli space My; of K3 theories,

Mis =0+ (4,20, Z\OH 2R 1) 020),

Let Hp: maximal C-vector space such that, as a representation
of {H, Jo, Jg}, for every K3 theory, Hp < ker(H)
— the GENERIC SPACE OF STATES of K3 theories.

Katrin Wendland The generic space of states of K3 theories 2/7 ‘



2. Mathieu Moonshine as a piece of evidence
L]

2. Towards Mathieu Moonshine: The elliptic genus

CFEFT erLipTIiC GENUS of an SCFT at central charge ¢ as above:
Ecrr(H; 7, 2) == try ((—1)J°_J°yJ°_C/6qH6H> .

Properties:
5CFT(H; T, Z) = trker(ﬁ) ((—1)J07J0yJ0*C/6qH>
= try, ((_1)J0—J~oyJo—c/6qH) .
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2. Towards Mathieu Moonshine: The elliptic genus

CFEFT erLipTIiC GENUS of an SCFT at central charge ¢ as above:
Ecrr(H; 7, 2) == try ((—1)J°_J°yJ0_C/6qH6H> .

Properties:
Ecrr(H; 7, 2)

tMeer() ((—1)J°’J°yJ°’C/ 6q" )

= try, ((—1)J°_J~[)YJ°_C/6QH) .

For K3 theories,

Err(H;7,2) =8 ( 2%:8

)+

93(7,2)
193(7‘,0)

) +s(

V4(7,2)
94(7,0)

).

Katrin Wendland The generic space of states of K3 theories

3/7 |



2. Mathieu Moonshine as a piece of evidence
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2. Towards Mathieu Moonshine: The elliptic genus

CFEFT erLipTIiC GENUS of an SCFT at central charge ¢ as above:
Ecrr(H; 7, 2) == try ((—1)J°_J°yJ0_C/6qH6H> .

Properties:
Cerr(limy2) = tne g <(—1)J°’J°yJ°’C/ 6g" )
= try, (_1)J0—J~oyJo—c/6qH).

For K3 theori
org 3 t}};ones, . da(riz)\2 . S5(riz) ) 2 . 9a(r,2) 2
CFT( Ty Z) - (192(7',0)) + (193(7‘,0)) + (194(7'70)) :

Mathieu Moonshine [Eguchi/Ooguri/TachikawalO, Gannon12]
The elliptic genus of K3 theories agrees
with the character of a particular N = 4 supermodule of Mby,.
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2. Mathieu Moonshine as a piece of evidence
[ ]

2. Towards Mathieu Moonshine: Symmetry surfing

Proposals for K3 theories:

e if the generic chiral algebra of theories in My; is the N =4
superconformal algebra at ¢ = 6, then Hy is known

[Oogurig89,wWo0]

e symmetry surfing [Taormina/W11,13,15]:
Hg carries an Mo, action which combines the actions of the
finite symplectic symmetry groups of all K3 surfaces;
symmetry surfing is confirmed for Z; orbifold conformal field
theories, where the combined action of all symmetry groups

yields an action of a maximal subgroup of Moy
[Taormina/W15, Gaberdiel/Keller/Paull6]

e [Hj seems to carry deeper structure which all K3 theories
share — Mathieu Moonshine serves as mysterious evidence in
favour of this idea
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2. Mathieu Moonshine as a piece of evidence
[ ]

2. The complex elliptic genus of Calabi-Yau D-folds

Let M denote a compact Calabi-Yau D-fold, 7 := T*M.

Expectation: (true for K3 theories)

For non-linear sigma models on M,
Ecrr(H; 7, 2) = E(M; 7, 2), the complex elliptic genus of M.

Definition
For holomorphic vector bundles Ty, = M, ¢, me Z, p € Q:

—y)" T m:

°
HOLOM. EULER CHAR. of E; _, = y*@Pq*(

£,m

X(Eq,—y) = y“Zqé( —y)"xX(Te,m)-

,m

Yy EN- T*®® [A_ygrT™ ®/\_y 15T ® ST ® SqrT |,
where for any bundle E—M, \E:= @x’”/\"’E SE:— eax”’sm

m=0 m=0
“2 D (—y)"Teum,
l,m

COMPLEX ELLIPTIC GENUS of M:

Katrin Wendland The generic space of states of K3 theories

° —
]Eq)_y T

E(M;7,2) = X(Eq, )
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3. Refining the elliptic genus
[ ]

3. Refinements of the elliptic genus

M, H, Eq—, = y’%@qé(—y)mﬁgm as before, v € C, u:=exp(2miv).
Z,m

ELLIPTIC GENUS

Err(H; 7,z ) = trker(ﬁ)((_1)J0—JNoyJo—c/6qH) '

EMirz )= y 22 (- 1)’Zq( y)" dim H (M, Ty, m)-

EM;T,z )= y7%2( 1)jtrH/(Mgzch) ((=y)*q").

6/7 |
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3. Refinements of the elliptic genus

M, H, Eq—, = y’%@qé(—y)mﬁgm as before, v € C, u:=exp(2miv).
Z,m

HODGE ELLIPTIC GENERA
e [Kachru/Tripathy16]
ECT (B 7, 2,v): = g i) (( 1)do—Joyho—e/6  Jo- c/6qH) '

EMirz )= y 22 (- 1)’Zq( y)™ dim H (M, Ty, m)-

EM;T,z ) = y*§2( 1)ftrHj(MQch) ((—=y)*q").
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3. Refining the elliptic genus
[ ]

3. Refinements of the elliptic genus

M, H, Eq—, = y’%@qé(—y)mﬁgm as before, v € C, u:=exp(2miv).
Z,m

HODGE ELLIPTIC GENERA
e [Kachru/Tripathy16]

ELES(H; 7, Z,v): = theer(l) (( 1)%- Joydo—c /6 Jo— c/6qH)
o [W17]
5;'[5_[‘_30(]}]1, T, Z, y) = try, ((_I)JO_%yJO—C/GuJT)*C/ﬁqH) )

EMirz )= y 22 (- 1)’ZQ( y)" dim H(M, Tt,m)-

EM;T,z ) = y*§2( 1)ftrHj(MQch) ((—=y)*q").
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3. Refining the elliptic genus
[ ]

3. Refinements of the elliptic genus

M, H, Eq—, = y’%@qé(—y)mﬁgm as before, v € C, u:=exp(2miv).
Z,m

HODGE ELLIPTIC GENERA
e [Kachru/Tripathy16]

EEER(H, 7, 2,0) = tgrqzy (1) Ry b=e/ouh=c/ogH)

° [W17]
EEEV(H; 7,2, 1) = trHO((—I)JO_“TOyJO_C/Gujo’c/ﬁqH) .
e [Kachru/Tripathy16]
ENES(M; 7, z,v):= (uy) =2 3 (—u) 3¢ (—y)™ dim HI(M, Ty, m).

J £;m

EM;m,z )=y % i (_1)jtrHJ(M,Q%ﬂh) ((_}’)JOCIH)~

J
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3. Refining the elliptic genus
[ ]

3. Refinements of the elliptic genus

M, H, Eq—, = y’%@qé(—y)mﬁgm as before, v € C, u:=exp(2miv).
Z,m

HODGE ELLIPTIC GENERA
e [Kachru/Tripathy16]

EEER(H, 7, 2,0) = tgrqzy (1) Ry b=e/ouh=c/ogH)

° [W17]
EEEV(H; 7,2, 1) = trHO((—I)JO_“TOyJO_C/Gujo’c/ﬁqH) .
e [Kachru/Tripathy16]
ENES(M; 7, z,v):= (uy) =2 3 (—u) 3¢ (—y)™ dim HI(M, Ty, m).

J ¢,m
o [W17]

ENECNM; 7, 2,1v): = (UY)7% Z (—uy trim,ach) ((—Y)J"QH) 0
J
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3. Refining the elliptic genus
[ ]

3. The refined elliptic genera for K3 surfaces M

Results — if M is a K3 surface and H belongs to a K3 theory:

e [Kachru/Tripathy16] (using the Bochner principle):
ENES(M; 7,z,v) is independent of the complex structure.
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3. The refined elliptic genera for K3 surfaces M

Results — if M is a K3 surface and H belongs to a K3 theory:

e [Kachru/Tripathy16] (using the Bochner principle):
ENES(M; 7,z,v) is independent of the complex structure.

e [W17] (using Hp of [W00] and [Kapustin05], or [Song16]):
formula for E"ECh(M; 7, z,v) — it is elliptic, but not modular,
and it is independent of the complex structure;
by [Kapustin05]: EFEC"(M; 7, z,v) = EFECO(H T, z, v).
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3. The refined elliptic genera for K3 surfaces M

Results — if M is a K3 surface and H belongs to a K3 theory:

e [Kachru/Tripathy16] (using the Bochner principle):
ENES(M; 7,z,v) is independent of the complex structure.

e [W17] (using Hp of [W00] and [Kapustin05], or [Song16]):
formula for E"ECh(M; 7, z,v) — it is elliptic, but not modular,
and it is independent of the complex structure;
by [Kapustin05]: EFEC"(M; 7, z,v) = EFECO(H T, z, v).

e [W17] (using [Creutzig/Hohn14]): formula for E"(M; 7, z, v);
ENEC (M, 7, z,v) differs from EMES(M; 7, z,v).
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3. Refining the elliptic genus
[ ]

3. The refined elliptic genera for K3 surfaces M

Results — if M is a K3 surface and H belongs to a K3 theory:

e [Kachru/Tripathy16] (using the Bochner principle):
ENES(M; 7,z,v) is independent of the complex structure.

e [W17] (using Hp of [W00] and [Kapustin05], or [Song16]):
formula for E"ECh(M; 7, z,v) — it is elliptic, but not modular,
and it is independent of the complex structure;
by [Kapustin05]: EFEC"(M; 7, z,v) = EFECO(H T, z, v).

e [W17] (using [Creutzig/H6hn14]): formula for EME¢(M; 7, z, v);
ENECN (M, 1, z,v) differs from EYES(M; 7, z, v).

Concluding remark

The space Hly of generic states of K3 theories is modelled by the co-
homology of the chiral de Rham complex. As a representation of the
N = 4 superconformal algebra, it agrees with the Mathieu Moonshine
Module, supporting the idea of symmetry surfing.
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THANK YOU
FOR YOUR ATTENTION!
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