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Part I: On the status of the Kneser-Poulsen conjecture

| oo 2 3.1 The Kneser—Poulsen Conjecture
%ﬁfx

f Recall that |- || denotes the standard Euclidean norm of the d -dimensional Euclidean

space E“. So, if p;, p; are two points in E¢, then ||p; — p; || denotes the Euclidean

distance between them. It is convenient to denote the (finite) point configuration

Lectures on Sphere | consisting of the points p;,ps,...,py in E¢ by p = (p1,p2,---,py)- Now, if

Karoly Bezdek

Arrangements — p=(p1,p2---, py) and q = (q,qa, ..., qy) are two configurations of N points
the Discrete in E4 such that forall 1 <i < j < N the inequality ||q; — q;ll < llpi — pjll
Geometric Side holds, then we say that q is a contraction of p. Finally, let B¢ [p;, r;]

denote the (closed) d-dimensional ball centered at p; with radius r; in E9 and let
vol;(-) represent the d-dimensional volume (Lebesgue measure) in E¢.

K. Bezdek, Lectures on Sphere Arrangements - the Discrete Geometric Side, Fields Institute
€\ Springer Monographs, Volume 32, Springer, New York, 2013
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The Kneser-Poulsen conjecture (1954-1955):

158. E.T. Poulsen, Problem 10. Math. Scand. 2, 346 (1954) 140. ;/182_ m?ggr;ige Bemerkungen iiber das Minkowskische Flichenmass. Arch. Math. 6,

Contractive e’
_
‘appmg

Fig. 3.1 The Kneser-Poulsen conjecture in E?

Martin Kneser (1928-2004)
Conjecture 3.1.1. 1f q = (q1,q2,...,qy) is a contraction of p = (p1,p2, ..., P~)

in E4, then

N N
volg (U Bd [Pi,ri]) > voly (U Bd [qi,r;]) . 2017-05-20
i=1

i=1



A similar conjecture was proposed by Klee and Wagon [ 138] in 1991.

Conjecture 3.1.2. If q = (q1.q2, ..., qn) is a contraction of p = (p1,p2, --..PnN)
in E4. then

N N
volg [ (\B/[pi.ri] | < vola [ (B [q:. 7]

138. V. Klee, V.S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number
Theory. MAA Dolciani Mathematical Expositions (Mathematical Association of America,
Washington, DC, 1991)

K. Bezdek: The Kneser-Poulsen conjecture revisited 2017-05-20

Victor Klee 5-2007)



The Kneser-Poulsen conjecture is proved for
continuous contractions:

Now, if

P = (P1.p2.---,pn) and q = (qy,qa, ..., qy) are two configurations of N points
in E4 such that forall 1 <i < j < N the inequality ||q; — q;ll = llpi — pjll
holds, then we say that q is a contraction of p. If q is a contraction of p, then there
may or may not be a continuous motion p(z) = (p(¢),p2(7),...,pn (7)), with
pi(t) e B¢ forall0 <t < land1 <i < N such that p(0) = p and p(1) = q,
and ||p; (r) — p;(¢)| is monotone decreasing forall 1 <i < j < N. When there is
such a motion, we say that q is a continuous contraction of p.
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Discrete Comput Geom 20:449-461 (1998) Discrete & Computational

On the Volume of the Union of Balls* e O metry

© 1998 Springer-Verlag New York Inc.

B. Csikos

Department of Geometry, Edtvés University,
Budapest, Rakoczi ut 5, H-1088 Hungary
csb@ludens.elte.hu

Abstract. We prove that if some balls in the Euclidean space move continuously in such
a way that the distances between their centers decrease. then the volume of their union
cannot increase. The proof is based on a formula expressing the derivative of the volume
of the union as a linear combination of the derivatives of the distances between the centers
with nonnegative coefficients.

The following formula discovered by Csikés [84] proves Conjecture 3.1.1 as
well as Conjecture 3.1.2 for continuous contractions in a straighforward way in
any dimension. (Actually, the planar case of the Kneser—Poulsen conjecture under
continuous contractions has been proved independently in [62,71, 83], and [22].)

The planar case has been proved independently by:

62. B. Bollobds, Area of union of disks. Elem. Math. 23, 60-61 (1968)

71. V. Capoyleas, On the area of the intersection of disks in the plane. Comput. Geom. 6(6),
393-396 (1996)
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Csikos’s theorem: Theorem3.2.1. Let d > 2 and let p(t),0 < t < 1 be a smooth motion of a point
configuration in B such that for each t, the points of the configuration are pairwise
distinct. Then

d N
EVOM UB [pi (1), ri]

i=lI

d
= Z (Edij (t)) -volg— (vVU (pi (1), I'i)) s

I<i<j<N

d N
- dr... )
T volyg (!=|| B [pi (1), r,])

= Z — (%du (t)) . VOld—l (WU (pi(t)o ri)) ’

l<i<j<N

where d;j (1) = ||pi(t) — pi (1)]-

Fig. 3.2 The nearest (resp., farthest) point truncated Voronoi cell decomposition of the union
(resp., intersection) of four disks in E?
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The Kneser-Poulsen conjecture is proved in the plane:

J. reine angew. Math. 553 (2002), 221—236 Joumal fiir die reine und
angewandte Mathematik

(© Walter de Gruyter
Berlin - New York 2002

Pushing disks apart—the Kneser-Poulsen
conjecture in the plane

By Karoly Bezdek at Budapest and Robert Connelly at Ithaca

-C T Oorem Theorem 3.3.1. If q = (q1.92.....qn) is a contraction of p = (p1.P2. ---.PN)
in E2, then

N
_U Bz[qi.r.-]) :

i=l1

N
vol, (U Bz[p,-,r,-]) > vol, (
i=l1

N
vol, (ﬂ Bz[p,-,r,-]) < vol, (
i=1

moreover,

N
2 2017-05-20
n B7[q;.r i]) .

i=l



B-C theorem
(extended form):

Fig. 3.2 The nearest (resp., farthest) point truncated Voronoi cell decomposition of the union
(resp., intersection) of four disks in E?

Theorem 3.3.2. Consider N moving closed d -dimensional balls B¢ [p; (t), r;] with
1 <i < N0 <1t < 1inE?d > 2 If Fi(t) is the contribution of the
ith ball to the boundary of the union Uf‘;l B4 [p; (¢), r;] (resp., of the intersection

ﬂfil B?[p;i(t),r]), then

1
2. —svolai (Fi(1)

l1<i<N !

decreases (resp., increases) in t under any analytic contraction p(t) of the center
points, where 0 < t < 1 and svoly_,(...) refers to the relevant (d — 1)-dimensional
surface volume.

Theorem 3.3.3. Let the centers of the closed d-dimensional balls B[p;,r;], 1 <
i < N lie in the (d —2)-dimensional affine subspace L of E¢,d > 3. If F; stands for
the contribution of the ith ball to the boundary of the union vazl BY[p;, ri] (resp.,
of the intersection ﬂf/:l B4[p;,r;]), then

N
_ 1 1
volg—s (U B 2[p.-,r,-]) = > — svolg—1(Fy)

i=1 1<i<N !

N
1 1
(resp., volg_» (ﬂ Bd_z[pi, r,-]) - Py - SVOld—I(Fi)) )

i=1 1<i<N !

where B 2[p;,r;] = B[p;,rijNL,1 <i < N.

Theorem 3.34. Ifq = (q1,9q2,...,qn) is a contraction of p = (P1,P2,---, PN)
inE4,d > 1, then there is an analytic contraction p(t) = (p1(t),..., pn(?)),0 <
t < 1inE* such that p(0) = p and p(1) = q.



Two corollaries of the B-C theorem:

Theorem 3.3.5. Let p = (p1.p2.....pN) and q = (q1.92, . ...qy) be two point
configurations in B4 such that q is a piecewise-analytic contraction of p in E4+2,
Then the conclusions of Conjecture 3.1.1 as well as Conjecture 3.1.2 hold in E€.

The following generalizes a result of Gromov in [ 108], who proved it in the case
N<=d+1.

Theorem 3.3.6. If q = (q1.92....,qn) is an arbitrary contraction of p =
(p1.p2.....pn) in B4 and N < d + 3, then both Conjectures 3.1.1 and 3.1.2
hold.

As a next step it would be natural to investigate the case N = d + 4.

108. M. Gromov, Monotonicity of the volume of intersections of balls, in Geometrical Aspects of
Functional Analysis, ed. by J. Lindenstrauss, V.D. Milman. Springer Lecture Notes, vol. 1267,
(Springer, New York, 1987), pp. 14
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Gorbovickis’s theorem (the Kneser-Poulsen conjecture for large equal radii):

I. Gorbovickis, Strict Kneser—Poulsen conjecture for large radii. Geom. Dedic. 162, 95-107
(2013)

Theorem 3.5.3. Ifq = (q1,q92,...,qn) is a contraction of p = (P1,pP2, ---,PN)
in B, d > 2, then there exists ro > 0 such that forany r > ry,

N N
voly (U B¢ [p,-,r]) > volg (U Bd[q,-,r])
i=1 i=1
and
N N
voly (ﬂ Bd[Pi,r]) < voly (ﬂ Bd[‘li,r]) :
i=1 i=1

and if the point configurations q and p are not congruent, then the inequality is
strict.



Discrete Comput Geom 32:101-106 (2004)

DOI: 10.1007/500454-004-0831-1 Ge(ei‘ﬁ.iﬂéltr y

© 2004 Springer-Verlag New York, LLC

The Kneser-Poulsen Conjecture for Spherical Polytopes*

The Kneser-Poulsen
conjecture for hemispheres , T
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Theorem 3.4.1. If a finite set of closed d-dimensional balls of radius 7 (i.e., of

closed hemispheres) in the d -dimensional spherical space S¢,d > 2 is rearranged

so that the (spherical) distance between each pair of centers does not increase, then

the (spherical) d -dimensional volume of the intersection does not decrease and the S
(spherical) d -dimensional volume of the union does not increase.

\



Part II: The Kneser-Poulsen conjecture is proved
for uniform contractions of congruent balls

THE KNESER-POULSEN CONJECTURE FOR SPECIAL
CONTRACTIONS

KAROLY BEZDEK AND MARTON NASZODI

/
ABSTRACT. The Kneser-Poulsen Conjecture states that if the centers of a family of N unit
balls in E9 is contracted, then the volume of the union (resp., intersection) does not increase
(resp., decrease). We consider two types of special contractions.

First, a uniform contraction is a contraction where all the pairwise distances in the first
set of centers are larger than all the pairwise distances in the second set of centers. We obtain
that a uniform contraction of the centers does not decrease the volume of the intersection of
the balls, provided that N > (1 4+ v/2)%. Our result extends to intrinsic volumes. We prove
a similar result concerning the volume of the union.

Second, a strong contraction is a contraction in each coordinate. We show that the con-
jecture holds for strong contractions. In fact, the result extends to arbitrary unconditional
bodies in the place of balls.

arXiv:1701.05074v2 [math.MG] 26 Feb 2017 2017-05-20



Intrinsic volume:

Let K C EY be a convex body (i.e. a compact convex set with nonempty interior in E9).
Let w; denote the i-dimensional volume of the unit i-ball, 0 < ¢ < d. Then the intrinsic
t-volume V;(K) of K can be defined via Steiner’s formula

d
Vola(K + pBY) =3~ wiVai(K)/',

i=0

where p > ( is an arbitrary positive real number and pB? denotes the closed ball of radius
p centered at the origin o of E4 and K + pB? denotes the vector sum of the convex bodies
K and pB? with d-dimensional volume Vol (K + pB?). It is well-known (see for example
[4]) that Voly(K') is the d-dimensional volume of K, 2Vol;_;(K) is the surface area of K
and ‘)‘(‘,’“‘);' Vi(K) is equal to the mean width of K. (Moreover, V4(K) = 1.)
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Notations:

|

We denote the Euclidean norm of a vector p in the d-dimensional Euclidean space E? by
Ip| := +/(p,p), where (-,-) is the standard inner product. For a positive integer N, we use
[N] ={1,2,...,N}. Let A C E? be a set, and k € [d]. We denote the k—th intrinsic volume
of A by Vi (A); in particular, V;(A) is the d—dimensional volume. The closed Euclidean
ball of radius p centered at p € E? is denoted by Blp,p|] := {q € E? : |p—gq| < p}, its
volume is p?kq4, where k4 := V4 (B[o, 1]). For aset X C EY, the intersection of balls of radius
p around the points in X is B[X, p| := NzexBlz, p|; when p is omitted, then p = 1. The
circumradius cr(X) of X is the radius of the smallest ball containing X. Clearly, B[X, p] is
empty, if, and only if, cr(X) > p. We denote the unit sphere centered at the origin o € E
by S© 1 :={ueE* : |u|=1}.
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Definition (uniform contraction):

It is convenient to denote the (finite) point configuration consisting of N points
in E¢ b = 1 idered int in BN
P1,P2,..., PN In v p = (p1,...,pn), also considered as a point in :

/
We say that q € E¥*N is a uniform contraction of p € E¥*N with separating value X > 0, if

(UC) ¢: — ¢;| < A < |p;i —p;| for all i, j € [N],i # j.
Main theorem:

Theorem 1.1. Let d,N € Z*,k € [d], and let q € E™N be a uniform contraction of
p € EN with some separating value X € (0,2]. If N > (1+ \/§)d then

(1) Vi (n B[P,;]) < Vi (n B[q,—]) :

n /

Theorem 1.2. Let d, N € Z*, and let ¢ € E™N be a uniform contraction of p € BN with
some separating value X € (0,2]. If N > (1 + 2d3)d then

N N
(2) Va (U B[Pi]) > Vg (U B[Qi]) -

A WY




Theorem 1.1. Let d,N € Z*,k € [d], and let @ € E¥N be a uniform contraction of
p € EN with some separating value X € (0,2]. If N > (1+ \/§)d then

(1) Vi (ﬂ B[Pi]) < Vi (n B[q,-]) :

2. PROOF OF THEOREM 1.1
Theorem 1.1 clearly follows from the following

Theorem 2.1. Let d,N € Z*,k € [d], and let @ € E®™N be a uniform contraction of
p € EPN with some separating value X € (0,2]. If

(a) N> (1+2),

or )
(b)) A< V2 and N > (1+\/%’ ,
then (1) holds.

\\ K. Bezdek: The Kneser-Poulsen conjecture revisited 2017-05-20



Definition:

|

In this section, we prove Theorem 2.1. We may consider a point configuration p € E¥*V
as a subset of E? and thus, we may use the notation B[p] = (),cy B[p:]. We define two
quantities that arise naturally. For d, N € Z7 k € [d] and X € (0, 2], let

fi(d,N,\) :=min{V, (B[q]) : q € E”N |gi —q;| < Aforalli,j € [N],i#j},

and
gk(d, N, A) :=max {V, (B[p]) : p€E™",|p;—p;| > Aforalli,j € [N],i#j}.

In this paper, for simplicity, the maximum of the empty set is zero.
Clearly, to establish Theorem 2.1, it will be sufficient to show that fi > g with the
parameters satisfying the assumption of the theorem.
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Two easy estimates:

Lemma 2.2. Let d, N € Z*,k € [d] and )\ € (0,v/2]. Then

(5) fi(d, N, X) > (1—\/(12—4‘_11%) Vi (Blo])

Proof of Lemma 2.2. Let q € E*" be a point configuration in the definition of f;. Then
Jung’s theorem [Jun01, DGK63] implies that the circumradius of the set {¢;} in E? is at

most , /222 It follows that B[q] contains a ball of radius 1 —,/-222. By the monotonicity

d+12° dr12°
(with respect to containment) and the degree-k homogeneity of Vj, the proof of the Lemma
is complete. ]

/
Lemma 2.3. Letd, N € Z" ,k € [d] and X > 0.

A\ ¢ A\?
(6) If N (5) > (1 + 5) , then gp(d,N,\) = 0.
Proof of Lemma 2.3. Let p € E¥*V be such that |p; — p;| > A for all i,j € [N],i # j. The
balls of radius A/2 centered at the points {p;} form a packing. By the assumption, taking
volume yields that the circumradius of the set {p;} is at least one. Hence, B|p] is a singleton

or empty. O



Definition:

Let X be a non-empty subset of E¢ with cr(X) < p. For p > 0, the p-spindle convex hull of X
is defined as

conv,(X) := B[B[X, pl, p|.
It is not hard to see that
(7) B[X, p| = Blconv,(X), p].
We say that X is p-spindle convez, if X = conv,(X).
An additive Blaschke-Santalo type inequality:

Theorem 2.4. Let Y C E? be a p-spindle convex set with p > 0, and ,k € [d]. Then
(8) Vie (V)" + Vi (BIY, p])/* < pVi (Blo]) /.

Motivated by [FKV16] we observe that Theorem 2.4 clearly follows from the following

proposition combined with the Brunn-Minkowski theorem for intrinsic volumes, cf. [Gar02,
equation (74)].

Proposition 2.5. Let Y C E? be a p-spindle convex set with p > 0. Then
Y — B[Y, ] = B[o, ).



Remark:

We will need the following fact later, the proof is an exercise for the reader.

N
UB[qi’/'LL 1+ lu’] )

i=1

(9) Blq]=B

for any q € E¥V and p > 0.

A non-triV/'/a/l bound on gy:

Lemma 2.6. Let d,N € Z* k € [d] and X € (0,/2]. Then

k
(10) gr(d, N, \) < max {O, (1 — (NY4 1) %) Vi (B[o])} :
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Proof of Lemma 2.6 (Key Lemma):

Let p € E?N be such that |p; — p;| > A for all i,j € [N],i # j. We
will assume that cr(p) < 1, otherwise, B[p] = 0, and there is nothing to prove.

To denote the union of non-overlapping (that is, interior-disjoint) convex sets, we use the
| ] operator.

Using (9) with g = A/2, we obtain

Vi (B[p]) = (
Vi (B
(1 + g) Vi (B[o])llk -V, (conv1+,\/2 (!; B [ ) g] ) ) 1k * )

where, in the last step, we used the following. o,

2

|_|Bl,, ],1+§D —  (using er(p) < 1,and (7))

N -
COI]V1+,\/2 (I_I B Pi, %]) y 1+ %]) S (by (8))

i=1




We have

N
Vi (conv1+,\/2 (l_lB [p,%‘)) >V, ((Nl/d)\/Q)B[o]) :

i=1

Thus, by a general form of the isoperimetric inequality (cf. [Schl4, Section 7.4.]) stating

that among all convex bodies of given (positive) volume precisely the balls have the smallest
k—th intrinsic volume for £ =1,...,d — 1, we have

N
Vi (conv1+,\/2 (l_lB [p,%])) > Vi ((Nl/d,\/Q)B[o]) .

Finally, (10) follows.

[Sch14] R. Schneider, Convez bodies: the Brunn-Minkowski theory, expanded, Encyclopedia of Mathemat-
ics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR3155183
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Theorem 2.1. Let d,N € Z",k € [d], and let q € E™N be a uniform contraction of
p € EPN with some separating value \ € (0,2]. If
(a) N> (1+2),
or ]
(b) A< /2 and N > (1+,/%) ,
then (1) holds.

2.4. Proof of Theorem 2.1. (a) follows from Lemma 2.3. To prove (b), we assume that

A< V2.
By (5), we have

d 1/k [ 2d
_ Vi (Blo]) d+12
On the other hand, (10) yields that either gi(d, N,A) =0, or

ak(d, N, 2\ ¥ i A
(12) (TB[O])) 51—(N/—l)§.

Comparing (11) and (12) completes the proof of (b), and thus, the proof of Theorem 2.1.
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Part II1: From r-dual sets to uniform contractions

From r-dual sets to uniform contractions *

Kéroly Bezdek!

Abstract

Let M? denote the d-dimensional Euclidean, hyperbolic, or spherical space. The r-dual set of given
set in M? is the intersection of balls of radii r centered at the points of the given set. In this paper
we prove that for any set of given volume in M? the volume of the r-dual set becomes maximal if the
set is a ball. As an application we prove the following. The Kneser-Poulsen Conjecture states that if
the centers of a family of N congruent balls in Euclidean d-space is contracted, then the volume of the
intersection does not decrease. A uniform contraction is a contraction where all the pairwise distances
in the first set of centers are larger than all the pairwise distances in the second set of centers. We prove
the Kneser-Poulsen conjecture for uniform contractions (with N sufficiently large) in M.

arX1v:1704.08290vl [math.MG] 26 Apr 2017
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r-dual sets in MY :

Let M9, d > 1 denote the d-dimensional Euclidean, hyperbolic, or spherical space, i.e., one of
the simply connected complete Riemannian manifolds of constant sectional curvature. Since
simply connected complete space forms, the sectional curvature of which have the same sign
are similar, we may assume without loss of generality that the sectional curvature & of M
is 0,—1, or 1. Let R+ denote the set of positive real numbers for K < 0 and the half-open
interval (0, 5] for k = 1. Let distya(x,y) stand for the geodesic distance between the points
x € M? and y € M. Furthermore, let Bya[x, 7] denote the closed d-dimensional ball with
center x € M and radius r € R, in M¢, i.e., let Bya[x,7] := {y € M9 |distya(x,y) < 7}.
Now, we are ready to introduce the central notion of this paper.

Definition 1. For a set X C M, d > 1 and r € R, let the r-dual set X" of X be defined
by X7 := (\ycx Bma[x,r]. If the interior int(X") # 0, then we call X" the r-dual body of X.
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r-dual sets satisfy some basic identities such as
(X)) =X"and (XUY) =X"NY",

which hold for any X € M? and Y C M¢. Clearly, also monotonicity holds namely, X C
Y C M? implies Y™ C X". Thus, there is a good deal of similarity between r-dual sets and
polar sets (resp., spherical polar sets) in E? (resp., S%). In this paper we explore further this
similarity by investigating a volumetric relation between X" and X in M. For this reason
let Vjpa(+) denote the Lebesgue measure in M¢, to which we are going to refer as volume in

M.

ao-Hug-Schneider theorem in S :

for any convex body of given volume in S? the volume
of the spherical polar body becomes maximal

if the convex body is a ball.

F. Gao, D. Hug, and R. Schneider, Intrinsic volumes and polar sets in spherical space,
Math. Notae 41 (2003), 159-176.
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A Blaschke-Santalo-type inequality for r-duality in M9:

Theorem 1. Let A C M9, d > 1 be a compact set of volume Vyga(A) > 0 andr € R,. If
B C M is a ball with Vya(A) = Vya(B), then Viga(A™) < Vaa(BT).

Note that the Gao—Hug—Schneider theorem is a special case of Theorem 1 namely, when
M? = S? and r = 3. As this theorem of [10] is often called a spherical counterpart of
the Blaschke-Santal6é inequality, one may refer to Theorem 1 as a Blaschke-Santal6-type

inequality for r-duality in M.

/

Proof of Theorem 1

N/
We adapt the two-point symmetrization method of the proof of the Gao-Hug-Schneider theo-

rem from [10].
\\I

[10] F. Gao, D. Hug, and R. Schneider, Intrinsic volumes and polar sets in spherical space,
Math. Notae 41 (2003), 159-176.
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Two-point symmetrization: "

Definition 3. Let H be a hyperplane in M? with an orientation, which determines HT and
H~ the two closed halfspaces bounded by H in M?, d > 1. Let oy denote the reflection about
H in M?. If K C M, then the two-point symmetrization Ty with respect to H transforms
K into the set

K :=(KNogK)U((KUogK)NHT).
If Ky == K NogK stands for the H-symmetric core of K, then we call

THKZKHU((KﬂH+)\KH)UO'H((KﬂH_)\KH) (1)
the canonical decomposition of Ty K.

Remark 3. The canonical decomposition of Ty K is a disjoint decomposition of Ty K, which
easily implies that two-point symmetrization preserves volume.



Definition 4. Let K ¢ M?, d > 1 and r € R,. Then the r-convex hull conv,K of K is

defined by

conv, K := ﬂ{BMd[X,T] | K C Bpualx,7]}.
Moreover, let the r-convexr hull of M? be M?. Furthermore, we say that K C M? is an
r-conver set if K = conv, K.

Lemma 4. If K CM? d > 1 andr € R, then
K" = (conv, K)".

Lemma 5. If K CM?, d > 1 and r € Ry, then
T (K") C (conv,.(tg K))".

Proof. Lemma 4 implies that (conv,(7y K))" = (T K)" and so, it is sufficient to prove that
Ty (K™) C (tg K)". For this we need to show that if x € 75(KT"), then x € (T K)", i.e.,

THK C Byalx, 7). (3)
Remark 3 implies that
T(K") = (K")p U ((K"NVH)\ (K")g) Yoy (K"NH)\ (K")n)

is a disjoint decomposition of 75 (K") with (K")y = K" Noy(K"). Thus, either x € (K")y
(Case 1),orx e (K"NH")\ (K")y (Case 2),orx € oy (K"NH™)\ (K")g) (Case 3). In
all three cases we use (1) for the proof of (3).
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Finishing the proof of Theorem 1:

Now, we are ready to prove Theorem 1. To avoid any trivial case we may assume that
Vaa(AT) > 0 for A C M? with a := Vjue(A) > 0. In fact, our goal is to maximize the
volume Vjya(A") for compact sets A C M? of given volume Vja(A) = a > 0 and for given
d>1and r € R,. As according to Lemma 4 we have A” = (conv,A)" with A C conv, A,
it follows from the monotonicity of Vi ((-)") in a straightforward way that for the proof of
Theorem 1 it is sufficient to maximize the volume Vjga(A") for r-convex sets A C M of given
volume Vjya(A) = a with given d and r. Next, consider the extremal family &, 4 of r-convex
sets A C M? with Vjpa(A) = a and maximal Vj(A") for given a, d and r. By standard
arguments, &, .4 7 0.

Lemma 6. The extremal family &, .4 is closed under two-point symmetrization.

Proof. Let A € &,,4 be an arbitrary extremal set and consider 7y A for an arbitrary hy-
perplane H in M¢. Lemmas 4 and 5 imply that 75(A") C (conv,(tgA))" = (g A)" and
therefore

Vaa(A”) = Vi (T (A7) < Viga ((convi (g A))") = Vaga((Ta A)"). (6)
Here 7y A C conv,(7y A) implying that

a = Vyu(A) = V(T A) < Vi (conv,. (g A)) . (7)



[10] F. Gao, D. Hug, and R. Schneider, Intrinsic volumes and polar sets in spherical space,
Math. Notae 41 (2003), 159-176.

/
We finish the proof of Theorem 1 by adapting an argument from [10]. Namely, we
are going to show that B € &,, 4, where B C M? is a ball with a = Vyu(A4) = Vyu(B).
By a standard argument there exists an r-convex set C' € &, ,4 for which Vya(B N C) is
maximal. Suppose that B # C. As a = Vju(B) = Vja(C) therefore there are congruent
balls C; C C'\ B and Cy C B\ C. Let H be the hyperplane in M with an orientation, which
determines H* and H~ the two closed halfspaces bounded by H in M?, d > 1 such that
oy Ci = Cy with Cy € H~. Clearly, Vypa(BN7HC) > Vyga(BNC') moreover, Lemma 6 implies
that 7yC' € &, 4, a contradiction. Thus, B = C € &, 4, finishing the proof of Theorem 1.

This completes the proof of Theorem 1.
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Uniform contractions in M4Y:

Definition 2. We say that the (labeled) point set {q,...,qn} C M? is a uniform contrac-
tion of the (labeled) point set {p1,...,pn} C M? with separating value A > 0 in M9, d > 1
if

diSth (qi, q]) S A S diSt’Md(pia pJ)

holds for all1 <i < j < N.

[5] K. Bezdek and M. Naszodi, The Kneser-Poulsen conjecture for special contractions,
arXiv:1701.05074 [math.MG], 18 January, 2017.

/

Now, recall the following recent theorem of the author and Naszddi [5] : Let d € Z and
5,A € R be given such that d > 1 and 0 < A < v/26. If Q := {q1,...,qn} C E? is a uniform
contraction of P := {py,...,pn} C E? with separating value A in E? and N > (1 + v/2),
then Viga(P%) < Vga(Q?). As it is explained in [5], this proves the Kneser-Poulsen conjecture
for uniform contractions.
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The Kneser-Poulsen conjecture for uniform contractions in M9:

Theorem 2.

(i) Letd € Z and 5, \ € R be given such thatd > 1 and0 < A\ < v/26. IfQ := {qq,...,qn} C
E? is a uniform contraction of P = {p1,...,pn} C E? with separating value X in B¢ and
N > (1+v2)?, then Viea(P?) < Via(Q?).

(ii) Let d € Z and 6, € R be given such thatd > 1,0 < 6§ < F, and 0 < A <
min{%é,w - 26}. IfQ := {q,...,qn} C §%is a uniform contraction of P :== {py,...,pn} C

d
S? with separating value \ in S% and N > 2ednd! (% B QL\/Q) , then Vga(P®) < Via(Q?).

(iii) Let d,k € Z and §,\ € R be given such d > 1,k > 0 and 0 < SEX < § < k.
If Q := {qi,...,qv} C H? is a uniform contraction of P := {pi,...,pn} C H? with

separating value X in H? and N > (%)d_l(@ +1)4, then Viga(P?) < Viga(Q?).
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[5] K. Bezdek and M. Naszodi, The Kneser-Poulsen conjecture for special contractions,
arXiv:1701.05074 [math.MG]|, 18 January, 2017.

Following [5], our proof is based on estimates of the following functionals.

Definition 5. Let

fua(N, A, 8) := min{Viga(Q°) | Q := {qu, ..., qn} C M?, distye(qs, q;) < Aforall1 <i<j< N}
(8)

and

gua(N, X, 0) := max{Vya(P°) | P := {p1,...,pn} CM%, X < distya(ps, pj) for all 1 <i < j < N}

9)
0/

Definition 6. The circumradius cvX of the set X C M4, d > 1 is defined by
erX :=inf{r | X C Byu[x,r|}.
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3.2 Proof of (ii) in Theorem 2

First, we lower bound (8). Let R := crQ). Then Jung’s theorem ([7]) yields sin R <

2d_gin % By assumption 0 < A < 3 and so,

d+1
2 | 2d A /Qd)\ 1
< Z i < in = = L e
O_WR<st_ d+lsm2< d+12<\/§/\

implying that 0 < R < ;7=A. Thus, Bga [x, 0 — QL\/iA:I C @° for some x € S¢. (We note that

s
by assumption § — 2%)\ > 0.) As a result we get that

fsa(N, X, 6) > Vaa (Bsd [x, 5 — QLﬁAD . (16)
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Second, we upper bound (9). It follows in a straightforward way that

P° = (CJI Bsu [p,;, %DHQ , (17)

where the balls Bs«[p1, %], ..., Bsa[pn, %] are pairwise non-overlapping in S?. Thus,

i (e 2] ) = 0 (e 2] "

Let g > 0 be chosen such that

NVes (Bss [pl, g]) — Vs (Bt [p. 1) (19)
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1
Proposition 7. If0 < p < I, then (54)* NaA < p.

Proof. One can rewrite (19) using the integral representation of volume of balls in §¢ ([6])
as follows:

iy x

2 2
Ndwd/ (cost)d~dt = dwd/ (cost)?~dt,
3H

1=

t2)
o] >~

where wy := Vga(Bga[x, 1]), x € E%. Then Lemma 4.7 of [4] yields the following chain of
inequalities in a rather straightforward way:

N N[ AN\ 5 i o
—Qedwd‘l/\d 33 (sm —) < N/_A (cost)?~1dt = ‘/1_#(cost)d Ldt < p(sinp)=t < pl.
2 2

From this the claim follows. H

Lemma 4.7 For every § € (0, w/2) and every n > 1 one has

[4] K. Bezdek and A. E. Litvak, Packing convex bodies by cylinders, Discrete Comput. Geom.

55/3 (2016), 725738 by (Sin 8)" /H/Z
<
e(n+1) 7/2—8

(cost)" dt < & (sind)".



Now Theorem 1, (17), (18), and (19) imply in a straightforward way that
5+3
A
Var (P) = Vi (U Bs. [pz, ]) < Vos ((Bge [pr, )2 (20)

Clearly, (Bsq [p1, ,u]) . = Bss [p1,0 + — p] (with the usual convention that if 5 - 5 — <
0, then Bga [p1,6 + p] = 0). By assumptlon 0<d + < % and so, if § + —p >0,
then necessarily 0 < u < %. Thus, Proposition 7 and (20) yleld

mi- () ¥-3)2) @

) therefore ((Ze‘lﬁj)d Ni— %) A > ﬁi)\ and
), finishing the proof of (ii) in Theorem 2.

ng(Na /\: 6) < VS“ (BSd

(With Vga(@) = 0). As N > 2edr?? (%
0, (16) and (21) yield gsa(N, A, 0) < fsa(
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