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Dynamical systems and predictability

« The initial-value problem - numerical weather prediction (NWP)
— easiest!
« The asymptotic problem - long-term climate
— a little harder
* The intermediate problem - low-frequency variability (LFV) —
— multiple equilibria, long-periodic oscillations, intermittency,
slow transients, “tipping points”
— hardest!!
Paraphrasing John von Neumann, in

R. L. Pfeffer (ed.), Dynamics of Climate (Pergamon, 1960)
now re-edited as an Elsevier E-book



Long-term temperature evolution on Earth

Not only do global temperatures move up & down on geological time scales,
nor do they just switch from one long-term mean to another:
They clearly show changes in dynamic regime — from high to low variability,
from one dominant periodicity to another, from high to low drift, and so on.
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Overall, to model this complex behavior we do need to consider
both chaotic & random ingredients, both intrinsic & forced variability.

Compiled by Glen Fergus, https://commons.wikimedia.org/wiki/File%3AAll _palaeotemps.png

N.B. Plot is ~’log-linear”: time axis is logarithmic+linear, temperature axis is linear.



Composite spectrum of climate variability

Standard treatement of frequency bands:
1. High frequencies — white noise (or “colored”)
2. Low frequencies — slow evolution of parameters
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Climate and Its Sensitivity

| et’s say C()2 doubles: 7, (a) Equilibrium sensitivity
CO,
How will “climate” change?

1. Climate is in stable equilibrium

(fixed point); if so, mean temperature o N .t
will just shift gradually to its new (b, c) Non-e.qul%lbrlum sensitivity
equilibrium value. cTé 4(b) periodic

2. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.
But how will the period, amplitude
and phase of the limit cycle change?

3. And how about some “real stuff”
now: chaotic + random?

Ghil (in Encycl. Global Environmental
Change, 2002)




Motivation
e The IS highly quite

 The system’s major components — the atmosphere, oceans,
ice sheets — evolve on many time and space scales.

o lts predictive understanding has to rely on the system’s
physical, chemical and biological modeling,

but also on the thorough mathematical analysis of the models
thus obtained: the forest vs. the trees.

 The hierarchical modeling approach allows one to
give proper weight to the understanding provided by the
models vs. their realism: back-and-forth between
“toy” (conceptual) and detailed (“realistic”) models,
and between models and data.

 How do we disentangle natural variability from the
anthropogenic forcing. can we & should we, or not?



The gyres and the eddies

Many scales offmotions
dominated'in the'mid-latitudesiby
(l) the dOUbIejgyre ml i Slope Water

Warm Core Rifg

and (i)

Much of the focus of physical
oceanography over the 70s to
‘90s has been with the

- ”: the meanders,
rings & eddies, and the
associated two-dimensional and
quasi-geostrophic

Based on SSTs, from satellite IR data
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Zonal Flow
13—-22 Dec. 1978

Transitions Between Blocked and Zonal Flows
in a Barotropic Rotating Annulus with Topography

Blocked Flow
10-19 Jan. 1963

-
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Fig. 1. Atmospheric pictures of (&) zonal and (B} blocked flow, showing
contour plots of the height {m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (&) 13 to 22 December 1978 and (B) 10 to
19 January 1963, the data are from the National Oceanic and Atmospheric

Administration's Climate Analysis Center. The nearly zonal flow of (&) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent's western part (26).

Weeks, Tian, Urbach, Ide, Swinney, & Ghil (Science, 1997)
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Outline — Unsteady Flows & Climate

« Atmospheric & oceanic flows
— scales of motion, in time & space
— one person’s signal (“deterministic”) is
another one’s noise (“stochastic”)
Time-dependent forcing
— intrinsic vs. forced variability
— pullback and random attractors

An illustrative example

— the Lorenz convection model with time-dependent forcing
A “grand unification”

— a mathematical definition of climate sensitivity
Conclusions and references

— what do we & don’t we know?
— selected bibliography
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Temperatures and GHGs

Greenhouse gases (GHGs) go up,

temperatures go up:

It's gotta do with us, at least a bit,
doesn’t it?

Temperature Anomaly (°C)

Wikicommons, from

Hansen et al. (PNAS, 2006);

see also http://data.giss.nasa.gov/
gistemp/graphs/
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Global warming and
its socio-economic impacts

Mutti-MopEL AVERAGES AND AsSESSED RANGES FOR SURFACE WARMING

Temperatures rise: W
« What about impacts? 4 — Z%iéﬁ?ﬁifé‘é’f“"‘ d
6 | —20th centu i
* How to adapt? 2 ' -
g I
The answer, my friend, . EE
is blowing in the wind, £ g
i.e., it depends on the 3
accuracy and reliability 7 A
of the forecast ... A L ko
= ’ . - - , : : -0 < 0 < <L
1900 2000 2100

Year

Figure SPM.5. Solid finas are multi-model giobal averages of surface warming (relative to 1980-1999) for the scenanios A2, A1B and B1,

S O ur Ce ; I P C C (2 O O 7) , shown as continuations of the 20th century simulations. Shading denotes the +1 standard deviation range of individual model annual

avarages. The orange line is for the experiment wheare concentrations were held constant at year 2000 values. The gray bars at right

A R 4 WG I S P M indicate the bast astimate (solid line within each bar) and the likely range assessed for the six SRES marker scanarios. The assessment of
J J the best astimate and likely ranges in the gray bars includas the AOGCMSs in the left part of the figure, as well as rasults fom a hierarchy

of indapandant models and obsearvational constraints. {Figuras 10.4 and 10.29)



Time-Dependent Forcing —> Pullback Attractors

Consider the scalar, linear ordinary differential equation (ODE)
r=—axr+ot, a>0, c>0.

When there’s no forcing, o= 0, the ODE is purely dissipative
r = —QI,
and all solutions converge to the fixed point x=0as ¢ — +co.

Now what about when we do have forcing, o= 07?

At each time t = t,, say, we have to “pull back” and start at some time
S = s;<< t; say,to see where the flow takes us at t = t,.

As s — —oo, we get the pullback attractor a = a(f) in the figure,

z(s,t;xo), with zo varyin
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Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

20

-20

-30

40~
40

@ A snapshot of the RA, A(w), computed at a fixed time ¢t and for the
same realization w; it is made up of points transported by the stochastic
flow, from the remote pastt — 7, T >> 1.

@ We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, 0 = 10, and r = 28.

@ Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity



A day in the life of the Lorenz (1963) model’s random attractor, or LORA for short;
see Sl in Chekroun, Simonnet & Ghil (2011, Physica D)



Classical Strange Attractor

Physically closed system, modeled
mathematically as autonomous
system: neither deterministic
(anthropogenic) nor random
(natural) forcing.

The attractor is strange, but still
fixed in time ~ “irrational” number.

Climate sensitivity ~ change in the
average value (first moment) of the
coordinates (x, y, z) as a parameter
A\ changes.




Random Attractor

Physically open system, modeled
mathematically as non-autonomous
system: allows for deterministic
(anthropogenic) as well as random
(natural) forcing.

The attractor is “pullback” and
evolves in time ~ “imaginary” or
“‘complex” number.

Climate sensitivity ~ change in the
statistical properties (first and
higher-order moments) of the
attractor as one or more
parameters (A, |, ...) change.

Ghil (Encyclopedia of Atmospheric
Sciences, 2" ed., 2012)




How to define climate sensitivity or,
What happens when there’s natural variability?

This definition allows us to watch how “the earth moves,” as it is affected
by both natural and anthropogenic forcing, in the presence of natural
variability, which includes both chaotic & random behavior:

chaotic + random behavior:

Clearly the invariant measure v(t; ;1) changes in its position (i.e., its support),
as well as in its probability density — with time t, as shown here — but also
with respect to an arbitrary parameter u, where . = 7 in the present case.

Hence, in general, v = Odw /0.



Yet another (grand?) unification

Lorenz (JAS, 1963)

Climate is deterministic and autonomous,
but highly nonlinear.

Trajectories diverge exponentially,
forward asymptotic PDF is multimodal.

Hasselmann (Tellus, 1976)

Climate is stochastic and noise-driven,
but quite linear.

Trajectories decay back to the mean,
forward asymptotic PDF is unimodal.

Grand unification (?)

Climate is deterministic + stochastic,
as well as highly nonlinear.

Internal variability and forcing interact
strongly, change and sensitivity
refer to both mean and higher moments.

TR EEE

Time-depedent invariant meas

h(t+1)

ure of the GT-model
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Concluding remarks —
What do we & don’t we know?

What do we know?
* |t’s getting warmer.

* We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
* By how much?

— Is it getting warmer ...
— Do we contribute to it ...

 How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

What to do?

- Better understand the system and its forcings.
- Explore the models’, and the system’s

— robustness and sensitivity

— pullback & random attractors
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Uniforiunztely, tnings
|

s

Try to achieve better
interpretation of, and

agreement between,
models ...

Ghil, M., 2002: Natural climate variability,
in Encyclopedia of Global Environmental
Change, T. Munn (Ed.), Vol. 1, Wiley

Natural variability introduces additional complexity into
the anthropogenic climate change problem

The most common interpretation of observations and
GCM simulations of climate change is still in terms
of a scalar, linear Ordinary Differential Equation (ODE)

g k= Z k. —|feedbacks (+ve and -ve)

T

@5~ kT =Yool i

c " +0| O ZQJ sources & sinks
Q,=0,0

0.6

0.3

04

0.3

0.2

Tzmperatura Change (;C)

0.1

Linear GHG effect |

1860 1880 1900 1920 1940 1960 1980 2000

Timz (years)
Linear response to CO, vs. observed change in T

Hence, we need to consider instead a system of nonlinear
Partial Differential Equations (PDESs), with parameters

and multiplicative, as well as additive forcing
(deterministic + stochastic)

dX
_=N(X9t’usﬂ)
dt
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So what’s it gonna be like, by 21007

Table SPM.2. Recant trands, ssssasmeant of human influence on the trend and projections for extreme westher events for which thers
2 an obsanved lste-20t0h cantwry trend. (Tablee 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Likelihood of future trends

based on pcbom for
21st century ualng

SRES scenarios
days and nights over Very Ikely© Likalyd Virtually certaind
moet land areas
Warmer and more fraquent
hot days and nights over Very Ikealy® Liely fnights) Virtually certaind
moet land areas
Warm spella/heat waves.
Frequency incraases over Liely More ikely than not' Very lkely
moet land areas
Heavy precipitation events.
total mial(:om houyﬁ:fq Licely More licely than not! Very ikely
increases over most areas
Area affected by Likedy in many
droughts increasse regions since 19708 More liely than not Likely
lmemotlopcd cydona Likedy in some
activity increases regions since 1970 More liely than notf Likely
Increased incidence of
extrame high s=a level Liely Move likely than not'h Liely
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CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Global warming and

its socio-economic impacts— |l

. (a) Global average surface temperature change
Temperatures rise: i
 What about impacts? 5. 1
e How to adapt? s
2
AR5 VS AR4 (b) Northern Hemisphere September sea ice extent
A certain air of déja vu: ey PP
GHG “scenarios” have been £ o
replaced by “representative 0
concentration pathways” (RCPs), ..
. . . 1950 2000 2050 2100 s 2 £ p
more dlre predICtlonS’ (C) Global ocean surface pH 8228
but the uncertainties remain. .
= e - d =
:;él 7ja \ géé_
Source : IPCC (2013), . | | 1 7
ARS’ WGI’ SPM 1950 2000 2050 2100



But deterministic chaos doesn’t explain all:
there are many other sources of irregularity!

Wavenumber (radians m-1)

* The energy spectrum of the 106 105 104 108 102

108 I | |

atmosphere and ocean is
“full”: all space & time scales | [zl \vewmow
are active and they all 10°F ks

contribute to forecasting
uncertainties.
 Still, one can imagine that
the longest & slowest scales o7 Confinoe inerval
contribute most to the T Ea
longest-term forecasts.
« “One person’s signal is e vééie.engtmﬁ’;) o

Spectral Density (m3 m—2)

-

(@]
W
[

101 —

another person's noise. After Nastrom & Gage (JAS, 1985)



Climate models (atmospheric & coupled) : A classification

» stationary, (quasi-)equilibrium
= transient, climate variability

e Space

= 0-D (dlmenSIM O Radlatlve Convective Model(RCM)
=1-D

. Energy Balance Model (EBM)
vertical

latitudinal
= 2-D ﬁ

horizontal
meridional plane
= 3-D, GCMs (General Circulation Model)
» Simple and intermediate 2-D & 3-D models

- Coupling
» Partial
unidirectional
asynchronous, hybrid
= Full

= Hierarchy: back-and-forth between the simplest and the most elaborate model,
and between the models and the observational data



Multiple sciales of mc_)tio_n: Observations climate
Space-time organization /

: km A
> The mOSt aCt|Ve 104" |ow-frequency ENSO
_ variability (LFV)*
scales lie along a ) plocking
. . . o istent
dlagOnaI in this S, a4 synoptic-scale gr?crasr':aﬁgs
_ » 10 variability
space vs. time £ traveling
X
lt ol G O\ weather
» Why this is so ot
is far from clear — S S
as Of NnOowW hour day week month season year
' time scale
» We'll deal with
weather first,
_ N.B. A high-variability ridge lies close to the diagonal of the plot
then climate. (cf. also Fraedrich & Béttger, 1978, JAS)

* LFV = 10-100 days (intraseasonal)



Can we, nonlinear dynamicists, help?

The uncertainties
might be intrinsic,

rather than mere o o o BT
“tuning problems” i L

If so, maybe
stochastic structural
stability could help!

Might fit in nicely with
recent taste for

“stochastic
parameterizations”

Figure 7.5-1. The three towers of differentiable dynamics.

Tte DDS dneam of stractunal stability (from Abraham & Marsden, 1978)



Random Dynamical Systems (RDS), | -

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space) x (probability space).

SDE~ODE, RDS~DDS, L. Arnold (1998)~V.I. Arnol'd (1983).

Michael Ghil Climate Change and Climate Sensitivity



Random Dynamical Systems (RDS), | -

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space) x (probability space).

SDE~ODE, RDS~DDS, L. Arnold (1998)~V.I. Arnol'd (1983).

Setting:

(i) A phase space X. Example: R".

(i) A probability space (€2, F,P). Example: The Wiener space
Q = Co(R; R") with Wiener measure P.
(iif) A model of the noise 6(t) : Q — € that preserves the measure P, i.e.
0(t)P = P; 0 is called the driving system.
Example: W(t,0(s)w) = W(t+ s,w) — W(s,w);
it starts the noise at s instead of t = 0.

(iv) A mapping ¢ : R x Q x X — X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity



RDS, II -

dle property:
b tw)x =
it, 8(s)w) o (s, w)x

X
t)w
Q

@ o is a random dynamical system (RDS)
@ O(t)(x,w) = (O(t)w, ¢(t,w)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



RDS, IllI-

A random attractor A(w) is both invariant and “pullback™ attracting:
(@) Invariant: ¢(t, w)A(w) = A(0(t)w).
(b) Attracting: VB C X, lim;_, o dist(p(t, 0(—t)w)B, A(w)) =0 a.s.

Pullback attraction to A( ®)

B(O(-1,)o)

BRI B(*tg Joo) {oixX {8(NorX
A(®) ot . wA(® )=A(B()w )
e ‘,-‘
___-——"_-__. T ‘__—‘-—1"‘_“—-‘
== B(=T)00 @ (1 Jo Q

B(-T,)0

Michael Ghil Climate Change and Climate Sensitivity



Sample measures for an NDDE model of ENSO
The Galanti-Tziperman (GT) model (JAS, 1999)

% = —epT(t) — Mo(T(t) — Tsup(h(t))), Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin
models for ENSO: T is East-basin SST
and his thermocline depth.
JT(t—1-7%)

71
2 2
2)

Relative response in % of <h> Relative response in % of <h12

h( ) Mye=¢m 71+T2 (t —T1 — 7'2)
—M27'1€ (_1+T2)u(t

2
T2

-
+Mzmpe™ T p(t — F)T(¢ -

100

Seasonal forcing given by
wu(t) =14 ecos(wt + ¢).
The pullback attractor and its - -
invariant measures were computed. D

—<h?>112)x 100 /<12

(<h>—<h>0)x 100 /<h>0

(<h®12

Figure shows the changes in the mean,
2" & 4t moment of h(t), along with the
Wasserstein distance g, for changes
of 0-5% in the delay parameter Tr,0

Change in % of 7, ;=8.476

Note intervals of both smooth & rough dependence!



N
nature 28 March 1991

letters to nature
Nature 350, 324 - 327 (1991); doa:10.1038/350324a0

Interdecadal oscillations and the warming trend
in global temperature time series

M. Ghil & H. Vautard

THE ability to distinguish a warming trend from natural variability is
critical for an understanding of the climatic response to increasing

greenhouse-gas concentrations. Here we use singular spectrum ana]ysisl to
analyse the time series of global surface air tem-peratures for the past 135

years?, allowing a secular warming trend and a small number of oscillatory
modes to be separated from the noise. The trend is flat until 1910, with an
increase of 0.4 °C since then. The oscillations exhibit interdecadal periods
of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual
oscillations are probably related to global aspects of the El Nino-Southern

Oscillation (ENSQO) phenomen0n3- The interdecadal oscillations could be

associated with changes in the extratropical ocean circulation?. The
oscillatory components have combined (peak-to-peak) amplitudes of 0.2 °C,
and therefore limit our ability to predict whether the inferred secular

warming trend of 0.005 °Cyr ! will continue. This could postpone
incontrovertible detection of the greenhouse warming signal for one or two
decades.

;” Nature © Macmillan Publishers Ltd 1991 Registered No. 785998 England.



How important are different sources of
uncertainty?

» Varies, but typically no single source dominates.

Internal
variability

Carbon cycle

Structural
uncertainty

Parameter
uncertainty

- Downscalin
> . :

precipitation changes for the 2080s relative to

pox in SE England
Source: Met Office

1 Uppsala/Nordica



Deterministic predictions

Verification

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours

Forecast 2

Forecast 3

Forecast 4 Forecast 5

)

Forecast 6

Forecast 7

o

Forecast 8

Forecast 9

Forecast 10

Forecast 14

Iy

Forecast 15

Forecast 16

Forecast 17

Forecast 20

Forecast 21

—d

Forecast 26

Forecast 27

Forecast 30

Forecast 31

A

Forecast 33

A

Forecast 37

Forecast 39

Forecast 40

Forecast 41

Forecast 43

Forecast 48

Forecast 49

Courtesy Tim Palmer, 2009




Parameter dependence - | 5 00557

It can be smooth or it can be rough:
Nifo-3 SSTs from intermediate coupled model

for ENSO (Jin, Neelin & Ghil, 1994, 1996)

y

8
T

Averaged temperature (°C)

sesssyasy

Skewness & kurtosis of the SSTs:
time series of 4000 years,

AS=3-10"" TR

Skewness dependence Kurtosis dependence
60 T T T T T T 40
; ; ; ; ; ; =)

<Y
Y
o
Q
%
1Y
Y
4y
N : .

-2 i i i i i i -1 i i i i i i

0.91 0.92 0.93 0.94 0.95 0.96 0.91 0.92 0.93 0.94 0.95 0.96
) )

M. Chekroun (work in progress)



Pullback attractor and invariant
measure of the GT model

The time-dependent pullback attractor of the GT model supports an invariant
measure v = v(t), whose density is plotted in 3-D perspective.

The plot is in delay coordinates h(f+1) vs.
h(?) and the density is highly
concentrated along 1-D filaments and,
furthermore, exhibits sharp, near—0-D Time-depedent invariant measure of the GT-model .
peaks on these filaments. I |
The Wasserstein distance d,
between one such configuration, °* |
at given parameter values, and .,
another one, at a different set of
values, is proportional to the work ™ ™~ &l | S |
needed to move the total probability * Sk et 1B
mass from one configuration to the other. = . it ‘

10.25

0.05
-10

Climate sensitivity 7y can be defined as 2 o

v = Odyy /0T



Exponential divergence vs. “coarse graining”

The classical view of dynamical
systems theory is:

positive Lyapunov exponent =
trajectories diverge exponentially

But the presence of multiple
regimes implies a much
more structured behavior
In phase space

Still, the probability distribution
function (pdf), when calculated
forward in time, is pretty
smeared out

L. A. Smith (Encycl. Atmos. Sci., 2003)



Global warming and “global weirding”

“CLIMATE STRANGE
FORGET GLOBAL WARMING —AND

GET READY for GLOBAL WEIRDING
BY BRYAN WALSH”

TIME MAGAZINE, Dec. 29, 2014 — Jan. 5, 2015

“The New Rule: For the next few (?)
years, global warming will lead to
colder, more brutal winters.”

» Oh, thank you for the latest prediction from a science journalist — based
on interesting but still rather tentative, & hotly debated, suggestions from
a few media-loving (& vice-versa) researchers.

» And if this is so certain, why wasn't it predicted by IPCC() and other models
BEFORE it happened?

) Intergovernmental Panel on Climate Change



SSA (prefilter) + (low-order) MEM

TS M Tt i A el LA A ety 5 e L S e N bt SN e g i Tl

o “Stack” spectrum

Power spectra

2.0 1

1.5 —

Interdecadal = e Total Power
le—] —_ '(EherrPodh%IirAe m%de
— Coupled O-A mode
25.0years .. Wind-driven mode
l Interannual
14.2 years Mid-latitude
l 7.7 yeal‘S L-F ENSO
Y l mode
5.5 years

Frequency (year-1)

In good agreement with MTM peaks of Ghil & Vautard (1991, Nature) for the Jones et al.
(1986) temperatures & stack spectra of Vautard et al. (1992, Physica D) for the IPCC
“consensus” record (both global), to wit 26.3, 14.5, 9.6, 7.5 and 5.2 years.

Peaks at 27 & 14 years also in Koch sea-ice index off Iceland (Stocker & Mysak, 1992), etc.
Plaut, Ghil & Vautard (1995, Science)

8/28



Concluding remarks, | - RDS and RAs

Summary
« A change of paradigm from closed, autonomous systems

to open, non-autonomous ones.
Random attractors are (i) spectacular, (ii) useful, and
(iii) just starting to be explored for climate applications.

Work in progress

Study the effect of specific stochastic parametrizations
on model robustness.

Applications to intermediate models and GCMs.
Implications for climate sensitivity.

Implications for predictability?



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

* |t’s getting warmer.
« We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
« By how much?
— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

What to do?

- Better understand the system and its forcings.

« Explore the models’, and the system’s, robustness and sensitivity
— stochastic structural and statistical stability!
— linear response = response function + susceptibility function!!



	Untitled
	Untitled



