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Dynamical systems and predictability 

•  The initial-value problem à numerical weather prediction (NWP)
 — easiest! 

•  The asymptotic problem à long-term climate 
 — a little harder

•  The intermediate problem à low-frequency variability (LFV) – 
– multiple equilibria, long-periodic oscillations, intermittency,
   slow transients, “tipping points”
  — hardest!!

Paraphrasing John von Neumann, in
R. L. Pfeffer (ed.), Dynamics of Climate (Pergamon, 1960)

 now re-edited as an Elsevier E-book



Long-term temperature evolution on Earth
Not only do global temperatures move up & down on geological time scales, 
nor do they just switch from one long-term mean to another:
They clearly show changes in dynamic regime — from high to low variability, 
from one dominant periodicity to another, from high to low drift, and so on. 

Overall, to model this complex behavior we do need to consider 
both chaotic & random ingredients, both intrinsic & forced variability. 

N.B. Plot is ~”log-linear”: time axis is logarithmic+linear, temperature axis is linear. 
Compiled by Glen Fergus, https://commons.wikimedia.org/wiki/File%3AAll_palaeotemps.png



Composite spectrum of climate variability!
Standard treatement of frequency bands:!
   1. High frequencies – white noise (or ‘‘colored’’) !
   2. Low frequencies – slow evolution of parameters !

From Ghil (2001, EGEC), after Mitchell* (1976)!
* ‘‘No known source of deterministic internal variability’’!
** 27 years – Brier (1968, Rev. Geophys.)!



Climate	  and	  Its	  Sensi&vity	  
Let’s say CO2 doubles:

How will “climate” change?

 
    Ghil (in Encycl. Global Environmental  
    Change, 2002)

2. Climate is purely periodic;
    if so, mean temperature will
    (maybe) shift gradually to its
    new equilibrium value. 
    But how will the period, amplitude
    and phase of the limit cycle change?

1. Climate is in stable equilibrium
    (fixed point); if so, mean temperature
    will just shift gradually to its new 
    equilibrium value.

3. And how about some “real stuff” 
    now: chaotic + random?
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•  The climate system is highly nonlinear and quite complex."
•  The systemʼs major components — the atmosphere, oceans, 

ice sheets — evolve on many time and space scales. "
•  Its predictive understanding has to rely on the systemʼs 

physical, chemical and biological modeling, "
"but also on the thorough mathematical analysis of the models "
"thus obtained: the forest vs. the trees."

•  The hierarchical modeling approach allows one to "
"give proper weight to the understanding provided by the"
"models vs. their realism: back-and-forth between "
!“toy” (conceptual) and detailed (“realistic”) models, "
"and between models and data."

•  How do we disentangle natural variability from the 
anthropogenic forcing: can we & should we, or not?!



Many scales of motion,!
dominated in the mid-latitudes by !
(i) the double-gyre circulation; !
and (ii) the rings and eddies.!

Based on SSTs, from satellite IR data!

Much of the focus of physical !
oceanography over the ʻ70s to !
ʻ90s has been with the !
“meso-scale”: the meanders,!
rings & eddies, and the !
associated two-dimensional and !
quasi-geostrophic turbulence.!



Monthly 
paths from 
altimeter: 

Stable vs. 
unstable 
periods 



Transitions Between Blocked and Zonal Flows 
in a Barotropic Rotating Annulus with Topography 

Weeks, Tian, Urbach, Ide, Swinney, & Ghil (Science, 1997)!

        Zonal Flow     Blocked Flow 
   13–22 Dec. 1978       10–19 Jan. 1963  



10-day sequences of 
subtropical jet paths: 

blocked vs. zonal  
 flow regimes 



Outline	–	Unsteady	Flows	&	Climate	
•  Atmospheric & oceanic flows

–  scales of motion, in time & space
–  one person’s signal (“deterministic”) is 
    another one’s noise (“stochastic”)

•  Time-dependent forcing
–  intrinsic vs. forced variability
–  pullback and random attractors

•  An illustrative example
–  the Lorenz convection model with time-dependent forcing

•  A “grand unification” 
–  a mathematical definition of climate sensitivity	

•  Conclusions and references
– what do we & don’t we know?
– selected bibliography





Greenhouse gases (GHGs) go up,"
temperatures go up:"

τκ,0

It’s gotta do with us, at least a bit, 
doesn’t it? 

Wikicommons, from "
Hansen et al. (PNAS, 2006); "
see also http://data.giss.nasa.gov/
gistemp/graphs/"



Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), 
AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



Consider the scalar, linear ordinary differential equation (ODE)

When there’s no forcing, σ = 0, the ODE is purely dissipative 

and all solutions converge to the fixed point  x = 0 as 

Time-Dependent Forcing –> Pullback Attractors 

ẋ = �↵x+ �t , ↵ > 0 , � > 0 .

ẋ = �↵x ,

t ! +1 .

s ! �1 ,

Now what about when we do have forcing, σ ≠ 0? 
At each time t = t1, say, we have to “pull back” and start at some time 
s = s1 << t1 , say, to see where the flow takes us at t = t1.
As     we get the pullback attractor a = a(t) in the figure,  

a(t) =
�
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Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

A snapshot of the RA, A(ω), computed at a fixed time t and for the
same realization ω; it is made up of points transported by the stochastic
flow, from the remote past t − T , T >> 1.

We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, σ = 10, and r = 28.

Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity
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A day in the life of the Lorenz (1963) modelʼs random attractor, or LORA for short;"
see SI in Chekroun, Simonnet & Ghil (2011, Physica D)"



Physically closed system, modeled  
mathematically as autonomous "
system: neither deterministic 
(anthropogenic) nor random 
(natural) forcing."

The attractor is strange, but still 
fixed in time ~ “irrational” number. "

Climate sensitivity ~ change in the 
average value (first moment) of the 
coordinates (x, y, z) as a parameter 
λ changes."



Physically open system, modeled 
mathematically as non-autonomous "
system: allows for deterministic 
(anthropogenic) as well as random 
(natural) forcing."

The attractor is “pullback” and 
evolves in time ~ “imaginary” or  "
                         “complex” number. "

Climate sensitivity ~ change in the 
statistical properties (first and 
higher-order moments) of the 
attractor as one or more  
parameters (λ, μ, …) change."

Ghil (Encyclopedia of Atmospheric 
!Sciences, 2nd ed., 2012)"



How to define climate sensitivity or, 
What happens when there’s natural variability? 

This definition allows us to watch how “the earth moves,” as it is affected 
by both natural and anthropogenic forcing, in the presence of natural
variability, which includes both chaotic & random behavior:
chaotic + random behavior: 
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Time-dependent invariant probability measure
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Clearly the invariant measure            changes in its position (i.e., its support),
as well as in its probability density — with time t, as shown here — but also
with respect to an arbitrary parameter μ, where           in the present case.
Hence, in general,           

⌫(t;µ)

µ = ⌧

� = @dW/@µ.



Lorenz (JAS, 1963)"
Climate is deterministic and autonomous,"
     but highly nonlinear."
Trajectories diverge exponentially, "
     forward asymptotic PDF is multimodal."

Hasselmann (Tellus, 1976)"
Climate is stochastic and noise-driven,"
     but quite linear."
Trajectories decay back to the mean, "
     forward asymptotic PDF is unimodal."



Concluding	remarks	–		
	 	What	do	we	&	don’t	we	know?	
		What do we know?

•  It’s getting warmer.
•  We do contribute to it.
•  So we should act as best we know and can!

What do we know less well?
•     By how much?

  – Is it getting warmer …
  – Do we contribute to it  …
•    How does the climate system (atmosphere, ocean, ice, etc.) really work?
•     How does natural variability interact with anthropogenic forcing?

What to do?
•     Better understand the system and its forcings.
•     Explore the models’, and the system’s

– robustness and sensitivity 
– pullback & random attractors
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Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …
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So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?



Earth System Science Overview, NASA Advisory Council, 1986 



Global	  warming	  and	  	  	  
its	  socio-‐economic	  impacts–	  II	  	  

Temperatures	  rise:	  
•  What	  about	  impacts?	  
•  How	  to	  adapt?	  

Source : IPCC (2013), #
#AR5, WGI, SPM  

AR5 vs. AR4 
 A certain air of déjà vu: 
 GHG “scenarios” have been 
 replaced by “representative 
 concentration pathways” (RCPs), 
 more dire predictions, 
 but the uncertainties remain. 

 



But deterministic chaos doesn’t explain all: 
there are many other sources of irregularity! 
•  The energy spectrum of the  

 atmosphere and ocean is 
 “full”: all space & time scales 

  are active and they all  
  contribute to forecasting 
  uncertainties. 

•  Still, one can imagine that 
 the longest & slowest scales 
 contribute most to the  
 longest-term forecasts. 

•  “One person’s signal is  
 another person’s noise.” After Nastrom & Gage (JAS, 1985)!



•  Temporal
§  stationary, (quasi-)equilibrium
§  transient, climate variability

•  Space
§  0-D (dimension 0)
§  1-D

 vertical
 latitudinal

§  2-D
 horizontal
 meridional plane

§  3-D, GCMs (General Circulation Model)
§  Simple and intermediate 2-D & 3-D models

•  Coupling
§  Partial

 unidirectional
 asynchronous, hybrid

§  Full

è Hierarchy: back-and-forth between the simplest and the most elaborate model, 
                  and between the models and the observational data

Climate models (atmospheric & coupled) : A classification

Radiative-Convective Model(RCM) 

Energy Balance Model (EBM) 

Ro

Ri



Ø  The most active 
 scales lie along a 
 diagonal in this 
 space vs. time  
 plot. 

Ø Why this is so  
 is far from clear  
 as of now. 

Ø We’ll deal with 
 weather first, 
 then climate. 

Multiple scales of motion: 
 Space-time organization 



The uncertainties 
might be intrinsic, 

rather than mere
“tuning problems”

If so, maybe
stochastic structural 
stability could help!

The DDS dream of structural stability (from Abraham  & Marsden, 1978)

Might fit in nicely with
     recent taste for 
“stochastic 
     parameterizations” 



Random Dynamical Systems (RDS), I - RDS theory

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space)×(probability space).
SDE∼ODE, RDS∼DDS, L. Arnold (1998)∼V.I. Arnol’d (1983).

Setting:

(i) A phase space X . Example: Rn.

(ii) A probability space (Ω,F ,P). Example: The Wiener space
Ω = C0(R;Rn) with Wiener measure P.

(iii) A model of the noise θ(t) : Ω→ Ω that preserves the measure P, i.e.
θ(t)P = P; θ is called the driving system.
Example: W (t , θ(s)ω) = W (t + s, ω)−W (s, ω);
it starts the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity
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RDS, II - A Geometric View of SDEs

ϕ is a random dynamical system (RDS)
Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



RDS, III- Random attractors (RAs)
A random attractor A(ω) is both invariant and “pullback" attracting:

(a) Invariant: ϕ(t , ω)A(ω) = A(θ(t)ω).

(b) Attracting: ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0 a.s.

Michael Ghil Climate Change and Climate Sensitivity



Sample measures for an NDDE model of ENSO 
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The Galanti-Tziperman (GT) model (JAS, 1999)

Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin
models for ENSO: T is East-basin SST 

  and h is thermocline depth.  

Seasonal forcing given by

µ(t) = 1 + �cos(⇤t+ ⇥).
The pullback attractor and its

invariant measures were computed.

Figure	  shows	  the	  changes	  in	  the	  mean,	  
2nd	  &	  4th	  moment	  of	  h(t),	  along	  with	  the	  	  
Wasserstein	  distance	  dW,	  for	  changes	  	  
of	  0–5%	  in	  the	  delay	  parameter	  	  	  	  	  	  	  	  .	  	  	  ⌧�,0

Note	  intervals	  of	  both	  smooth	  &	  rough	  dependence!	  



Warming slow-down 

It was a wonderful encounter !
with some leading physicists!
and mathematicians, as well!
as with GFD & climate!
researchers, and with great!
students and post-docs. !
!It taught me, as Erice had done !
in March 1981, how well !
organized the SIF and Italians !
in general can be.!

But most of all, Michèle & I 
found out we’d be parents soon   



Uppsala/Nordica            26 May 2011                                    © Leonard Smith 

>> 

Source: Met Office 
Leonard Smith               26 May 2011                               Uppsala/Nordica          



Courtesy Tim Palmer, 2009"



Parameter dependence – I 
It can be smooth or it can be rough:
Niño-3 SSTs from intermediate coupled model
for ENSO (Jin, Neelin & Ghil, 1994, 1996)

Skewness & kurtosis of the SSTs:
time series of 4000 years, 
	  

	   	  	  
	   	  	  

	  
	  

M. Chekroun (work in progress)



The time-dependent pullback attractor of the GT model supports an invariant 
measure               , whose density is plotted in 3-D perspective.
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The plot is in delay coordinates h(t+1) vs.
h(t) and the density is highly 
concentrated along 1-D filaments and, 
furthermore, exhibits sharp, near–0-D
peaks on these filaments.

The Wasserstein distance dW
between one such configuration, 
at given parameter values, and 
another one, at a different set of 
values, is proportional to the work 
needed to move the total probability 
mass from one configuration to the other.

Climate sensitivity     can be defined as

 

�
� = ⇤dW/⇤⇥

⌫ = ⌫(t)



The classical view of dynamical 
systems theory is:"

positive Lyapunov exponent  "
    trajectories diverge exponentially"

But the presence of multiple "
    regimes implies a much "
    more structured behavior "
    in phase space"

L. A. Smith (Encycl. Atmos. Sci., 2003)"

Still, the probability distribution  "
    function (pdf), when calculated "
    forward in time, is pretty "
    smeared out 



Global warming and ‘‘global weirding’’  

“CLIMATE STRANGE!
FORGET GLOBAL WARMING—AND!
GET READY for GLOBAL WEIRDING!
BY BRYAN WALSH”!
!
TIME MAGAZINE, Dec. 29, 2014 – Jan. 5, 2015!

“The New Rule: For the next few (?) 
years, global warming will lead to 
colder, more brutal winters.” !

Ø  Oh, thank you for the latest prediction from a science journalist — based !
     on interesting but still rather tentative, & hotly debated, suggestions from !
     a few media-loving (& vice-versa) researchers.!
!
Ø  And if this is so certain, why wasn’t it predicted by IPCC(*) and other models 

BEFORE it happened?!
!
(*) Intergovernmental Panel on Climate Change!



SSA (prefilter) + (low-order) MEM

“Stack” spectrum

In good agreement with MTM peaks  of Ghil & Vautard (1991, Nature) for the Jones et al. 
(1986) temperatures & stack spectra of Vautard et al. (1992, Physica D) for the IPCC 
“consensus” record (both global), to wit 26.3, 14.5, 9.6, 7.5 and 5.2 years.

Peaks at 27 & 14 years also in Koch sea-ice index off Iceland (Stocker & Mysak, 1992), etc.                                                       
Plaut, Ghil & Vautard (1995, Science) 
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Summary!
•  A change of paradigm from closed, autonomous systems!
"to open, non-autonomous ones.!

•  Random attractors are (i) spectacular, (ii) useful, and "
"(iii) just starting to be explored for climate applications."

Work in progress!
•  Study the effect of specific stochastic parametrizations "
"on model robustness."

•  Applications to intermediate models and GCMs."
•  Implications for climate sensitivity."
•  Implications for predictability?"



What do we know?!
•  Itʼs getting warmer."
•  We do contribute to it."
•  So we should act as best we know and can!"

What do we know less well?!
•     By how much?"

  – Is it getting warmer …"
  – Do we contribute to it …"

•     How does the climate system (atmosphere, ocean, ice, etc.) really work?"
•     How does natural variability interact with anthropogenic forcing?"
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