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Presentation

Background: Deterministic dynamical systems approach.

Contents: Recent tools from dynamical systems (mainly, invariant
manifolds), intertwined with the role of stochasticity.

Aim: Sharing research interests to boost discussion and eventual
collaborations.
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Bistable perception

Part I. Role of noise in bistable perception
switches



Bistable perception

Experimental data: perceptual traces and dominance
times

Time, seconds
0 5 10 15 20 25 30

a c

db

Spontaneous, stochastic events with high variability across stimuli and
observers, not completely controlable by intention.



Bistable perception

Perceptual traces and dominance times

Dominance times, Tdom (black traces), are extracted.

< Tdom >=
1
N

N∑
j=1

Tj .
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Stereotypical distribution of dominance times: the
Gamma distribution

f (T ) = λr/Γ(r) exp(−λT )T r−1

Logothetis et. al., Nature, 380: 621–624, 1996.
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Modeling bistable perception
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Representative models for bistable perception

Models allowing oscillations

Laing and Chow (2001)
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Representative models for bistable perception

Heteroclinic networks

(a) (b)

(a) Model architecture,
(b) Distribution of dominance times

Ashwin and Lavric, Physica D, 239: 529–536, 2010.
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Representative models for bistable perception

Heteroclinic networks

(c) (d)

(c) Schematic phase portrait,
(d) Distribution of dominance times

Ashwin and Lavric, Physica D, 239: 529–536, 2010.
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The role of noise
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Two-attractor models: the Laing-Chow model

Firing-rate variables:{
τ ṙ1 = −r1 + f (−βr2 − φaa1 + I1 + n1(t)),
τ ṙ2 = −r2 + f (−βr1 − φaa2 + I2 + n2(t)),

τ ∼ 10 ms;
β = cross-inhibition;
φa = adaptation strength;
I1,2 = external stimuli.
f (x) = 1/(1 + exp(−(x − θ)/k)) gain function.
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Two-attractor models: the Laing-Chow model

Firing-rate variables:

{
τ ṙ1 = −r1 + f (−βr2 − φaa1 + I1 + n1(t)),
τ ṙ2 = −r2 + f (−βr1 − φaa2 + I2 + n2(t)),

τ ∼ 10 ms;

Adaptation variables: τaȧj = −aj + rj , j = 1,2, τa ≈ 200 ms.

Noise dynamics: d nj = −
nj

τn
dt + σn

√
2
τn

dWt ,j , j = 1,2,

ξi(t)ξi(t ′) = 0, ξi(t) = 0, ξ2
i (t) = 1, τn ≈ 100 ms.
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Bifurcation diagram in the φ− β plane

Basic parameter set: I1 = I2 = 0.5, τa = 200, k = 0.1, θ = 0.0.

[Moreno-Bote et. al., J. Neurophysiol., 2007], [Pastukhov et. al., Frontiers Comp. Neur., 2013],
from experimental data that matches the grey spot for several models.



Bistable perception

The effect on the time distributions

(A-B-C) Driven largely by noise: irregular trajectories (A), aperiodic dominance reversals (B), and
approx. exponential distribution of Tdom (C).

(D-E-F) Driven largely by adaptation: regular trajectories (D), periodic dominance reversals (E),
and approx. Gaussian distribution of dominance times (F).

The multi-stable dynamics of human observers falls between these two extremes, exhibiting a

Gamma-like distribution of Tdom (dashed curves in C and F).
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Questions (motivation)

Time distribution in a heteroclinic network with noise [Ashwin-Lavric, Phys D 2010]

What is this noise modeling: noise in the stimulus, high variability
in input sources, internal noise,. . . ?
What is the level of complexity of the inputs to achieve this
time-dominance distributions? Or, we must assume that
perceptual events are influenced by inputs filling in a continuum
of frequencies as noise implies?
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Quasi-periodic perturbations in bistable
perception models
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Heteroclinic models: winnerless competition

p: arbitration (underlying activity); p = 1 means LD (left dominant;
p = −1⇔ RD.
x : activity pattern associated w/ stimulus to the left eye.
y : activity pattern associated w/ stimulus to the right eye.

Winnerless competition is replaced by an approximately periodic
switching between both states: p = 1 (LD) and p = −1 (RD).
Fixed points (±1,0,0) are saddles. No need of adaptation
variables: slow flow provided by passage nearby saddles.

Ashwin and Lavric, Physica D, 239: 529–536, 2010.
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Heteroclinic models: winnerless competition


ṗ = h(p) + x2(1− p) + y2(−1− p) + ηp(t),
ẋ = f (p, x , y) + Ix x + ηx (t),
ẏ = f (−p, y , x) + Iy y + ηy (t),

h(p) = −p(p − 1)(p + 1);
f (p, x , y) =

(
(0.5− p)(p + 1)− x2 − y2) x .

I{x ,y}: external inputs.
η{x ,y}: biased Wiener noise (mean µ{x ,y} and variance per unit
time σ{x ,y}). [Ashwin and Lavric, Physica D (2010)]
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Heteroclinic model: quasi-periodic forcing


ṗ = h(p) + x2(1− p) + y2(−1− p),

ẋ = f (p, x , y) + Ix x + ε
∑M

i=0 nx i cos(θi),

ẏ = f (−p, y , x) + Iy y + ε
∑M

i=0 ny i cos(θi),

θ̇j = ωj , j = 1, . . . ,M, θ ∈ TM .

Defining F := p2 + 2 x2 − 1 and G := p2 + 2 y2 − 1, the
heteroclinic connections are given by S∓ := {F = 0} ∩ {y = 0}
and S± := {G = 0} ∩ {x = 0} (figure from [Ashwin and Lavric, PhysD (2010)]).

S∓ and S±, respectively.
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Separatrix map (SM) for the heteroclinic network
Poincaré sections

Global view Partial view Local view



Bistable perception Heteroclinic attractor networks

SM for the heteroclinic network: map components

L+ : (F0, y0, θ0) 7→ (G1, x1, θ1) T∓G : (F3, y3, θ3) 7→ (F0, y0, θ0)

T±G : (G1, x1, θ1) 7→ (G2, x2, θ2) L− : (G2, x2, θ2) 7→ (F3, y3, θ3)
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Total Poincaré map

Linearizing the flow close to the saddles and applying Melnikov theory
for the global maps:

Π := T∓G ◦ L− ◦ T±G ◦ L+ : H+
in −→ H+

in

L+ : H+
in −→ H+

out T±G : H+
out −→ H−in

x1 = rx

(
ry
y0

)−(1−Ix )/Iy
, x2 = α̂ x1 + f̂ (θ; Ix , ε),

G1 = F0ψ
2 − 2 rx (ψ2 − 1) G2 = αG1 + f (θ; Ix , ε),

= +2
(
−1 +

√
1 + F0 − 2 r2

x

)
ψ(1− ψ),

θ1 = θ0 + ω 1
Iy

ln ry
y0
. θ2 = θ1 + ω (T2 − T1).

ψ :=
(

ry
y0

)−2/Iy

T∓G : H−out −→ H+
in L− : H−in −→ H−out

(similar to T±G ) (similar to L+)
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Numerical example

Time dominance distributions for the HN with 1,2,3 frequencies and noise; r = 0.1, ε = 0.001

and Ix = Iy = 0.01; ω1 = 1, ω2 =
√

5−1
2 and Ω ≈ 0.6823.

2freq1freq

3freq noise
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Part I: conclusions and future work

Main question: What is the minimal degree of complexity to
explain switches in bistable perception psycophysical
experiments?
We obtain Gamma distributions of time dominance series with
quasi-periodic stimuli (with 2 non-resonant frequencies or more).
We give analytical support to the models by using the separatrix
map.
We provide maps that can be considered as alternative (discrete)
models for bistable perception, which avoid numerical unstability
when integrating close to saddle points.
Future work: how to use it for fitting experimental
(psychophysical) data?
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Response to a stimulus

We want to know the sensitivity of an oscillator (limit cycle) to a
stimulus received at different phases of the oscillation.

Important to study entrainment and synchronization, see for
instance [R.F. Galán, G.B. Ermentrout, N.N. Urban (2005-2008)],
[S.A. Oprisan, C. Canavier et al, (2002-. . . )],. . .
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Phase variation, phase response curves (PRCs)

“Heuristic" computation of the phase variation:
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Phase variation, phase response curves (PRCs)

The phase advancement/delay due to an external input at time ts is
given by

∆θ =
T−T1(ts, v)

T
, θ = ts/T .

T = T0 in the left figure
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Infinitesimal PRC (weak brief pulse): the “classical"
theory

Consider a system instantaneously perturbed by a small perturbation
in a direction v ∈ Rd :

ẋ = X (x) + εv δ(t − ts).

If x(t) is the solution of the unperturbed system, the solution of the
perturbed one at time ts is x(ts) + εv.

To compute the difference between their phases we can use Taylor:

Θ(x(ts) + εv)−Θ(x(ts)) = ε∇Θ(x(ts)) · v + O(ε2).

One defines the infinitesimal PRC as: iPRC(Θ(x),v) = ∇Θ(x) · v
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The Adjoint method

[Malkin 1949-1956, Ermentrout and Kopell 1991, Hoppensteadt and
Izhikevich 1997, Ermentrout 2002]

∇Θ along the limit cycle (the PRC) is given by the T -periodic solution
of the adjoint equation

dQ
dt

= −DX T (γ(t))Q, (1)

satisfying the condition

Q(γ(t)) · X (γ(t)) =
1
T
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The adjoint equation allows one to compute ∇Θ on the limit cycle
without knowing Θ beyond.

The neuron must be on the asymptotic state, so brief, weak stimuli
and fast convergence are required.

But . . .
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PRFs: extending the PRCs...

Motivation.
. . . neither all stimuli are brief, weak enough nor the attractors are
strong enough:

Repeated stimulations far from the limit cycle: short stimulation
periods, bursting-like stimuli, random fluctuations,. . .

Low characteristic exponents.

Large stimulus amplitude.

For these purposes, there is a need for more precise knowledge of
isochrons and PRCs beyond the limit cycle itself.
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Main purpose

1 Provide tools (via the computation of isochrons) useful for more
general instances than weak coupling or brief stimuli.

2 Analyze effects of a perturbation in the transient states; that is,
when the dynamics has not relaxed back to the limit cycle. Due to
factors like: short stimulation periods, slow attraction to the limit
cycle or low characteristic multipliers, large stimulus amplitude,
random fluctuations, bursting-like stimuli, . . .

[A. G., G. Huguet, SIADS (2009)]

[O. Castejón, A. G., G. Huguet, J. Math. Neuro. (2013)]

[O. Castejón, A. G., preprint (2017]
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The mathematical framework

Consider an autonomous system of ODEs

ẋ = X (x), x ∈ Rd ,d ≥ 2

with a periodic orbit γ of period T parameterized by the phase θ = t/T .

A point q ∈ Ω ⊂ Rd , γ ⊂ Ω, is in asymptotic
phase with a point p ∈ γ if

lim
t→∞
|Φt (q)− Φt (p)| = 0,

with Φt (x) the trajectory of X s.t. Φ0(x) = x .

The set of points having the same asymptotic phase is called isochron.
The asymptotic phase is Θ : Ω ⊂ Rd → T = [0,1), such that
Θ(γ(θ)) = θ, and Θ(p) = Θ(q) if p and q lie on the same isochron. See
also [J.T.C. Schwabedal, A. Pikovsky (2010, 2013)], [P. Thomas, B.
Lindner (2015)] for a stochastic version.
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Isochrons: graphical representations
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Application of the parameterization method

Isochrons can be seen as the stable manifolds of the points of the
limit cycle.
We look for a map K such that(

1
T
∂θ +

λσ

T
∂σ

)
K (θ, σ) = X (K (θ, σ)), (2)

where λ is the characteristic exponent of γ, see [Cabré, Fontich, de la

Llave, 2005].
Motion generated by X expressed in (θ, σ):

θ̇ = 1/T ,
σ̇ = λσ/T .

One has Θ(K (θ, σ)) = θ, so that K (θ∗, σ) is the θ∗-isochron.
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θ1 − θ0 ≈ ε∇Θ · v

σ1 − σ0 ≈ ??
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The adjoint method extended

[G-Huguet, 2009]

Recall, the phase variation is given by:

Θ(p + εv)−Θ(p) = ε∇Θ(p) · v + O(ε2).

Now p ∈ Ω. That is, it might not be on the limit cycle.

The Phase Resetting Function (PRF) for any p ∈ Ω, p = K (θ, σ),
is given by

∇Θ(p) =
∂σK⊥(θ, σ)

T < ∂σK⊥(θ, σ),X (K (θ, σ)) >
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One has that ∇Θ along the orbits of the vector field X , satisfies
the same adjoint equation (1):

dQ
dt

= −DX T (φt (p))Q,

where φt is the flow of X , with the initial condition

Q(0) =
∂σK⊥(θ, σ)

T < ∂σK⊥(θ, σ),X (K (θ, σ)) >
.

One can find K (θ, σ) numerically and thus obtain ∇Θ.
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Amplitude Resetting Functions

[Castejón-G-Huguet, 2013]

We can consider the first order of the variation of the variable σ
after a brief stimulus

One can define a function Σ : Ω→ R such that Σ(K (θ, σ)) = σ.
Then one has:

Σ(p + εv)− Σ(p) = ε∇Σ(p) · v + O(ε2)

We call ∇Σ · v the Amplitude Resetting Function (ARF)
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Similarly as we did for the ∇Θ, we have for p = K (θ, σ):

∇Σ(p) =
λσ ∂θK⊥(θ, σ)

T < ∂θK⊥(θ, σ),X (K (θ, σ)) >

.

∇Σ along the orbits of X satisfies a kind of adjoint equation:

dQ
dt

=

(
λ

T
Id − DX T (φt (p))

)
Q

.

One can find also ∇Σ numerically.
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Summarizing. . .

“Classical version": PRC on γ ∼= S1.

“Extended version": PRFs and ARFs on Ω ∼= S1 × (σlow , σup), with
0 ∈ (σlow , σup).

In the following, we take v = (1,0) and denote ∇Θ(x) · v by
PRF(x) and ∇Σ(x) · v by ARF(x).
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Periodic pulse-train stimuli: PRCs vs PRFs

We stimulate periodically the system with pulses, with period Ts < T0.
We consider both:

1D approach θj = θj−1 + εPRC(θj−1) + Ts/T0, (mod 1)

2D-approach

 θj = θj−1 + εPRF (θj−1, σj−1) + Ts/T0, (mod 1)

σj = (σj−1 + εARF (θj−1, σj−1)) exp(λTs/T0),

This allows to compare Poincaré maps for 1D PRCs with those for 2D
PRFs-ARFs. Some examples have shown differences: phase locking
at different phase, phase locking vs periodic orbits in phase,. . .
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A toy model

Consider the system in polar coordinates,{
ṙ = α r(1− r2),

φ̇ = 1 + α a r2,

having a limit cycle γ of period T = 2π/(1 + α a), parameterized by
θ ∈ [0,1) as γ(θ) = (cos(2πθ), sin(2πθ)).

We can compute explicitly K (θ, σ), PRF (θ, σ) and ARF (θ, σ)

α determines the rate of attraction of the limit cycle
a determines the relative position of the isochrons to the limit cycle
We compute the exact change of phase, and the 1D and 2D
approaches. Compare them using rotation numbers
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A toy model

Consider the system in polar coordinates,{
ṙ = α r(1− r2),

φ̇ = 1 + α a r2,

having a limit cycle γ of period T = 2π/(1 + α a), parameterized by
θ ∈ [0,1) as γ(θ) = (cos(2πθ), sin(2πθ)).

We can compute explicitly K (θ, σ), PRF (θ, σ) and ARF (θ, σ)

α determines the rate of attraction of the limit cycle
a determines the relative position of the isochrons to the limit cycle
We compute the exact change of phase, and the 1D and 2D
approaches. Compare them using rotation numbers
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Parameterization and response functions for the
toy model

K (θ, σ) =

(√
1

1− 2ασ
cos(Ω),

√
1

1− 2ασ
sin(Ω)

)
,

PRF (K (θ, σ)) = −
√

1− 2ασ
2π

(sin(Ω)− a cos(Ω)).

ARF (K (θ, σ)) =
(1− 2ασ)3/2

α
cos(Ω),

where Ω := 2πθ + 1
2a ln(1− 2ασ).
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First exploration: Simulations

1D map: θj and plot K (θj ,0).

2D map: (θj , σj) and plot K (θj , σj)

Exact map: We define

(θ̃j , σ̃j) = K−1(K (θj , σj) + εv).

Then we plot: K (θ̃j + Ts/T0, σ̃j exp(λTs/T0)).

What are the similarities or differences among these three maps?
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Rotation numbers

ρ = lim
N→∞

1
N

N∑
j=1

(θj − θ0)

Comparison between rotation numbers of 1D-map versus the exact
map: relative error of the 1D approach, e1.
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Rotation numbers

ρ = lim
N→∞

1
N

N∑
j=1

(θj − θ0)

Comparison between rotation numbers of 2D-map versus the exact
map: relative error of the 2D approach, e2.
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Rotation numbers

ρ = lim
N→∞

1
N

N∑
j=1

(θj − θ0)

Comparison between rotation numbers of 1D-map versus 2D-map:
e2/e1.
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A reduced Hodgkin-Huxley model: isochrons and
isostables

We also compute rotation numbers for a reduced Hodgkin-Huxley
model (numerics requires much more work):
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Simulations: increasing ε
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Conclusions, remarks and future work I

We extend the notion of PRC to the generalized response
functions PRF-ARF, which allows to have a more accurate
prediction of the response of a neuron to an external stimulus. It
becomes relevant when this stimulus is not weak or has a high
frequency (neuronal dynamics spends more time on the transient
state rather than the asymptotic state).

In dimensions higher than 2, it can be appropriate to use θ and σ1,
assuming that is the variable associated to the most contractive
fiber of the isochronous leave.

The parameterization method extends to other invariant objects,
so that we can think on higher dimensional objects (tori,. . . ) that
can naturally appear as attractors in small networks.
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Conclusions, remarks and future work II

Impact of input noise on PRFs compared to PRCs or relevance of
transient effects for noisy stimuli? Extension of the concept to
stochastic processes? Experimental tests of our theoretical
findings?

Experimental tests: we aim at showing the relevance in situations
with realistic synaptic “bombardment". Questions: how to
measure the PRFs and the ARFs? Use generalized stimulation
protocols? Link to [Galán et al], [Canavier et al]?
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Examples 1 and 2: iterates

Iterates (1000) for an equidistant grid (θ, x-axis and x , y -axis) for the full map r = 0.1, ε = 0.001

and γ = 0.08 (left) and γ = 0.008 (right), and the last iterate for each initial condition (iterate

number 1000 (left) or 1000000 (right)) in black. Colors indicate the section s = 1 or s = −1.
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Examples 1 and 2: iterates

Iterates (5000) for initial conditions of x = −0.1, θ0 = θ1 = 0 (θ0, x-axis and θ1, y -axis, xn,

z-axis) for the full map r = 0.1, ε = 0.001 and γ = 0.08 (left) and γ = 0.008 (right), and the last

iterate for each initial condition on an equidistant grid (iterate number 5000). Colors indicate the

section s = 1 or s = −1.
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Examples 1 and 2: spectrograms

Time series, Fourier coefficients

and PSD for initial conditions of

x = 0.1, y = 0.1, θi = 0 for

γ = 0.08 and: (L1) ε = 0; (R1)

ε = 0.001, ω1 = 1; (L2)

ε = 0.001, ω1 = 1 and

ω2 = (
√

5− 1)/2; (R2)

ε = 0.001, ω1 = 1,

ω2 = (
√

5− 1)/2 and ω3 = Ω2.

(L3) Noise injected to

(x , y)-system, only to y -variable

ε = 0.001. (R3) Noise injected

to (u, v)-system, to both

variables ε = 0.001
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Examples 1 and 2: spectrograms

Duffing equation: Time series, Fourier coefficients and PSD for initial conditions of x = 0.1,

y = 0.1, θi = 0 for γ = 0.08. (L) ε = 0.001, ω1 = 1, ω2 = (
√

5− 1)/2 and ω3 = Ω2. (R) Noise

injected to (x , y)-system, only to y -variable, ε = 0.001.
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Examples 1 and 2: spectrograms

Duffing equation: Time series, Fourier coefficients and PSD for initial conditions of x = 0.1,

y = 0.1, θi = 0 for γ = 0.08. (L) ε = 0.001, ω1 = 1, ω2 = (
√

5− 1)/2 and ω3 = Ω2. (R) Noise

injected to (x , y)-system, to both variables ε = 0.001.
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SM: approximate expression for the local map
components

L+ : H+
in −→ H+

out

x1 = rx

(
ry
y0

)−(1−Ix )/Iy
,

θ1 = θ0 + ω 1
Iy ln ry

y0
,

G1 = F0ψ
2 − 2 rx (ψ2 − 1) + 2

(
−1 +

√
1 + F0 − 2 r2

x

)
ψ(1− ψ),

with ψ :=
(

ry
y0

)−2/Iy
, x = rx and y = ry define H+

in and H+
out , resp.

Similar expression for L− : H−in −→ H−out .
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SM: approximate expression for the global map
components I

T±G : H+
out −→ H−in

Both G and x satisfy linear differential equations in G and x ,
respectively.

Ġ = −a G + b, ẋ = c G + d ,
a := 2(p2 + x2 + y2), b := −2x2(1− p) + 4Iyy2 + 4ηyy ,

c := [(0.5− p)(p + 1)− x2 − y2], d := Ixx + ηx .

Solving the differential equations from time t = T1 on H+
out to

t = T2 on H−in , we get expressions like:

G(T2) = G(T1) exp
(
−
∫ T2

T1
a(s) ds

)
+

∫ T2

T1

b(t)

(
exp

∫ t

T2

a(s) ds

)
dt
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SM: approximate expression for the global map
components II

We approximate the solutions by integrating the differential
equations on the unperturbed heteroclinic orbit S± (analogous to
variational equations).
Finally, we get:

G2 = αG1 + f (θ; Ix , ε)
x2 = α̂ x1 + f̂ (θ; Ix , ε)
θ2 = θ1 + ω (T2 − T1).

α, α̂, f and f̂ are computed from the differential equations for G
and x . For the functions f and f̂ , we integrate for different initial
conditions of θ1 and then Fourier-transform.
All the procedure is done once and the model remains then fixed.

Similar expression for T∓G : H−out −→ H+
in .
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