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• Participation of neuron in behaviors

• Mechanism and Spiking regimes

• Connectivity of spinal networks
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Understanding networks ?

Division of labor

Skewed distribution of power
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Central Pattern 
Generators

Chewing, Swimming, scratching, breathing and walking
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Decerebrate cat:

Whelan, Prog. Neurobiol 1996
MacKay-Lyons, Phys. Therap. 2002
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“Fictive locomotion”

Nature Reviews | Neuroscience
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Commissural neurons
Neurons whose axons cross 
from one side of the spinal 
cord to the other.

equivalents in the frog tadpole and in zebrafish, along 
with developmental, and presumably functional,  
homologues in birds and mammals (BOXES 2,3). 

Locomotor circuits in terrestrial vertebrates.
The transition from water to land-based locomotion  
during vertebrate evolution resulted in a marked change 
in the mode by which vertebrate animals move. Although 
sideways flexion of the torso provides an excellent mech-
anism for movement through water, this form of propul-
sion is largely ineffective on land or in air. Consequently, 
most terrestrial vertebrates, besides snakes, primarily 
use their limbs for propulsion, with trunk movements 
often augmenting the gait by amplifying and prolong-
ing movements. Weight bearing, postural changes and 
variations in limb placement also come into play with  

land-based locomotion, and as a result the spinal  
circuitry required for limb-driven locomotion is more 
complex than that needed for swimming. One indication 
of this is the multiple spinal interneuron cell types that 
are known to contribute to the sensory reflex-dependent 
modulation of motor outputs in the cat15–18. This suggests 
that much of the neural diversity seen in the spinal cords 
of terrestrial vertebrates may result from the increased 
level of sensory information that is used to inform and 
modulate the spinal motor machinery.

To date most of the studies examining the neural  
circuits involved in quadripedal locomotion have been 
carried out in cats and rodents2–3,15–18,25,32–34. Experiments 
in the cat have been key to understanding how spinal 
reflex pathways are organized and the role that sensory 
feedback has in shaping movements. Three principles 
have emerged from analyses in the cat. First, sensory 
inputs are important for initiating and correcting the 
locomotor rhythm. Second, sensory inputs change 
the amplitude of the motor output and regulate phase 
changes during stepping. Third, the transmission of 
reflexes and their actions vary with the step phase. 
Recordings from the cat spinal cord have also identi-
fied and characterized some of the interneuron cell 
types that are involved in these spinal sensorimotor 
pathways15–18. More recent efforts to dissect the walk-
ing CPG have relied heavily on the isolated neonatal rat 
and mouse spinal cord preparation13,32,36,39,40,55–57. Each 
model system provides complementary information 
about the makeup and organization of the locomotor 
circuitry. Consequently, the value of merging these two 
rather disparate perspectives into a singular comprehen-
sive view of the spinal locomotor circuitry cannot be 
underestimated. For example, the identification in mice 
of cell types previously characterized in the cat enables 
direct comparisons between the two systems. Genetic-
fate mapping of Renshaw cells and systems analysis of 
reciprocal inhibitory pathways in the mouse mark the 
beginning of such efforts58–60.

The mammalian locomotor CPG
The spinal CPG in walking mammals is a distributed 
network with centres at cervical and lumbar levels that 
control forelimbs and hindlimbs, respectively2,3. The 
hindlimb CPG has been studied extensively, with early 
experiments in the cat showing that the lumbar and 
sacral spinal cord can elicit a normal pattern of walking 
activity when isolated from the rest of the CNS and from 
sensory inputs19,21. Smaller regions of the spinal cord can 
also generate coordinated motor activity. In the cat, the 
three segments from L6 to S1 retain the ability to gener-
ate a normal pattern of motor activity for ankle extensor 
and flexor muscles21. This and other studies indicate that 
CPG network for each limb comprises multiple inter-
connected modules that control the movement of each 
joint. Commissural neurons and propriospinal connections 
secure coordination between both sides of the spinal cord 
and between the forelimbs and hindlimbs. CPG activity is 
also coupled across multiple joints for each limb.

The spatial arrangement of components of the hind-
limb locomotor CPG network has been mapped in the 

Figure 2 | Rhythmic motor patterns underlying vertebrate locomotion.  
a | Examples of spinal motor activity during swimming in the lamprey. The top traces show 
electromyograph (EMG) recordings of different myotomes located at different axial levels 
in the intact animal. The bottom traces show ventral root recordings from the isolated 
spinal cord that exhibit a slow pattern of rhythmic motor activity. The motor outputs of the 
intact animal and isolated spinal cord show the same patterns of motor coordination and 
segmental lag. b | Walking motor behaviour. The top traces are EMG recordings, showing 
muscle activity in the cat hindlimb. The bottom traces show the results from an isolated 
spinal cord preparation from a postnatal day 0 mouse. These are electroneurogram (ENG) 
recordings from L2 and L5 ventral roots following the induction of fictive walking by 
NMDA (N-methyl-d-aspartate) and serotonin (5-HT). The ENG traces measure 
flexor-related (L2) and extensor-related (L5) motor activity. Figure is modified, with 
permission, from REF. 3  (1999) Oxford University Press. 

REVIEWS

NATURE REVIEWS | NEUROSCIENCE  VOLUME 10 | JULY 2009 | 509

Goulding, Nat Rev Neurosci 2009

by adding neuro-chemicals
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Model for motor pattern 
generation:

Robertson & Stein, J. Physiol. 1988

Turtle scratch reflex
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Sensory-specific scratching 

Turtle is upside-down performing hindlimb scratching
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Recording Population activity 
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Recording Population activity 

Peter Petersen
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Berg64-Probe by Neuronexus
www.neuronexus.com

8 shanks with 8 leads = 64 ch
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Electrophysiology:
Multichannel recording
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Histology
DiD-labeling and Nissle

Transverse section Sagittal section
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Nissl

ChAT

Petersen and Berg, eLife 2016
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Spike sorting
Different units on same probe
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Results
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Population Distribution of Spike Rates
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“Lognormal”

Buzsaki & Mizuseki 2014
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Skewed distribution of power
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Petersen and Berg, in preparation
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Distribution of Spike Rates
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Reproducibility

20 sec

Left pocket scratch Right pocket scratch

Petersen and Berg, in preparation
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Division of labor
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Mechanism behind 
skewed distribution?
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On the Distribution of Firing Rates in Networks of Cortical
Neurons

Alex Roxin,1,3 Nicolas Brunel,2 David Hansel,2,4 Gianluigi Mongillo,2 and Carl van Vreeswijk2

1Center for Theoretical Neuroscience, Columbia University, New York, New York 10032, 2Centre National de la Recherche Scientifique, Unité Mixte de
Recherche 8119, Université Paris Descartes, 75270 Paris, France, 3Insitut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain, and
4Interdisciplinary Center for Neural Computation, Hebrew University, 91904 Jerusalem, Israel

The distribution of in vivo average firing rates within local cortical networks has been reported to be highly skewed and long tailed. The
distribution of average single-cell inputs, conversely, is expected to be Gaussian by the central limit theorem. This raises the issue of how
a skewed distribution of firing rates might result from a symmetric distribution of inputs. We argue that skewed rate distributions are a
signature of the nonlinearity of the in vivo f–I curve. During in vivo conditions, ongoing synaptic activity produces significant fluctuations
in the membrane potential of neurons, resulting in an expansive nonlinearity of the f–I curve for low and moderate inputs. Here, we
investigate the effects of single-cell and network parameters on the shape of the f–I curve and, by extension, on the distribution of firing
rates in randomly connected networks.

Introduction
Since the first in vivo electrophysiological investigations of corti-
cal spiking activity, two general, co-occurring features have been
reported ubiquitously. Single-cell spike trains are far from being
regular, as those one would obtain in vitro by injecting constant
currents; rather, they resemble those that would be generated by
a Poisson-like process (Softky and Koch 1993; Compte et al.,
2003). In addition, time-averaged firing rates of cells recorded in
the same area span a wide interval, ranging from !1 Hz up to
several tens of hertz (Griffith and Horn, 1966; Koch and Fuster,
1989). The distribution of average firing rates, in various cortical
areas and during spontaneous and stimulus-evoked activity, is
typically non-Gaussian and significantly long tailed (Shafi et al.,
2007; Hromádka et al., 2008; O’Connor et al., 2010).

Theoretical studies of networks of randomly connected spik-
ing neurons have shown that highly irregular spiking activity
occurs when a network operates in the fluctuation-driven regi-
men, i.e., when mean inputs are subthreshold and spiking occurs
as a result of fluctuations (van Vreeswijk and Sompolinsky, 1996,

1998; Amit and Brunel, 1997a). These studies have also shown
that networks operating in this regimen typically exhibit right-
skewed, long-tailed distributions of average firing rates. More
recent work showed that similar rate distributions also arise in
networks with more structured synaptic connectivity (Amit and
Mongillo, 2003; van Vreeswijk and Sompolinsky, 2005; Roudi
and Latham, 2007). In short, years of modeling work suggest that
a broad, skewed distribution of firing rates is a generic, and ro-
bust, feature of spiking networks operating in the fluctuation-
driven regimen. A detailed investigation of the factors controlling
the shape of the rate distribution is, however, still lacking. We
provide here such a study.

We start by characterizing the features of the single-cell f–I
curve that control the skewness of the resulting rate distribution.
Then, by using networks of leaky integrate-and-fire (LIF) neu-
rons, we study the dependence of those features on single-cell and
network parameters. Finally, we perform numerical simulations
of networks of Hodgkin–Huxley-type conductance-based neu-
rons to probe the robustness of the proposed mechanism. In all
cases, we compare with a lognormal distribution of firing rates, as
reported recently by Hromádka et al. (2008).

Materials and Methods
Evaluating the firing rate distribution. We consider a large population of N
neurons (i " 1, . . ., N ) for which the rate !i of neuron i is determined by
the transfer function, or f–I curve, !i " "(#i), where the time-averaged
input, #i, is drawn from a distribution f(#). The firing rate distribution,
P(!) of the population is given by

P#v$ $ !
%&

&

dzf# z$%#v & "# z$$, (1)

where %(x) is the Dirac delta function. This integral can be evaluated
explicitly by performing the change of variables w " "(z), and so dw "
"'(" %1(w))dz. Finally, this gives
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“We argue that skewed rate distributions are
a signature of the nonlinearity of the in vivo F-I-curve” 
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Skewness is rate dependent
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Two regimes:

Gerstner, Kistler, Naud and Paninski :
“Neuronal dynamics”

Mean-drivenFluctuation-driven
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Fluctuation- and mean-driven neurons
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Single cell rate distribution
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Next step: IO-curve
Obtaining sub-threshold IO-curve is difficult
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FV-curve
expansive nonlinearity

Vestergaard and Berg, J Neurosci 2015

Mikkel Vestergaard

Jahn et al J Comput Neurosci 2011
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Input distribution?
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50 ms

Inter-spike-interval  Vm
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• Firing rate distribution is skewed for some neurons

• Subthreshold IO curve is non-linear

• Input distribution is Gaussian

Mini-conclusion
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Spiking regime: 
population
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Spiking regime: 
population

“Irregular”

“Regular”

Young et al, J Neurophysiol 1988

Prut and Perlmutter, J Neurosci 2003
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Cell type ?
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Cell type ?

Arber Neuron 2012

http://www.berg-lab.net
http://www.berg-lab.net


Rune W. Berg :: INF University of Copenhagen                                                                                                                www.berg-lab.net    ©

Cell type ?

Arber Neuron 2012
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Conclusions

• Skewed, log-normal firing rate distribution

• Conservation of position in distribution

• Two regimes: fluctuation- and mean driven ~ 50%, 

i.e. half of cells are in irregular regime half of the 

time.
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Connectivity ?
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Pairwise correlation
slow and fast timescales

Radosevic et al, in preparation 2017
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Pairwise recording

Radosevic et al, in preparation 2017
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Weak fast correlation

Radosevic et al, in preparation 2017
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Feedforward model

Radosevic et al, in preparation 2017
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Sparse vs. dense

Radosevic et al, in preparation 2017
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Conclusion

Radosevic et al, in preparation 2017

Lack of correlation in synaptic input

Sparse and large network 

“Active desynchronization”
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