A Connection for Born Geometry and its Application to DFT

String and M-theory Geometries
Banff Internation Research Station
January 26, 2017

Felix J. Rudolph

Ludwig-Maximilian-Universtität München

to appear
17xx.xxxxx
with L. Freidel and D. Svoboda

Key Points

- What is Born Geometry? (idea of dynamical phase space)
- Connections for various geometries
- Torsion and integrability
- Relevance to Double Field Theory

Outline

Born Geometry

A Connection for Born Geometry

Application to DFT

Born Geometry

Born Reciprocity

In Quantum Mechanics

- symmetry between spacetime and momentum space
- freedom to choose a basis of states

In General Relativity

- this symmetry is broken:
spacetime
is curved
energy-momentum space is flat

Max Born (1935):
"To unify QM and GR need momentum space to be curved"

Born Geometry

[Freidel, Leigh, Minic]
Classical Mechanics

- (almost) symplectic structure ω on phase space $\mathcal{P} \quad S p(2 d)$

Quantum Mechanics

- complex structure I :

$$
x \rightarrow p, \quad p \rightarrow-x \quad \text { with } \quad I^{2}=-1
$$

- compatibility: $I^{T} \omega I=\omega$
- defines a metric on phase space $\mathcal{H}=\omega I$
- "quantum" or "generalized" metric

Born Geometry

To split phase space into spacetime and momentum space

- bi-Lagrangian (real) structure $K: T \mathcal{P}=L \oplus \tilde{L}$

$$
\left.K\right|_{L}=+1,\left.\quad K\right|_{\tilde{L}}=-1 \quad \text { with } \quad K^{2}=+1
$$

- compatibility: $K^{T} \omega K=-\omega$
- defines another metric on phase space $\eta=\omega K$
- "polarization" or "neutral" metric
- spacetime is maximal null subspace w.r.t. η

$$
\left.\mathcal{H}\right|_{L}=g
$$

Born Geometry

The Born Geometry ($\mathcal{P} ; \eta, \omega, \mathcal{H}$) unifies

- symplectic structure of classical mechanics
- complex strucuture of quantum mechanics
- real structure of general realitivity

Quantum gravity needs a dynamical phase space

String theory provides a realization of these concepts and geometric structure

String Theory

Tseytlin Action on phase space with $X=(x / \lambda, y / \epsilon)$

$$
S=\frac{1}{2} \int \mathrm{~d} \tau \mathrm{~d} \sigma\left[\left(\eta_{A B}+\omega_{A B}\right) \partial_{\tau} X^{A} \partial_{\sigma} X^{B}-\mathcal{H}_{A B} \partial_{\sigma} X^{A} \partial_{\sigma} X^{B}\right]
$$

- including topological term
[Giveon, Rocek; Hull]

String Theory

- chiral structure: $J=\eta^{-1} \mathcal{H}$
- T-duality on target space: $X \rightarrow J(X)$
- ω and K not required, but present

Para-quaternionic Manifold

Born Geometry $(\mathcal{P} ; \eta, \omega, \mathcal{H}) \longrightarrow$ para-quaternions (I, J, K)

- complex structure $I=\mathcal{H}^{-1} \omega \quad\left(I^{2}=-1\right)$
- chiral structure $J=\eta^{-1} \mathcal{H} \quad\left(J^{2}=+1\right)$
- real structure $K=\eta^{-1} \omega \quad\left(K^{2}=+1\right)$

All mutually anti-commute

$$
\begin{array}{rlr}
I & =J K=-K J, & \\
J & =I K=-K I, & I J K=-1 \\
K & =J I=-I J, &
\end{array}
$$

Integrability

Almost bi-Lagrangian structure K

- Splitting into Lagrangian distributions: $T \mathcal{P}=L \oplus \tilde{L}$
- $K^{T} \omega K=-\omega \quad \rightarrow \quad$ Lagrangian eigenspace $\left.\omega\right|_{L}=\left.\omega\right|_{\tilde{L}}=0$
- $K^{T} \eta K=-\eta \quad \rightarrow \quad$ Null eigenspace $\left.\eta\right|_{L}=\left.\eta\right|_{\tilde{L}}=0$

If K integrable:

- $[L, L] \subset L$ and $[\tilde{L}, \tilde{L}] \subset \tilde{L}$
- Induces a polarization
- Darboux coordinates (x, \tilde{x}) spanning L and \tilde{L}

Projectors of $(3,0)$-tensors

Lagrangian Subspaces (Polarizations): $T \mathcal{P}=L \oplus \tilde{L}$

- $\left(\mathcal{K}^{ \pm}\right)^{2}=\mathcal{K}^{ \pm}, \quad \mathcal{K}^{+} \mathcal{K}^{-}=0$

$$
\begin{aligned}
4 \mathcal{K}^{ \pm} N(X, Y, Z):= & N(X, Y, Z)+N(K(X), K(Y), Z) \\
& \pm N(X, K(Y), K(Z)) \pm N(K(X), Y, K(Z))
\end{aligned}
$$

Chiral subspaces: $T \mathcal{P}=C_{+} \oplus C_{-}$

$$
\text { - }\left(\mathcal{J}^{ \pm}\right)^{2}=\mathcal{J}^{ \pm}, \quad \mathcal{J}^{+} \mathcal{J}^{-}=0
$$

$$
\begin{aligned}
4 \mathcal{J}^{ \pm} N(X, Y, Z):= & N(X, Y, Z)+N(J(X), J(Y), Z) \\
& \pm N(X, J(Y), J(Z)) \pm N(J(X), Y, J(Z))
\end{aligned}
$$

Torsion

For a connection $\nabla=\partial+\Gamma$
Usual Torsion

- $T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
- $T_{i j}{ }^{k}=\Gamma_{i j}{ }^{k}-\Gamma_{j i}{ }^{k}$

Generalized Torsion

- $\mathcal{T}(X, Y)=\mathcal{L}_{X}^{\nabla} Y-\mathcal{L}_{X}^{\partial} Y$
- $\mathcal{T}_{i j}{ }^{k}=\Gamma_{i j}{ }^{k}-\Gamma_{j i}{ }^{k}-\Gamma^{k}{ }_{j i}$
- $\mathcal{T} \in \Gamma\left(\Lambda^{2}(\mathcal{P}) \otimes \mathfrak{X}(\mathcal{P})\right)$

Contorsion

For any metric-compatible connection ∇ and Levi-Civita connection $\stackrel{\circ}{\nabla}$:

Contorsion tensor Ω

- $\nabla=\stackrel{\circ}{\nabla}+\Omega$ or $\Gamma=\stackrel{\circ}{\Gamma}+\Omega$
- $\Omega_{i j k}=\frac{1}{2}\left(T_{i j k}-T_{j k i}+T_{k i j}\right)$
- $\mathcal{T}_{i j k}=\Omega_{i j k}+\Omega_{j k i}+\Omega_{k i j}=\frac{1}{2}\left(T_{i j k}+T_{j k i}+T_{k i j}\right)$

The Nijenhuis Tensor

The Nijenhuis Tensor of a tangent bundle structure A

$$
\begin{gathered}
N_{A} \in \Gamma\left(\Lambda^{2}(\mathcal{P}) \otimes \mathfrak{X}(\mathcal{P})\right) \\
N_{A}(X, Y)=A([A(X), Y]+[X, A(Y)])-[A(X), A(Y)]-A^{2}[X, Y]
\end{gathered}
$$

If A is integrable, $N_{A}=0$.

The Nijenhuis Tensor

Need it for bi-Lagrangian structure $K=\eta^{-1} \omega$

$$
\begin{aligned}
N_{K}(X, Y, Z)= & \stackrel{\circ}{\nabla}_{Y} \omega(X, K(Z))-\stackrel{\circ}{\nabla}_{X} \omega(Y, K(Z)) \\
& +\stackrel{\circ}{\nabla}_{K(Y)} \omega(X, Z)-\stackrel{\circ}{\nabla}_{K(X)} \omega(Y, Z) \\
= & \mathrm{d} \omega(K(X), K(Y), K(Z))+\mathrm{d} \omega(X, Y, K(Z)) \\
& +2 \stackrel{\circ}{\nabla}_{K(Z)} \omega(X, Y)
\end{aligned}
$$

A Connection for Born Geometry

Connections for various geometries

Levi-Civita Connection

- Riemannian geometry: metric η
- Unique, compatible, symmetric, torsion-free

Fedosov Connection

- Symplectic geometry: almost symplectic form ω
- Family of compatible, symmetric, torsion-free

Bismut Connection

- Hermitian geometry: almost complex structure I, metric \mathcal{H}
- Unique, compatible with $\mathcal{H} \& I$, totally skew torsion

Connections for various geometries

Fedosov + metric $=$ Levi-Civita

- Symplectic manifold with metric (real structure $K=\eta^{-1} \omega$)
- Unique, compatible with ω \& η, symmetric, torsion-free

Doubled space of DFT

- Two metrics: η and \mathcal{H} (chiral structure $J=\eta^{-1} \mathcal{H}$)
- DFT connection not fully determined

Born Connection

- Born geometry $(\mathcal{P} ; \eta, \omega, \mathcal{H})$ with para-quaternions (I, J, K)
- Unique, compatible, (generalized) torsion is chiral

The Born Connection

Defining Properties

- Compatibility with Born geometry $(\eta, \omega, \mathcal{H})$

$$
\nabla \eta=\nabla \omega=\nabla \mathcal{H}=0
$$

- Generalized torsion is chiral

$$
\mathcal{T} \sim \mathcal{J}^{+} N_{K}
$$

Vanishing generalized torsion \mathcal{T} if K integrable

$$
N_{K}=0 \Rightarrow \mathcal{T}=0
$$

The Born Connection

Born Connection ∇ given by

$$
\eta\left(\nabla_{X} Y, Z\right)=\eta\left(\nabla_{X} Y, Z\right)+\eta(X, \Omega(Y, Z))
$$

where

- ∇° is the Levi-Civita connection of η
- Ω is the contorsion

The Born Connection

Contorsion

$$
\begin{aligned}
\eta(X, \Omega(Y, Z))= & \frac{1}{2} \stackrel{\circ}{\nabla}_{X} H(Y, J(Z)) \\
& +\frac{1}{4}\left[\dot{\nabla}_{Y} \mathcal{H}(J(Z), X)-\stackrel{\circ}{\nabla}_{K(Y)} \mathcal{H}(I(Z), X)\right. \\
& \left.\quad-\stackrel{\circ}{\nabla}_{J(Z)} \mathcal{H}(X, Y)+\stackrel{\circ}{\nabla}_{I(Z)} \mathcal{H}(X, K(Y))\right] \\
- & \frac{1}{4}\left[\dot{\nabla}_{Z} \mathcal{H}(X, J(Y))-\stackrel{\nabla}{\nabla}_{K(Z)} \mathcal{H}(X, I(Y))\right. \\
& \left.\quad-\stackrel{\circ}{\nabla}_{J(Y)} \mathcal{H}(Z, X)+\stackrel{\circ}{\nabla}_{I(Y)} \mathcal{H}(K(Z), X)\right] \\
+ & \frac{1}{4}\left[\dot{\nabla}_{J(X)} \omega(I(Y), Z)+\stackrel{\circ}{\nabla}_{J(X)} \omega(Y, I(Z))\right. \\
& \left.\quad-\stackrel{\circ}{\nabla}_{X} \omega(Y, K(Z))+\dot{\nabla}_{X} \omega(J(Y), I(Z))\right]
\end{aligned}
$$

Properties and Identities

e.g. η-compatibility \Rightarrow skew-symmetry

$$
\Omega(X, Y)=-\Omega(Y, X)
$$

Some identites needed for proofs

$$
\begin{aligned}
\stackrel{\circ}{\nabla}_{X} \mathcal{H}(Y, Z) & =\Omega(X, Y, J(Z)))-\Omega(X, J(Y), Z), \\
-\stackrel{\circ}{\nabla}_{X} \omega(Y, Z) & =\Omega(X, Y, K(Z))+\Omega(X, K(Y), Z)
\end{aligned}
$$

Existence and Uniqueness

Uniqueness

- If such a connection exists, it is unique and given by Ω
- Fully determined in terms of $(\eta, \omega, \mathcal{H})$

Existence

- Constructive proof
- Properties of a connection

Vanishing Generalized Torsion

Need the following objects

- Chiral Nijenhuis tensor for K

$$
\mathcal{J}^{+} N_{K}(X, Y, Z)
$$

measures integrability along the chiral subspaces $C_{ \pm}$

- Polarized component of generalized torsion

$$
\mathcal{K}^{+} \mathcal{T}(X, Y, Z)=\frac{1}{2} \sum_{\operatorname{cycl}(X, Y, Z)} N_{K}(X, Y, Z)
$$

Vanishing Generalized Torsion

Can express \mathcal{T} in terms of N_{K}

$$
\begin{aligned}
\mathcal{T}(X, Y, Z) & =\mathcal{J}^{+} \mathcal{K}^{+} \mathcal{T}(X, Y, Z) \\
& =\frac{1}{2} \sum_{\operatorname{cycl}(X, Y, Z)} \mathcal{J}^{+} N_{K}(X, Y, Z)
\end{aligned}
$$

Generalized torsion vanishes if K is integrable

$$
N_{K}=0 \quad \Rightarrow \quad \mathcal{T}=0
$$

Fluxes

No flux: $B=0, \mathrm{~d} \omega=0$

- $\stackrel{\circ}{\nabla}_{X} \omega(Y, Z)=0$
- Levi-Civita $=$ Fedosov connection

Turn on H-flux $H=\mathrm{d} B$

- $\mathcal{H}=\mathcal{H}(g, B)$ and $\mathrm{d} \omega \sim H \neq 0$
- flux appears in torsion $\left(\mathcal{T} \sim \mathcal{J}^{+} N_{K}\right.$ with $\left.N_{K} \sim H\right)$
- Bismut connection - torsion is totally skew
[Ellwood; Gualtieri]

More general fluxes $(H, f, Q, R) \subset \mathcal{F}$

- $\mathrm{d} \omega \sim \mathcal{F} \neq 0$

Structure group

Have the following groups

$$
O(d, d) \cap S p(2 d) \cap O(2 d, 0)=O(d)
$$

- Born connection reduces to $O(d)$ connection on Lagrangian submanifold with metric g
- Levi-Civita connection of g ?

Application to DFT

Coordinate Expression

Introduce frame field

- Frame field E_{A}
- Local coordinates $X=X^{A} E_{A}$

$$
\eta_{A B}=\eta\left(E_{A}, E_{B}\right), \quad \omega_{A B}=\omega\left(E_{A}, E_{B}\right), \quad \mathcal{H}_{A B}=\mathcal{H}\left(E_{A}, E_{B}\right)
$$

Covariant derivative of a vector

$$
\nabla_{A} X^{B}=\stackrel{\circ}{\nabla}_{A} X^{B}+\Omega_{A C}^{B} X^{C}
$$

Coordinate Expression

Born connection given by

$$
\begin{aligned}
\Omega_{A B C}= & \frac{1}{2} \stackrel{\circ}{\nabla}_{A} \mathcal{H}_{B D} J^{D}{ }_{C}+\left(\delta^{[D}{ }_{[B} J^{E]}{ }_{C]}-K_{[B}^{[D} I^{E]}{ }_{C]}\right) \stackrel{\circ}{\nabla}_{D} \mathcal{H}_{E A} \\
& -\frac{1}{2} \stackrel{\circ}{\nabla}_{D} \omega_{E[B} I^{E}{ }_{C]} J^{D}{ }_{A}-\frac{1}{4}\left(\delta^{D}{ }_{B} K^{E}{ }_{C}-J^{D}{ }_{B} I^{E}{ }_{C}\right) \stackrel{\circ}{\nabla}_{A} \omega_{D E}
\end{aligned}
$$

Application to Double Field Theory

DFT Limit of Born Geometry: η and ω flat

$$
\eta=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathcal{H}=\left(\begin{array}{cc}
g & 0 \\
0 & g^{-1}
\end{array}\right)
$$

Connection reduces to ($\nabla^{\circ} \rightarrow \partial$)

$$
\begin{aligned}
\Omega_{A B C}=\frac{1}{2} \partial_{A} \mathcal{H}_{B D} J^{D}{ }_{C} & +\frac{1}{2}\left(\delta^{D}{ }_{[B} J^{E}{ }_{C]}+J^{D}{ }_{[B} \delta^{E}{ }_{C]}\right) \partial_{D} \mathcal{H}_{E A} \\
& -\frac{1}{2}\left(K^{D}{ }_{[B} I^{E}{ }_{C]}-K^{E}{ }_{[B} I^{D}{ }_{C]}\right) \partial_{D} \mathcal{H}_{E A}
\end{aligned}
$$

Application to Double Field Theory

[Coimbra, Strickland-Constable,
Determined part of DFT connection Waldram; Hohm, Zwiebach;

Jeon, Lee, Park]
$\Gamma_{M N K}=\frac{1}{2} \partial_{M} \mathcal{H}_{N L} J^{L}{ }_{K}+\frac{1}{2}\left(\delta^{P}{ }_{[N} J^{Q}{ }_{K]}+J^{P}{ }_{[N} \delta^{Q}{ }_{K]}\right) \partial_{P} \mathcal{H}_{Q M}$

$$
\begin{aligned}
& +\frac{2}{D-1}\left(\eta_{M[N} \delta^{L}{ }_{K]}+\mathcal{H}_{M[N} J^{L}{ }_{K]}\right)\left(\partial_{L} d+\frac{1}{4} \mathcal{H}^{P Q} \partial_{Q} \mathcal{H}_{P L}\right) \\
& +\hat{\Gamma}_{M N K}
\end{aligned}
$$

DFT dilaton d not yet included

$$
O(d, d) \rightarrow O(d, d) \times \mathbb{R}^{+}
$$

Summary

- Born geometry $(\mathcal{P} ; \eta, \omega, \mathcal{H}) \rightarrow$ dynamical phase space
- Unique, compatible connection $\nabla=\stackrel{\circ}{\nabla}+\Omega$ with chiral torsion $\mathcal{T}=\mathcal{J}^{+} N_{K}$
- Integrability condition: $N_{K}=0 \Rightarrow \mathcal{T}=0$
- DFT limit of Born geometry reproduces DFT connection

A Connection for Born Geometry

$\left\llcorner_{\text {Extensions }}\right.$

Doubled String Model

Setting the Scale

- length scale: $\lambda=\sqrt{\hbar \alpha^{\prime}}$

$$
\alpha^{\prime}=\lambda / \epsilon
$$

- energy scale: $\epsilon=\sqrt{\hbar / \alpha^{\prime}}$

Doubled Coordinates

$$
X^{A}=\binom{x^{\mu} / \sqrt{\alpha^{\prime}}}{y_{\mu} \sqrt{\alpha^{\prime}}}=\binom{x^{\mu} / \lambda}{y_{\mu} / \epsilon}=\binom{\frac{2 \pi}{R} x^{\mu}}{R \tilde{x}_{\mu}}
$$

Quasi-periodicity and Monodromies

String action needs to be single-valued

- $\mathrm{d} X^{\mu}(\sigma, \tau)$ is periodic
- not necessary that $X^{\mu}(\sigma, \tau)$ is periodic

Quasi-periodic

$$
X^{\mu}(\sigma+2 \pi, \tau)=X^{\mu}(\sigma, \tau)+\tilde{p}^{\mu}
$$

- if $\tilde{p} \neq 0 \rightarrow$ no a priori geometrical interpretation of closed string propagating in flat spacetime
- for compact, spacelike direction $\rightarrow \tilde{p}$ is interpreted as winding

Quasi-periodicity and Monodromies

In the dual picture also have

$$
\begin{aligned}
& \oint \star \mathrm{d} Y=\tilde{p} / \alpha^{\prime}=\oint \mathrm{d} X \\
& \oint \star \mathrm{~d} X=\alpha^{\prime} p=\oint \mathrm{d} Y
\end{aligned}
$$

