Quasisymmetric Macdonald Polynomials

Sarah K Mason
Wake forest University

Algebraic Combinatorixx II
Banff International Research Station
May 15, 2017

Outline

Symmetric Functions

Macdonald Polynomials

Non-symmetric Macdonald Polynomials

Quasisymmetric Functions

Quasisymmetric Macdonald Polynomials

Partitions

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of a positive integer n is a weakly decreasing sequence of positive integers which sum to n. The Ferrers diagram of a partition (in "English notation") is a collection of left-justified boxes arranged into rows so that the $i^{\text {th }}$ row contains λ_{i} boxes.

Example

$\lambda=(4,3,3,1)$ is a partition of 11 with Ferrers diagram:

Compositions

A composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ of a positive integer n is a sequence of positive integers which sum to n. The diagram of a composition (in "English notation") is a collection of left-justified boxes arranged into rows so that the $i^{\text {th }}$ row contains α_{i} boxes.

Example

$\lambda=(3,1,4,3)$ is a composition of 11 with diagram:

Weak Compositions

A weak composition $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$ of a positive integer n is a sequence of non-negative integers which sum to n. The diagram of a weak composition (in "English notation") is a collection of left-justified boxes arranged into rows so that the $i^{\text {th }}$ row contains γ_{i} boxes. (Basement $=$ leftmost column, acts as index)

Example

$\lambda=(3,1,0,4,0,3)$ is a composition of 11 with diagram:

Symmetric Functions Sym $_{n}$

A symmetric function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in n commuting variables is
a function which remains the same when the indices of the variables are permuted.

Example

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4} x_{2}+x_{1}^{4} x_{3}+x_{1} x_{2}^{4}+x_{1} x_{3}^{4}+x_{2}^{4} x_{3}+x_{2} x_{3}^{4}
$$

(symmetric)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3} x_{2}+x_{1} x_{2}^{3} x_{3}^{2} \quad(\text { not symmetric })
$$

Bases for symmetric functions

- Monomial (symmetrize a monomial):

$$
m_{2,1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
$$

- Elementary (no repeats):

$$
e_{2,1}=\left(e_{2}\right)\left(e_{1}\right)=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)\left(x_{1}+x_{2}+x_{3}\right)
$$

- complete Homogeneous (everything):

$$
h_{2,1}=\left(h_{2}\right)\left(h_{1}\right)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)\left(x_{1}+x_{2}+x_{3}\right)
$$

- Power sum (raised to power):

$$
p_{2,1}=\left(p_{2}\right)\left(p_{1}\right)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\left(x_{1}+x_{2}+x_{3}\right)
$$

Schur functions

Definition

A reverse semi-standard Young tableau (SSYT) is a filling of a Ferrers diagram with positive integers so that the rows are weakly decreasing left to right and the columns are strictly decreasing top to bottom. The weight of a SSYT T is $x^{T}=\prod x_{i}^{a_{i}}$, where $a_{i}=$ the number of times the entry i appears in T.

Example

$$
T=
$$

is a semi-standard Yound tableau of shape $(4,3,1)$ and weight $x^{T}=x_{1}^{2} x_{2}^{2} x_{3} x_{6}^{2}$.

Schur functions

Definition

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in S S Y T(\lambda)} x^{T}
$$

where $\operatorname{SSYT}(\lambda)$ is the set of all SSYT of shape λ.

Example

$s_{2,1}\left(x_{1}, x_{2}, x_{3}\right)=$															
2	1	3	1	3	1	3	2	2	2	3	2	3	3	3	3
1		1		2		2		1		1		1		2	

Schur functions...

- form a basis for all symmetric functions.
- are closely related to other symmetric function bases.
- correspond to characters of irr reps of $G L_{n}$.
- describe the cohomology of the Grassmannian.
- have many nice combinatorial properties.
- generalize to Macdonald polynomials $\left(P_{\lambda}(X ; q, t)\right)$.

Macdonald Polynomials (I. G. Macdonald, 1988)

$$
P_{\lambda}\left(X_{n} ; q, t\right)=m_{\lambda}\left(X_{n}\right)+\sum_{\mu<\lambda} u_{\lambda, \mu} m_{\mu}\left(X_{n}\right)
$$

- Unique eigenfunction of a certain divided difference operator (generate a realization of an extended affine Hecke algebra)
- Orthogonal under a certain scalar product
- $P_{\lambda}(q, q)=s_{\lambda}$
- Contain other symmetric function bases as special cases
- Generalize zonal polynomials, Jack symmetric functions, etc
- Generalization of q-Selberg integral
- multivariable q-binomial theorem

Alphabet Soup

There are many different forms of Macdonald polynomials!

- Monic form: P_{μ}
- Integral form: J_{μ}
- Transformed integral forms: H_{μ} and \tilde{H}_{μ}

Theorem (Haglund, Haiman, Loehr 2006)

Like Schur functions, Macdonald polynomials can be constructed combinatorially using fillings of diagrams.

$F=$| 3 | 5 | 5 | 1 |
| :--- | :--- | :--- | :--- |
| 5 | 1 | 4 | |
| 4 | 4 | | |\quad contributes $x_{1}^{2} x_{3} x_{4}^{3} x_{5}^{3} q^{2} t^{4}$ to $\tilde{H}_{\mu}\left(X_{9} ; q, t\right)$

An arm and a leg (partition diagram)

- $\operatorname{arm}(s)=\#$ boxes below s in same column as s
- leg $(s)=\#$ boxes to the right of s in same row as s

$$
\operatorname{arm}(s)=2, \quad \operatorname{leg}(s)=3
$$

An arm and a leg (composition diagram)

- $\operatorname{arm}(s)=$ \# boxes in same column, below s, whose row is weakly shorter than the row containing s

PLUS

\# boxes in column just left, whose row is above s and strictly shorter than the row containing s

- leg $(s)=\#$ boxes to the right of s in same row as s

$$
\begin{aligned}
& \\
& \qquad \begin{array}{l}
\operatorname{arm}(s)=2, \quad \operatorname{leg}(s)=1
\end{array} \\
& \hline
\end{aligned}
$$

Non-symmetric Macdonald Polynomials

Macdonald polynomials break down into non-symmetric components:

$$
P_{\mu}\left(X_{n} ; q, t\right)=\prod_{s \in \mu}\left(1-q^{\operatorname{leg}(s)+1} t^{\operatorname{arm}(s)}\right) \sum_{\gamma^{+}=\mu} \frac{E_{\gamma}\left(X_{n} ; q, t\right)}{\prod_{s \in \gamma}\left(1-q^{\operatorname{leg}(s)+1} t^{\operatorname{arm}(s)}\right)}
$$

which can then be specialized to $q=t=0$ to obtain a decomposition of the Schur functions:

$$
P_{\mu}\left(X_{n} ; 0,0\right)=s_{\mu}\left(X_{n}\right)=\sum_{\tilde{\gamma}=\mu} E_{\gamma}\left(X_{n} ; 0,0\right),
$$

where $\tilde{\gamma}$ is the rearrangement of γ into weakly decreasing order.

$$
s_{21}=E_{210}+E_{201}+E_{021}+E_{120}+E_{102}+E_{012}
$$

Quasisymmetric Functions

quasisymmetric functions in n variables $\left(Q\right.$ Sym $\left._{n}\right)$

 $\sigma f(X)=f(X)$ for any shift σ of the nonzero exponents. (Indexed by compositions.)Examples ($Q S_{y m}$)

- $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=x_{1}^{2} x_{2}^{0} x_{3}^{0}+x_{1}^{0} x_{2}^{2} x_{3}^{0}+x_{1}^{0} x_{2}^{0} x_{3}^{2}$
- $x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+x_{2} x_{3}^{3}=x_{1}^{1} x_{2}^{3} x_{3}^{0}+x_{1}^{1} x_{2}^{0} x_{3}^{3}+x_{1}^{0} x_{2}^{1} x_{3}^{3}$

Non-example

- $x_{1}^{3} x_{2}+x_{1}^{3} x_{3} \quad-x_{2}^{3} x_{3}$

Quasisymmetric Schur functions

Semi-standard composition tableau (CT)

rows: weakly decreasing left to right leftmost column: strictly increasing top to bottom
columns: $a \leq b \Rightarrow b>c$

c	a

b

\[

\]

Quasisymmetric Schur functions

Semi-standard composition tableau (CT)

rows: weakly decreasing left to right leftmost column: strictly increasing top to bottom
columns: $a \leq b \Rightarrow b>c$

c	a

b

\[

\]

Quasisymmetric Schur functions

Semi-standard composition tableau (CT)

rows: weakly decreasing left to right leftmost column: strictly increasing top to bottom
columns: $a \leq b \Rightarrow b>c$

c	a

b

$$
\begin{aligned}
& x^{F}=x_{1} x_{2} x_{3}^{3} x_{4} x_{6}^{3} x_{7} x_{8}^{2} x_{9}, \quad F \in C T(3,3,2,5)
\end{aligned}
$$

Quasisymmetric Schur functions

Quasisymmetric Schurs

$$
\mathcal{Q} \mathcal{S}_{\gamma}\left(x_{1}, \cdots, x_{n}\right)=\sum_{F \in C T(\gamma)} x^{F}
$$

$$
\mathcal{Q} \mathcal{S}_{2,1,3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}^{3}
$$

1	1
2	
3	
	3

1	
2	
3	3

$$
\begin{gathered}
s_{\lambda}=\sum_{\tilde{\alpha}=\lambda} Q S_{\alpha}, \quad Q S_{\alpha}=\sum_{\gamma^{+}=\alpha} E_{\gamma}\left(X_{n} ; 0,0\right) \\
s_{21}=Q S_{21}+Q S_{12}, \quad Q S_{21}=E_{210}+E_{201}+E_{021}
\end{gathered}
$$

Quasisymmetric Macdonald Polynomials

symmetric quasisymmetric non-symmetric

$$
\begin{aligned}
& P_{\mu}\left(X_{n} ; q, t\right)=\sum_{\tilde{\alpha}=\mu} ? ? ?_{\alpha}=\sum_{\tilde{\gamma}=\mu} E_{\gamma}\left(X_{n} ; q, t\right) \\
& \downarrow \downarrow \\
& s_{\mu}\left(X_{n}\right)=\sum_{\tilde{\alpha}=\mu} Q S_{\alpha}=\sum_{\tilde{\gamma}=\mu} E_{\gamma}\left(X_{n} ; 0,0\right)
\end{aligned}
$$

partitions
$(2,1)$
compositions
$(2,1),(1,2)$
weak compositions
$(2,1,0),(2,0,1),(0,2,1)$, $(1,2,0),(1,0,2),(0,1,2)$

What we are looking for:

Polynomial $I_{\alpha}\left(X_{n} ; q, t\right)$, indexed by compositions α

- quasisymmetric in $x_{1}, x_{2}, \ldots, x_{n}$
- specialize to quasisymmetric Schurs when $q=t=0$
- sum of nonsymmetric Macdonald polynomials
- described through fillings of composition diagrams
- orthogonal under a certain inner product

Initial Reading List

- Haglund, J., Haiman, M., and Loehr, N. A combinatorial formula for nonsymmetric Macdonald polynomials. Amer. J. Math. 130 (2008) 2:359-383.
- Haglund, J., Luoto, K., Mason, S., and van Willigenburg, S. Quasisymmetric Schur functions. J. Combin. Theory Ser. A, 118 (2011) 2:463-490.
- Marshall, D. Symmetric and Non-symmetric Macdonald Polynomials. Annals of Combinatorics, 3 (1999) 385-415.

