Permutation patterns and structures

Bridget Eileen Tenner

Algebraic CombinatoriXX 2017

Permutation patterns and structures

Bridget Eileen Tenner

 S_n = permutations of [n]

There are many ways to write permutations: one-line notation, cycle notation, products of simple reflections, diagrams, etc.

Example. 4213 \in *S*₄ is the permutation mapping $1 \mapsto 4$, $2 \mapsto 2$, $3 \mapsto 1$, and $4 \mapsto 3$.

Psst! S_n is the Coxeter group A_{n-1} !

Let p and w be permutations.

 $p \prec w$: w has a p-pattern if a substring of the one-line notation for w has the same relative order as the one-line notation for p. Otherwise w avoids p.

Example. The permutation 45213 contains two copies of the pattern 321, and avoids the pattern 132.

Patterns are trendy!

There are many variations on pattern avoidance/containment:

barred patterns vincular patterns bivincular patterns mesh patterns *etc.* Patterns are interesting!

There are two main areas of research:

Enumeration: How many permutations in S_n avoid the pattern p?

Characterization: Is *p*-avoidance equivalent to something else?

Psst! You can also do this with signed patterns and with other avoidance flavors! **Thm.** [Simion-Schmidt] Equally many $w \in S_n$ avoid 132 as 123. In fact, this is true for avoiding any $p \in S_3$.

Thm. [Stankova] Enumerating the avoidance of $p \in S_4$ depends only on which of three categories p lies in.

Thm. [Knuth] A permutation avoids 231 iff the permutation is stack-sortable.

Thm. [Billey-Jockusch-Stanley] A permutation avoids 321 iff it is fully commutative.

Psst! Check out the Database of Permutation Pattern Avoidance! First, some background ...

The simple reflections on [n] are the involutions:

$$s_i = 1 \cdots (i-1)(i+1)i(i+2) \cdots n$$

These generate S_n and satisfy the relations:

 $\begin{aligned} s_i s_j &= s_j s_i \text{ for } |i-j| > 1 \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} \text{ for } i \in [n-2] \end{aligned} \tag{braid}$

 $s_i w$ swaps the positions of the values i and i + 1 in w ws_i swaps the values in the positions i and i + 1 in w The length of w is the least $\ell = \ell(w)$ for which $w = s_{i_1}s_{i_2}\cdots s_{i_\ell}$.

The string of subscripts $i_1 \cdots i_{\ell}$ is a reduced word of w.

R(w) = set of reduced words of w.

Example. $R(4213) = \{1321, 3121, 3212\}$

A factor is a consecutive substring in a reduced word.

Thm. Elements of R(p) appear as shifted isolated factors in elements of R(w) iff $p^+ \ll w$.

When p is vexillary (i.e., p avoids 2143), $p^+ \ll w$ becomes $p \prec w$.

In other words, $p \prec w \iff$ reduced words for p "appear in" reduced words for w.

Permutation patterns and structures

• We can now use pattern techniques to prove things about reduced words (and Bruhat order, etc.)!

We can now use reduced word techniques to prove things about pattern containment and avoidance! **Thm.** If $p \prec w$ then $|R(p)| \leq |R(w)|$.

Thm. If $p \prec w$ and |R(p)| > 1, then |R(p)| = |R(w)| iff $\ell(p) = \ell(w)$.

$$C(w) = R(w)/ij \sim ji$$
 for $|i - j| > 1$, the commutation classes

Thm. If $p \prec w$, then $|C(p)| \leq |C(w)|$.

Thm. If $p \prec w$, then |C(p)| = |C(w)| iff p and w have the same number of 321-patterns.

 $B(w) = \{v \in S_n : v \le w \text{ in strong Bruhat order}\}.$ (Can be defined in terms of reduced words.)

If B(w) is a boolean poset, then w is boolean.

Thm. w is boolean iff w avoids 321 and 3412.

Thm. #{boolean
$$w \in S_n : \ell(w) = k$$
} = $\sum_{i=1}^k {n-i \choose k+1-i} {k-1 \choose i-1}$

Thm. The cell complex whose face poset comes from those boolean elements is homotopy equivalent to a wedge of top-dimensional spheres.

Sampler of results, cont.

Thm. The number of 132-avoiding permutations of length ℓ is equal to the number of partitions of length ℓ .

Thm. The number of 132-avoiding permutations of length ℓ , in which w(1) = k + 1, is equal to the number of partitions of length ℓ into exactly k parts.

Thm. The number, $X(\ell, d)$, of 132-avoiding permutations of length ℓ whose reduced words have d distinct letters is equal to the number of partitions of ℓ that fit into the staircase shape δ_{d+1} but not into δ_d .

Thm.
$$\sum_{\substack{0 \le d < n \\ 0 \le \ell \le \binom{n}{2}}} X(\ell, d) = C_n$$

Thm. The collection of elements in S_n that avoid a given pattern p is never an order ideal in the Bruhat order.

Consider convex centrally symmetric polygons with all sides of length 1.

Thm. Such a 2*n*-gon can be tiled by such 2k-gons iff $k \in \{2, n\}$.

Let's prove a few more!