▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1

Hook formulas for skew shapes

Greta Panova (University of Pennsylvania) joint with Alejandro Morales (UCLA), Igor Pak (UCLA)

Banff, May 2017

Standard Young Tableaux

Irreducible representations of S_n :

Specht modules \mathbb{S}_{λ} , for all $\lambda \vdash n$.

Basis for \mathbb{S}_{λ} : **Standard Young Tableaux** of shape λ :

Hook-length formula [Frame-Robinson-Thrall]:

Counting skew SYTs

Outer shape
$$\lambda$$
, inner shape μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (3, 2, 1)$

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}$$

Counting skew SYTs

Outer shape λ , inner shape μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (3, 2, 1)$ 15 36879

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[rac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}.$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu,
u} f^{
u}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Counting skew SYTs

Outer shape λ , inner shape μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (3, 2, 1)$

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}.$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_
u \mathsf{c}^\lambda_{\mu,
u} f^
u$$

No product formula, e.g. $\lambda/\mu = \delta_{n+2}/\delta_n$: $1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \dots = \sec(x) + \tan(x).$

Euler numbers: 2, 5, 16, 61....

Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

$$f^{(4321/21)} = 7! \left(\frac{1}{1^4 \cdot 3^3} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^2 \cdot 3^3 \cdot 5^2} + \frac{1}{1^2 \cdot 3^2 \cdot 5^2 \cdot 7} \right) = 61$$

4

Bijections

Hook-Length formula for skew shapes

Theorem (Morales-Pak-P)

$$\sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left[\frac{q^{\lambda'_j - i}}{1 - q^{h(i,j)}} \right].$$

Theorem (Morales-Pak-P)

$$\sum_{\pi \in \mathcal{RPP}(\lambda/\mu)} q^{|\pi|} = \sum_{S \in \mathcal{PD}(\lambda/\mu)} \prod_{u \in S} \left[\frac{q^{h(u)}}{1 - q^{h(u)}} \right].$$

where $PD(\lambda/\mu)$ is the set of pleasant diagrams. Other recent proof by [M. Konvalinka]

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

5

Algebraic proof for SSYTs:

[Ikeda-Naruse, Kreiman]:

Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq d \times (n-d)$. Then the Schubert class X_w for w at point v is:

$$[X_w]|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

(日) (同) (日) (日)

v = 245613, w = 361245

Algebraic proof for SSYTs:

[Ikeda-Naruse, Kreiman]:

Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq d \times (n-d)$. Then the Schubert class X_w for w at point v is:

$$[X_w]|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

v = 245613, w = 361245

Factorial Schur functions:

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

[Knutson-Tao, Lakshmibai-Raghavan-Sankaran] Schubert class at a point:

$$[X_w]|_v = (-1)^{\ell(w)} s_{\mu}^{(d)}(y_{\nu(1)}, \ldots, y_{\nu(d)}|y_1, \ldots, y_{n-1}).$$

Algebraic proof for SSYTs:

[Ikeda-Naruse, Kreiman]:

Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq d \times (n-d)$. Then the Schubert class X_w for w at point v is:

$$[X_w]|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

v = 245613, w = 361245

Factorial Schur functions:

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

[Knutson-Tao, Lakshmibai–Raghavan–Sankaran] Schubert class at a point:

$$[X_w]|_v = (-1)^{\ell(w)} s^{(d)}_{\mu} (y_{\nu(1)}, \ldots, y_{\nu(d)}|y_1, \ldots, y_{n-1}).$$

Evaluation at $y = 1, q, q^2, ..., v(d + 1 - i) = \lambda_i + d + 1 - i, x_i \rightarrow y_{v(i)} = q^{\lambda_i + d + 1 - i} \rightarrow \text{Jacobi-Trudi}$

$$s_{\mu}^{(d)}(q^{\nu(1)},\ldots|1,q,\ldots) = \frac{\det[\prod_{r=1}^{\mu_j+d-j}(q^{\lambda_i+d+1-i}-q^r)]_{i,j=1}^d}{\prod_{i< j}(q^{\lambda+d+1-i}-q^{\lambda_j+d+1-j})} = \ldots$$

$$\ldots[simplifications]\ldots = \det[h_{\lambda_i-i-\mu_j+j}(1,q,\ldots)] = s_{\lambda/\mu}(1,q,\ldots) = s_{\lambda/\mu}(1,q,\ldots)$$

1

Combinatorial proofs:

Hillman-Grassl algorithm/map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

$$\begin{array}{rcl} RRP & P = & \overbrace{\begin{array}{c}0&1&2\\1&1&3\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&1\\1&1&3\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&1\\1&1&3\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&1\\0&0&3\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&1\\0&0&2\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&1\\0&0&0\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&0\\0&0&0\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&0\\0&0&1\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&0\\0&0&1\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&0\\0&0&2\end{array}} \rightarrow \overbrace{\begin{array}{c}1&0&0\\0&0&2\end{array}} \rightarrow \overbrace{\begin{array}{c}0&0&0\\0&0&2\end{array}} =: Array \ A = \Phi(P) \\ \hline \\ Weight(P) = 0 + 1 + 2 + 1 + 1 + 3 + 2 = 10 = \sum_{i,j} A_{i,j} hook(i,j) = \\ 1 * 5 + 1 * 2 + 2 * 1 + 1 * 1 = weight(A) \end{array}$$

6

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Combinatorial proofs:

Hillman-Grassl algorithm/map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection from the SSYTs of shape λ/μ to the excited arrays (diagrams in $\mathcal{E}(\lambda/\mu)$ with nonzero entries on the broken diagonals).

Combinatorial proofs:

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection from the SSYTs of shape λ/μ to the excited arrays (diagrams in $\mathcal{E}(\lambda/\mu)$ with nonzero entries on the broken diagonals).

Proof sketch:

Issue: enforce 0s on μ and strict increase down columns on λ/μ . Show $\Phi^{-1}(A)$ is column strict in λ/μ + support in λ/μ via properties of RSK (Integer partition on kth diagonal $(\ldots, P_{2,2+k}, P_{1,1+k}) = shape(RSK(A_k^T))$ is shape of RSK tableau on the corresponding subrectangle of A) Thus, Φ^{-1} is injective: restricted arrays \rightarrow SSYTs of shape λ/μ . Bijective: use the algebraic identity.

・ロト ・ 雪 ト ・ ヨ ト

Hillman-Grassl on skew RPPs

Weakly increasing rows:

Skew reverse plane partitions \Leftrightarrow arrays/diagrams "pleasant diagrams": $PD(\lambda/\mu)$.

(日)、

Hillman-Grassl on skew RPPs

Weakly increasing rows:

Skew reverse plane partitions \Leftrightarrow arrays/diagrams "pleasant diagrams": $PD(\lambda/\mu)$.

Theorem (MPP)

The HG map is a bijection between skew RPPs of shape λ/μ and arrays with certain nonzero entries (at the "high peaks"):

Non-intersecting lattice paths

Theorem[Lascoux-Pragacz, Hamel-Goulden] If $(\theta_1, \ldots, \theta_k)$ is a Lascoux-Pragacz decomposition (i.e. maximal outer border strip decomposition) of λ/μ , then

$$s_{\lambda/\mu} = \det \left[s_{\theta_i \# \theta_j} \right]_{i,j=1}^k.$$

where $s_{\emptyset} = 1$ and $s_{\theta_i \# \theta_i} = 0$ if the $\theta_i \# \theta_j$ is undefined.

(Here θ_1 is the border strip following the inner border of λ and θ_i are obtained from the inner border of the remaining partition, until μ is hit, then the border strips are obtained from each connected part etc, and ordered by their corners. The strip $\theta_i \# \theta_j$ is the shape of θ_1 between the diagonals of the endpoints of θ_i and θ_i .)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

NHLF for border strips

Lemma (MPP)

For a border strip $heta=\lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma}} rac{q^{\lambda_j'-i}}{1-q^{h(i,j)}}.$$

Proofs: induction on $|\lambda/\mu|$, or [multivariate] Chevalley formula for factorial Schurs.

うせん 聞い ふぼう ふぼう ふしゃ

NHLF for border strips

Lemma (MPP)

For a border strip $heta=\lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma}} \prod_{\substack{q^{\lambda'_j - i} \ 1 - q^{h(i,j)}}}.$$

Excited diagrams for λ/μ – NonIntersecting Lattice Paths:

(日)、

NHLF for border strips

Lemma (MPP)

For a border strip $heta=\lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\dots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma}} \prod_{\substack{q^{\lambda_j'-i} \ 1-q^{h(i,j)}}}.$$

Excited diagrams for λ/μ – NonIntersecting Lattice Paths:

Further results and directions

Asymptotics: $\lambda/\mu =$ $|\lambda/\mu| = n \to \infty$

Question: What is the asymptotic value of $f^{\lambda/\mu}$, $|\lambda/\mu| = n$ as $n \to \infty$ and λ, μ change under various regimes:

"linear": $\log f^{\lambda^{(n)}/\mu^{(n)}} \sim cn + o(n)$, "stable": $\sim \frac{1}{2}n \log n + O(n)$, "thin": $\sim n \log n\Theta(n \log g(n))$

Further results and directions

Question: What is the asymptotic value of $f^{\lambda/\mu}$, $|\lambda/\mu| = n$ as $n \to \infty$ and λ, μ change under various regimes:

"linear": $\log f^{\lambda^{(n)}/\mu^{(n)}} \sim cn + o(n)$, "stable": $\sim \frac{1}{2}n \log n + O(n)$, "thin": $\sim n \log n\Theta(n \log g(n))$

Multivariate formulas:

Exact product formulas for certain skew shapes (generalizing results by Ch.Krattenthaler et al) Lozenge tilings with multivariate local weights – determinantal formulas. Reduced words

Further results and directions

Asymptotics: $\lambda/\mu = \qquad \qquad |\lambda/\mu| = n \to \infty$

Question: What is the asymptotic value of $f^{\lambda/\mu}$, $|\lambda/\mu| = n$ as $n \to \infty$ and λ, μ change under various regimes:

"linear": $\log f^{\lambda^{(n)}/\mu^{(n)}} \sim cn + o(n)$, "stable": $\sim \frac{1}{2}n \log n + O(n)$, "thin": $\sim n \log n\Theta(n \log g(n))$

Multivariate formulas:

Exact product formulas for certain skew shapes (generalizing results by Ch.Krattenthaler et al) Lozenge tilings with multivariate local weights – determinantal formulas. Reduced words

Thank you!