Algebraic Voting Theory

Kathryn Nyman

Willamette University
Algebraic Combinatorixx

Rank Aggregation

Big problem: Given a set of voters with preferences on candidates, find a "winner".

Input	Map	Output

Rank Aggregation

Big problem: Given a set of voters with preferences on candidates, find a "winner".

Input	Map	Output
Full Rankings		
Approval Sets		
Partial Orders		

Rank Aggregation

Big problem: Given a set of voters with preferences on candidates, find a "winner".

Input	Map	Output
Full Rankings		Winning Candidate
Approval Sets		Full Rankings
Partial Orders		Committees
		Partial Orders

Rank Aggregation

Big problem: Given a set of voters with preferences on candidates, find a "winner".

Input	Map	Output
Full Rankings	Positional scoring	Winning Candidate
Approval Sets	Approval voting	Full Rankings
Partial Orders	Condorcet method	Committees
	Kemeny Rule	Partial Orders

No perfect system. All aggregation techniques require some compromise

Kenneth Arrow

Rather than voter preference, an election outcome can reflect the choice of an election method.
"For a price... I will come to your group before your next election. You tell me who you want to win..."

Don Saari

Example: Fruit Selection

Suppose we want to know the most preferred fruit out of apple, banana and cranberry.

\# of voters	Preference ordering
3	Apple, Banana, Cranberry
2	Apple, Cranberry, Banana
0	Banana, Apple, Cranberry
2	Banana, Cranberry, Apple
0	Cranberry, Apple, Banana
4	Cranberry, Banana, Apple

Example: Fruit Selection

Votes from the election are aggregated in a profile vector.

$$
\vec{p}=\left(\begin{array}{ll}
3 \\
2 & A B C \\
0 & A C B \\
2 & B C A \\
0 & C A B \\
4 & C B A
\end{array}\right.
$$

A positional weight function assigns values to the candidates.

Example: Fruit Selection

Votes from the election are aggregated in a profile vector.

$$
\vec{w}=(1,0,0)
$$

Example: Fruit Selection

Votes from the election are aggregated in a profile vector.

$$
\vec{p}=\left(\begin{array}{l}
3 \\
2 \\
0 \\
2 \\
0 \\
0 \\
4
\end{array}\right) \begin{array}{lll}
A B C A \\
A C A B \\
& B A B A
\end{array} \xrightarrow{\text { Borda }}\left(\begin{array}{l}
10 \\
11 \\
12
\end{array}\right) \begin{aligned}
& A \\
& B \\
& C
\end{aligned}
$$

$$
\vec{w}=(2,1,0)
$$

Voting Systems as Linear Transformations

Positional voting methods can be represented as linear transformations:

$$
T_{\vec{w}}: \text { profile space } \rightarrow \text { results space }
$$

Example

$$
T_{(2,1,0)} \vec{p}=\left(\begin{array}{cccccc}
A B C & A C B & B A C & B C A & C A B & C B A \\
2 & 2 & 1 & 0 & 1 & 0 \\
1 & 0 & 2 & 2 & 0 & 1 \\
0 & 1 & 0 & 1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
0 \\
2 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{l}
10 \\
11 \\
12
\end{array}\right)
$$

A representation theory approach

Daugherty, Eustis, Minton and Orrison (2009)

View profile and results spaces as permutation modules and positional maps as module homomorphisms.

Inputs: Tabloids of a given shape λ.

Definition
M^{λ} is the vector space over \mathbb{Q} generated by the λ-tabloids.

A representation theory approach

Daugherty, Eustis, Minton and Orrison (2009)

View profile and results spaces as permutation modules and positional maps as module homomorphisms.

Inputs: Tabloids of a given shape λ.

M^{λ} is the vector space over \mathbb{Q} generated by the λ-tabloids.

A representation theory approach
 Daugherty, Eustis, Minton and Orrison (2009)

View profile and results spaces as permutation modules and positional maps as module homomorphisms.

Inputs: Tabloids of a given shape λ.

Definition

M^{λ} is the vector space over \mathbb{Q} generated by the λ-tabloids.

Example, $n=3$

Full rankings $\xrightarrow{\text { Borda }}$ Winning Candidate

$$
M^{(1,1,1)} \xrightarrow{T_{(2,1,0)}} M^{(1,2)}
$$

Permutation modules

There is a natural action of S_{n} on tabloids. For $\sigma=(A, B, C)$,

Extending this action of S_{n} to M^{λ} makes M^{λ} a $Q S_{n}$-module

Schur's Lemma

M^{λ} can be decomposed into irreducible submodules, indexed by partitions of n.

$$
\begin{aligned}
M^{(1,1,1)} & \cong S^{(3)} \oplus 2 S^{(2,1)} \oplus S^{(1,1,1)} \\
M^{(1,2)} & \cong S^{(3)} \oplus S^{(2,1)}
\end{aligned}
$$

where S^{λ} is the Specht module corresponding to λ
Theorem (Schur's Lemma)
Every nonzero module homomorphism between irreducible modules is an isomorphism.

Schur's Lemma

M^{λ} can be decomposed into irreducible submodules, indexed by partitions of n.

$$
\begin{aligned}
M^{(1,1,1)} & \cong S^{(3)} \oplus 2 S^{(2,1)} \oplus S^{(1,1,1)} \\
M^{(1,2)} & \cong S^{(3)} \oplus S^{(2,1)}
\end{aligned}
$$

where S^{λ} is the Specht module corresponding to λ

Theorem (Schur's Lemma)

Every nonzero module homomorphism between irreducible modules is an isomorphism.

Effective Space

The kernel of T_{w} contains $S^{(1,1,1)}$ and at least one copy of $S^{(2,1)}$.

$$
S^{(1,1,1)} \cong\left\langle\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right) \begin{array}{l}
A B C \\
A C B \\
B A C \\
B C A \\
C A B \\
C B A
\end{array}\right.
$$

Profile space $=\operatorname{Ker}\left(T_{w}\right) \oplus \operatorname{Ker}\left(T_{w}\right)^{\perp}=\operatorname{Ker}\left(T_{w}\right) \oplus E\left(T_{w}\right)$
$E\left(T_{w}\right) \cong \operatorname{Im}\left(T_{w}\right)$ is the effective space
Theorem (Daugherty, Eustis, Minton, Orrison) If $w \nsim w^{\prime}$ then $E\left(T_{w^{\prime}}\right) \cap E\left(T_{w^{\prime}}\right)=\{0\}$

Effective Space

The kernel of T_{w} contains $S^{(1,1,1)}$ and at least one copy of $S^{(2,1)}$.
$S^{(1,1,1)} \cong\left\langle\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1\end{array}\right) \begin{array}{l}A B C \\ A C B \\ B A C \\ B C A \\ C A B \\ C B A\end{array}\right.$
Profile space $=\operatorname{Ker}\left(T_{w}\right) \oplus \operatorname{Ker}\left(T_{w}\right)^{\perp}=\operatorname{Ker}\left(T_{w}\right) \oplus E\left(T_{w}\right)$
$E\left(T_{w}\right) \cong \operatorname{Im}\left(T_{w}\right)$ is the effective space
Theorem (Daugherty, Eustis, Minton, Orrison)
If $w \nsim w^{\prime}$ then $E\left(T_{w^{\prime}}\right) \cap E\left(T_{w^{\prime}}\right)=\{0\}$

Effective Space

The kernel of T_{w} contains $S^{(1,1,1)}$ and at least one copy of $S^{(2,1)}$.
$S^{(1,1,1)} \cong\left\langle\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1\end{array}\right) \begin{array}{l}A B C \\ A C B \\ B A C \\ B C A \\ C A B \\ C B A\end{array}\right.$
Profile space $=\operatorname{Ker}\left(T_{w}\right) \oplus \operatorname{Ker}\left(T_{w}\right)^{\perp}=\operatorname{Ker}\left(T_{w}\right) \oplus E\left(T_{w}\right)$
$E\left(T_{w}\right) \cong \operatorname{Im}\left(T_{w}\right)$ is the effective space

Theorem (Daugherty, Eustis, Minton, Orrison)
If $w \nsim w^{\prime}$ then $E\left(T_{w}\right) \cap E\left(T_{w^{\prime}}\right)=\{0\}$

Committee Voting

As a second example, consider choosing a pair of films to show at your conference.

Best Depiction of a Mathematician

Bechdel Test Honorable Mention

Committee voting: Stephen Lee (2010)

For n departments, with m candidates in each department,

- Voters rank all possible committees: profile space is $\left(m^{n}\right)$!-dim.
- Results space is $\left(m^{n}\right)$-dim v.s. generated by committees.
- There is a natural action of $S_{m}\left[S_{n}\right]$ on the committees, where

$$
S_{m}\left[S_{n}\right]=\left\{\left(\sigma_{1}, \ldots, \sigma_{n} ; \pi\right): \sigma_{i} \in S_{m}, \pi \in S_{n}\right\}
$$

Example: Selecting award winners with $S_{2}\left[S_{2}\right]$

For example, consider
$\varphi=((12), e ;(12))$ acting on nominee set $\{A, a\}$

Example: Selecting award winners with $S_{2}\left[S_{2}\right]$

$\varphi=((12), e ;(12))$ acting on committee $\{A, a\}$

$\varphi(\{A, a\}) \Rightarrow(\{B, a\})$

Example: Selecting award winners with $S_{2}\left[S_{2}\right]$

$\varphi=((12), e ;(12))$ acting on committee $W=\left\{a_{1}, b_{1}\right\}$

$\varphi(\{A, a\}) \Rightarrow(\{B, a\})$

Selecting committees with $S_{2}\left[S_{2}\right]$

$\varphi=((12), e ;(12))$ acting on committee $\{A, a\}$

$\varphi(\{A, a\}) \Rightarrow(\{B, a\}) \Rightarrow(\{A, b\})$

$\mathbb{Q} S_{m}\left[S_{n}\right]$-modules

The action of $S_{m}\left[S_{n}\right]$ on the profile P and results R spaces makes them $\mathbb{Q}\left(S_{m}\left[S_{n}\right]\right)$-modules.
$T_{w}: P \rightarrow R$ is a $\mathbb{Q} S_{m}\left[S_{n}\right]$-module homomorphism.

Irreducible submodules of a $\mathbb{Q} S_{m}\left[S_{n}\right]$-module are indexed by tuples of partitions which add up to n.

$$
S_{3}\left[S_{5}\right]
$$

Example: The $S_{2}\left[S_{2}\right]$ case

$$
S^{(\oplus, \square \square)}=\left\langle\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)\right\rangle\left(\begin{array}{c}
A a \\
A b \\
B a \\
B b
\end{array}\right)
$$

$$
S^{(\square, \square)}=\left\langle\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)\right\rangle
$$

Let R_{2} be the $\mathbb{Q} S_{2}\left[S_{2}\right]$-module results space spanned by the committees consisting of exactly 1 member from each of 2 departments.

$$
R_{2} \cong S^{(\square \square, \emptyset)} \oplus S^{(\square, \square)} \oplus S^{(\emptyset, \square \square)}
$$

Decompositions of R_{n}

$$
\begin{aligned}
& R_{2} \cong S^{(\square \square, \emptyset)} \oplus S^{(\square, \square)} \oplus S^{(\emptyset, \square \square)} \\
& R_{3} \cong S^{(\square \square \square, \emptyset)} \oplus S^{(\square \square, \square)} \oplus S^{(\square, \square \square)} \oplus S^{(\emptyset, \square \square \square)}
\end{aligned}
$$

Conjecture (Lee, 2010 Thesis)

For $S_{2}\left[S_{n}\right]$ with $n \geq 2$, the results space decomposes into exactly $\bigoplus_{\lambda} S^{\lambda}$, the direct sum of irreducible submodules indexed by double trivial partitions $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ (the "flat" partitions).

Decompositions of R_{n}

$$
\begin{aligned}
& R_{2} \cong S^{(\square \square, \emptyset)} \oplus S^{(\square, \square)} \oplus S^{(\emptyset, \square \square)} \\
& R_{3} \cong S^{(\square \square \square, \emptyset)} \oplus S^{(\square \square, \square)} \oplus S^{(\square, \square \square)} \oplus S^{(\emptyset, \square \square \square)}
\end{aligned}
$$

Theorem (Matt Davis, 2010)

For $S_{2}\left[S_{n}\right]$ with $n \geq 2$, the results space decomposes into exactly $\bigoplus_{\lambda} S^{\lambda}$, the direct sum of irreducible submodules indexed by double trivial partitions $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ (the "flat" partitions).

Decomposing a $\mathbb{Q} S_{3}\left[S_{2}\right]$-module

Conjecture (Calaway, Csapo, Samelson, 2015)

For $S_{m}\left[S_{n}\right]$ with $m, n \geq 2$, the results space decomposes into a direct sum composed only of irreducible submodules indexed by h-tuple trivial partitions (the "flat" partitions).

$(\emptyset, \square \square, \emptyset)$

$(\emptyset, \square, \square)$
$(\emptyset, \emptyset, \square)$
$(\emptyset, \emptyset$,

 \emptyset, \square

Decomposing a $\mathbb{Q} S_{3}\left[S_{2}\right]$-module

Conjecture (Calaway, Csapo, Samelson, 2015)

For $S_{m}\left[S_{n}\right]$ with $m, n \geq 2$, the results space decomposes into a direct sum composed only of irreducible submodules indexed by h-tuple trivial partitions (the "flat" partitions).

$(\emptyset, \square \square, \emptyset)$

$(\emptyset, \square, \square)$
$(\emptyset, \emptyset, \square)$
$(\emptyset, \emptyset, \square)$
(\square,
$, \emptyset, \square)$

Decomposing a $\mathbb{Q} S_{3}\left[S_{2}\right]$-module

Conjecture (Calaway, Csapo, Samelson, 2015)

For $S_{m}\left[S_{n}\right]$ with $m, n \geq 2$, the results space decomposes into a direct sum composed only of irreducible submodules indexed by h-tuple trivial partitions (the "flat" partitions).

$(\emptyset, \square \square, \emptyset)$

$(\emptyset, \square, \square)$
$(\emptyset, \emptyset, \square)$
$(\emptyset, \emptyset, \square)$
(\square,
$, \emptyset, \square)$

Voting on Posets

Suppose there is one "correct" poset and the votes are noisy approximations of it

Input:

Output: Most likely correct poset

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition

The Borda score a candidate a receives for a poset P is

$$
b(P, a)=2 \operatorname{down}(a)+1 \operatorname{incomp}(a)
$$

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition

The Borda score a candidate a receives for a poset P is

$$
b(P, a)=2 \operatorname{down}(a)+1 \operatorname{incomp}(a)
$$

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition

The Borda score a candidate a receives for a poset P is

$$
b(P, a)=2 \operatorname{down}(a)+1 \operatorname{incomp}(a)
$$

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition

The Borda score a candidate a receives for a poset P is

$$
b(P, a)=2 \operatorname{down}(a)+1 \operatorname{incomp}(a)
$$

$B(d)=2 \operatorname{down}(d)+1 \operatorname{incomp}(d)=2(2)+1(2)=6$

Scoring Rankings: SRSF

Let A be the set of candidates and V our voter profile. For u and v full rankings, and t a positional scoring function,

$$
s(v, u)=\sum_{i=1}^{m}(m-i) t(v, u(i))=\sum_{a \in A} b(u, a) t(v, a)
$$

Then we can compare each full ranking to our profile

$$
S(u)=\sum_{v \in V} s(v, u)
$$

Theorem (Conitzer, Rognlie, Xia '09)
A (neutral) voting function is a maximum likelihood estimator if and only if it is an SRSF.

Scoring Rankings: SRSF

Let A be the set of candidates and V our voter profile.
For u and v full rankings, and t a positional scoring function,

$$
s(v, u)=\sum_{i=1}^{m}(m-i) t(v, u(i))=\sum_{a \in A} b(u, a) t(v, a)
$$

Then we can compare each full ranking to our profile

$$
S(u)=\sum_{v \in V} s(v, u)
$$

Theorem (Conitzer, Rognlie, Xia '09)
A (neutral) voting function is a maximum likelihood estimator if and only if it is an SRSF.

Scoring Posets

For u and v posets, and t a neutral weighting function

$$
S^{\prime}(u)=\sum_{v \in V} \sum_{a \in A} b(u, a) t(v, a)
$$

S^{\prime} is consistent with t :
 If $t(a)>t(b)$, then $a \geq b$ in all winning posets.
 However, linear extensions of winning posets are also winning.

Can we extend in another way to compare the poset structures too?

Scoring Posets

For u and v posets, and t a neutral weighting function

$$
S^{\prime}(u)=\sum_{v \in V} \sum_{a \in A} b(u, a) t(v, a)
$$

S^{\prime} is consistent with t :
If $t(a)>t(b)$, then $a \geq b$ in all winning posets.
However, linear extensions of winning posets are also winning.
Can we extend in another way to compare the poset structures too?

