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Background

Rank Aggregation

Big problem: Given a set of voters with preferences on candidates, find
a “winner".

Input Map Output
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Background

Rank Aggregation

Big problem: Given a set of voters with preferences on candidates, find
a “winner".

Input Map Output
Full Rankings Positional scoring Winning Candidate
Approval Sets Approval voting Full Rankings
Partial Orders Condorcet method Committees

Kemeny Rule Partial Orders
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Background

Kenneth Arrow

No perfect system. All aggregation
techniques require some compromise

Don Saari

Rather than voter preference, an elec-
tion outcome can reflect the choice of
an election method.
“For a price... I will come to your group
before your next election. You tell me
who you want to win...”
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Background

Example: Fruit Selection

Suppose we want to know the most preferred fruit out of apple, banana
and cranberry.

# of voters Preference ordering
3 Apple, Banana, Cranberry
2 Apple, Cranberry, Banana
0 Banana, Apple, Cranberry
2 Banana, Cranberry, Apple
0 Cranberry, Apple, Banana
4 Cranberry, Banana, Apple

Algebraic Voting Theory May 15, 2017 3 / 25



Background

Example: Fruit Selection

Votes from the election are aggregated in a profile vector.

~p =



3
2
0
2
0
4



ABC
ACB
BAC
BCA
CAB
CBA

A positional weight function assigns values to the candidates.
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11
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Background

Voting Systems as Linear Transformations

Positional voting methods can be represented as linear
transformations:

T~w : profile space→ results space

Example

T(2,1,0)~p =

ABC ACB BAC BCA CAB CBA( )2 2 1 0 1 0
1 0 2 2 0 1
0 1 0 1 2 2



3
2
0
2
0
4

 =

10
11
12
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A representation theory approach

A representation theory approach
Daugherty, Eustis, Minton and Orrison (2009)

View profile and results spaces as permutation modules and positional
maps as module homomorphisms.

Inputs: Tabloids of a given shape λ.

B D
C
A E F

Definition

Mλ is the vector space over Q generated by the λ-tabloids.
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A representation theory approach

Example, n = 3

Full rankings Borda−−−−−→Winning Candidate

M(1,1,1) T(2,1,0)−−−−−−−→ M(1,2)

3

A
B
C + 2

A
C
B + ...+ 4

C
B
A 7→ 10

A
B C + 11

B
A C + 12

C
A B
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A representation theory approach

Permutation modules

There is a natural action of Sn on tabloids. For σ = (A,B,C),

σ
A B
C
D

=
σ(A) σ(B)
σ(C)
σ(D)

=
B C
A
D

Extending this action of Sn to Mλ makes Mλ a QSn-module
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A representation theory approach

Schur’s Lemma

Mλ can be decomposed into irreducible submodules, indexed by
partitions of n.

M(1,1,1) ∼= S(3) ⊕ 2S(2,1) ⊕ S(1,1,1)

M(1,2) ∼= S(3) ⊕ S(2,1)

where Sλ is the Specht module corresponding to λ

Theorem (Schur’s Lemma)
Every nonzero module homomorphism between irreducible modules is
an isomorphism.
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A representation theory approach

Effective Space

The kernel of Tw contains S(1,1,1) and at least one copy of S(2,1).

S(1,1,1) ∼=

〈


1
−1
−1
1
1
−1


〉ABC

ACB
BAC
BCA
CAB
CBA

Profile space = Ker(Tw )⊕ Ker(Tw )
⊥ = Ker(Tw )⊕ E(Tw )

E(Tw ) ∼= Im(Tw ) is the effective space

Theorem (Daugherty, Eustis, Minton, Orrison)

If w 6∼ w ′ then E(Tw ) ∩ E(Tw ′) = {0}
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A representation theory approach

Committee Voting

As a second example, consider choosing a pair of films to show at your
conference.

Best Depiction of a Mathematician Bechdel Test Honorable Mention
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A representation theory approach

Committee voting: Stephen Lee (2010)

For n departments, with m candidates in each department,

Voters rank all possible committees: profile space is (mn)!-dim.
Results space is (mn)-dim v.s. generated by committees.
There is a natural action of Sm[Sn] on the committees, where

Sm[Sn] = {(σ1, . . . , σn;π) : σi ∈ Sm, π ∈ Sn}.
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A representation theory approach

Example: Selecting award winners with S2[S2]

For example, consider
ϕ = ((12),e; (12)) acting on nominee set {A,a}

Category1

zz ��

Category2

�� $$
A B a b
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A representation theory approach

Example: Selecting award winners with S2[S2]

ϕ = ((12),e; (12)) acting on committee {A,a}

Category1

zz ��

Category2

�� $$
A

(12)

44 B a

e

EE b

ϕ({A,a})⇒ ({B,a})
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A representation theory approach

Example: Selecting award winners with S2[S2]

ϕ = ((12),e; (12)) acting on committee W = {a1,b1}

Category1

zz ��

(12)
..
Category2

�� $$

pp

A B a b

ϕ({A,a})⇒ ({B,a})
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A representation theory approach

Selecting committees with S2[S2]

ϕ = ((12),e; (12)) acting on committee {A,a}

Category1

zz ��

(12)
..
Category2

�� $$

pp

A B a b

ϕ({A,a})⇒ ({B,a})⇒ ({A,b})
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A representation theory approach

QSm[Sn]-modules

The action of Sm[Sn] on the profile P and results R spaces makes
them Q(Sm[Sn])-modules.
Tw : P → R is a QSm[Sn]-module homomorphism.

Irreducible submodules of a QSm[Sn]-module are indexed by tuples of
partitions which add up to n.

S3[S5]

S( , , ), S( ,∅, )
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A representation theory approach

Example: The S2[S2] case

S( ,∅) =

〈
1
1
1
1


〉

S( ,∅) = S(∅, ) = ~0

S(∅, ) =

〈
1
−1
−1
1


〉

Aa
Ab
Ba
Bb



S( , ) =

〈
1
0
0
−1

 ,


0
1
−1
0


〉

Let R2 be the QS2[S2]-module results space spanned by the committees consisting of
exactly 1 member from each of 2 departments.

R2
∼= S(��,∅) ⊕ S(�,�) ⊕ S(∅,��)
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A representation theory approach

Decompositions of Rn

R2
∼= S(��,∅) ⊕ S(�,�) ⊕ S(∅,��)

R3
∼= S(���,∅) ⊕ S(��,�) ⊕ S(�,��) ⊕ S(∅,���)

Conjecture (Lee, 2010 Thesis)

For S2[Sn] with n ≥ 2, the results space decomposes into exactly⊕
λ Sλ, the direct sum of irreducible submodules indexed by double

trivial partitions λ = (λ1, λ2) (the “flat” partitions).
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Theorem (Matt Davis, 2010)
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A representation theory approach

Decomposing a QS3[S2]-module

Conjecture (Calaway, Csapo, Samelson, 2015)

For Sm[Sn] with m,n ≥ 2, the results space decomposes into a direct
sum composed only of irreducible submodules indexed by h-tuple
trivial partitions (the “flat” partitions).

( , ∅, ∅) ( , ∅, ∅) ( , , ∅)

(∅, , ∅) (∅, , ∅) (∅, , )

(∅, ∅, ) (∅, ∅, ) ( , ∅, )
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Voting on Posets

Voting on Posets

Suppose there is one “correct” poset and the votes are noisy
approximations of it

Input:

B

D

A C

B D

A C

B

C A

D

A C

B

D

Output: Most likely correct poset
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Voting on Posets

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition
The Borda score a candidate a receives for a poset P is

b(P,a)=2 down(a) + 1 incomp(a)

e

b

a

f

c

d

b(P,a)=2 down(a) + 1 incomp(a)=
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Voting on Posets

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition
The Borda score a candidate a receives for a poset P is

b(P,a)=2 down(a) + 1 incomp(a)

e

b

a

f

c

d

b(P,a)=2 down(a) + 1 incomp(a) = 2(1) +1(2) = 4
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Voting on Posets

Borda Count for Posets

Cullinan, Hsiao, and Polett (2014) define a Borda extension for posets.

Definition
The Borda score a candidate a receives for a poset P is

b(P,a)=2 down(a) + 1 incomp(a)

e

b

a

f

c

d

B(d) =2 down(d) + 1 incomp(d) = 2(2) +1(2) = 6
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Voting on Posets

Scoring Rankings: SRSF

Let A be the set of candidates and V our voter profile.
For u and v full rankings, and t a positional scoring function,

s(v ,u) =
m∑

i=1

(m − i)t(v ,u(i)) =
∑
a∈A

b(u,a)t(v ,a)

Then we can compare each full ranking to our profile

S(u) =
∑
v∈V

s(v ,u)

Theorem (Conitzer, Rognlie, Xia ’09)

A (neutral) voting function is a maximum likelihood estimator if and only if it is
an SRSF.
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Voting on Posets

Scoring Posets

For u and v posets, and t a neutral weighting function

S′(u) =
∑
v∈V

∑
a∈A

b(u,a)t(v ,a)

S′ is consistent with t :
If t(a) > t(b), then a ≥ b in all winning posets.

However, linear extensions of winning posets are also winning.

Can we extend in another way to compare the poset structures too?
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