RESOLVING STANLEY'S *e*-POSITIVITY OF CLAW-CONTRACTIBLE-FREE GRAPHS

> Samantha Dahlberg University of British Columbia

with Steph van Willigenburg and Angele Foley (was Hamel)

BIRS May 18, 2017

Given G with vertex set V a proper colouring κ of G is

 $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

so if $v_1, v_2 \in V$ are joined by an edge then

 $\kappa(\mathbf{v}_1) \neq \kappa(\mathbf{v}_2).$

Given G with vertex set V a proper colouring κ of G is

 $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

so if $v_1, v_2 \in V$ are joined by an edge then

 $\kappa(\mathbf{v}_1) \neq \kappa(\mathbf{v}_2).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a proper colouring κ of vertices v_1, \ldots, v_N associate a monomial in commuting variables x_1, x_2, x_3, \ldots

 $X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_N)}$.

Given a proper colouring κ of vertices v_1, \ldots, v_N associate a monomial in commuting variables x_1, x_2, x_3, \ldots

 $X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_N)}$.

Given G with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_{G} = \sum_{\kappa} x_{\kappa(\nu_{1})} x_{\kappa(\nu_{2})} \cdots x_{\kappa(\nu_{N})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where the sum over all proper colourings κ .

Given *G* with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_N)}$$

where the sum over all proper colourings κ .

$G = \bigcirc \bigcirc$ has $X_G =$

Given *G* with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_N)}$$

where the sum over all proper colourings κ .

$$G = \bigcirc \bigcirc$$
 has $X_G =$

Given *G* with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_N)}$$

where the sum over all proper colourings κ .

$$G=\bigcirc \bigcirc$$
 has $X_G=x_1^2+x_2^2+x_3^2+\cdots$

Given *G* with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_N)}$$

where the sum over all proper colourings κ .

$$G=\bigcirc$$
 \bigcirc has $X_G=x_1^2+x_2^2+x_3^2+\cdots$

Given *G* with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_N)}$$

where the sum over all proper colourings κ .

$$G = \bigcirc \bigcirc$$
 has $X_G = x_1^2 + x_2^2 + x_3^2 + \cdots$
 $2x_1x_2 + 2x_2x_3 + 2x_1x_3 + \cdots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A partition $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$ of *N* is a list of positive integers whose sum is *N*: 3221 \vdash 8.

A partition $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$ of *N* is a list of positive integers whose sum is *N*: 3221 \vdash 8.

The *i*-th elementary symmetric function, e_i

$$e_i = \sum_{j_1 < j_2 < \cdots < j_i} x_{j_1} \ldots x_{j_i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A partition $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$ of *N* is a list of positive integers whose sum is *N*: 3221 \vdash 8.

The *i*-th elementary symmetric function, e_i

$$e_i = \sum_{j_1 < j_2 < \cdots < j_i} x_{j_1} \ldots x_{j_i}$$

and

$$e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_k}.$$

A partition $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$ of *N* is a list of positive integers whose sum is *N*: 3221 \vdash 8.

The *i*-th elementary symmetric function, e_i

$$e_i = \sum_{j_1 < j_2 < \cdots < j_i} x_{j_1} \dots x_{j_i}$$

and

$$e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_k}.$$

$$e_{21} = (x_1x_2 + x_1x_3 + x_2x_3 + \cdots)(x_1 + x_2 + x_3 + \cdots)$$

A partition $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$ of *N* is a list of positive integers whose sum is *N*: 3221 \vdash 8.

The *i*-th elementary symmetric function, e_i

$$e_i = \sum_{j_1 < j_2 < \cdots < j_i} x_{j_1} \dots x_{j_i}$$

and

$$e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_k}.$$

$$e_{21} = (x_1x_2 + x_1x_3 + x_2x_3 + \cdots)(x_1 + x_2 + x_3 + \cdots)$$

Let Λ be the algebra of symmetric functions

$$egin{aligned} &\Lambda = \Lambda^0 \oplus \Lambda^1 \oplus \cdots \subset \mathbb{Q}[[x_1, x_2, \dots]] \ &\Lambda^{\mathcal{N}} = \operatorname{span}_{\mathbb{Q}}\{e_\lambda \mid \lambda \vdash \mathcal{N}\}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

○-○-○ has $X_G = e_{21} + 3e_3$ ✔

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

When is X_G a positive linear combination of e_{λ} ?

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

When is X_G a positive linear combination of e_{λ} ? ...or not?

G is *e*-positive if X_G is a positive linear combination of e_{λ} .

When is X_G a positive linear combination of e_{λ} ? ...or not?

Stanley 1995:

We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not *e*-positive.

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

PROPOSITION (BROUWER-VELDMAN 1987)

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

イロト 不得 トイヨト イヨト

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

PROPOSITION (BROUWER-VELDMAN 1987)

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

...WITH CHROMATIC SYMMETRIC FUNCTION

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

...WITH CHROMATIC SYMMETRIC FUNCTION

Smallest counterexamples to Stanley's statement.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

INFINITE FAMILY: SALTIRE GRAPHS

The saltire graph $SA_{n,n}$ for $n \ge 3$ is given by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $SA_{3,3}$ on the left.

INFINITE FAMILY: SALTIRE GRAPHS

THEOREM (D-FOLEY-VAN WILLIGENBURG 2017)

 $SA_{n,n}$ for $n \ge 3$ is claw-contractible-free and

$$[e_{nn}]X_{SA_{n,n}} = -n(n-1)(n-2).$$

CCF:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Claw-free: does not contain the claw as an induced subgraph.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Claw-free: does not contain the claw as an induced subgraph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The triangular tower graph $TT_{n,n,n}$ for $n \ge 3$ is given by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $TT_{3,3,3}$ on the left.

THEOREM (D-FOLEY-VAN WILLIGENBURG 2017)

 $TT_{n,n,n}$ for $n \ge 3$ is claw-contractible-free, claw-free and

$$[e_{nnn}]X_{TT_{n,n,n}} = -n(n-1)^2(n-2).$$

CCF+CF:

Conjectures

• Bloated $K_{3,3}$:

with 3n vertices has

 $-(3 \times 2^{n})e_{3^{n}}.$

No G exists that is connected, claw-contractible-free, claw-free and not e-positive with 10, 11 vertices.

SCARCITY

- N = 6: 4 of 112 connected graphs ccf and not *e*-positive.
- N = 7: 7 of 853 connected graphs ccf and not *e*-positive.
- N = 8: 27 of 11117 connected graphs ccf and not *e*-positive.
- Of 293 terms in *TT*_{7,7,7} only -ve at *e*₇₇₇.
- Of 564 terms in $TT_{8,8,8}$ only -ves at e_{888} and $-1944e_{444444}$.

• Of 1042 terms in *TT*_{9,9,9} only -ves at *e*₉₉₉ and -768*e*₃₃₃₃₃₃₃₃₃.

A picture speaks 1000 words

A picture speaks 1000 words

SAC

Thank you very much!

・ロト ・個ト ・モト ・モト

æ