Resolving Stanley's e-Positivity of Claw-Contractible-Free Graphs

Samantha Dahlberg
University of British Columbia

with Steph van Willigenburg and Angele Foley (was Hamel)

BIRS May 18, 2017

Chromatic symmetric functions

Given G with vertex set V a proper colouring κ of G is

$$
\kappa: V \rightarrow\{1,2,3, \ldots\}
$$

so if $v_{1}, v_{2} \in V$ are joined by an edge then

$$
\kappa\left(v_{1}\right) \neq \kappa\left(v_{2}\right) .
$$

Chromatic symmetric functions

Given G with vertex set V a proper colouring κ of G is

$$
\kappa: V \rightarrow\{1,2,3, \ldots\}
$$

so if $v_{1}, v_{2} \in V$ are joined by an edge then

$$
\kappa\left(v_{1}\right) \neq \kappa\left(v_{2}\right) .
$$

Chromatic symmetric functions

Given a proper colouring κ of vertices v_{1}, \ldots, v_{N} associate a monomial in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

Chromatic symmetric functions

Given a proper colouring κ of vertices v_{1}, \ldots, v_{N} associate a monomial in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

(1)-(2) (1) gives $x_{1} x_{2} x_{1}=x_{1}^{2} x_{2}$

(1)-(2) gives $x_{1} x_{2} x_{3}$

Chromatic symmetric function

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.

Chromatic symmetric function

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.

$$
G=\bigcirc \bigcirc \text { has } X_{G}=
$$

Chromatic symmetric function

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.

One colour: (1) x_{1}^{2}

x_{2}^{2}

x_{3}^{2}

$$
G=\bigcirc \bigcirc \text { has } X_{G}=
$$

Chromatic symmetric function

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.
One colour: (1)

$$
x_{1}^{2}
$$

$$
G=\bigcirc \bigcirc \text { has } X_{G}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots
$$

Chromatic symmetric function

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.

Two colours:

$X_{2} X_{1}$

$$
G=\bigcirc \bigcirc \text { has } x_{G}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots
$$

Chromatic symmetric function

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.

Two colours:

(2) (1) \ldots
$x_{2} x_{1}$

$$
\begin{aligned}
& G=\bigcirc \bigcirc \text { has } X_{G}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots \\
& 2 x_{1} x_{2}+2 x_{2} x_{3}+2 x_{1} x_{3}+\cdots
\end{aligned}
$$

Symmetric functions

A partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.

SYMMETRIC FUNCTIONS

A partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.
The i-th elementary symmetric function, e_{i}

$$
e_{i}=\sum_{j_{1}<j_{2}<\cdots<j_{i}} x_{j_{1}} \ldots x_{j_{i}}
$$

SYMMETRIC FUNCTIONS

A partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.
The i-th elementary symmetric function, e_{i}

$$
e_{i}=\sum_{j_{1}<j_{2}<\cdots<j_{i}} x_{j_{1}} \ldots x_{j_{i}}
$$

and

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{k}}
$$

Symmetric functions

A partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.
The i-th elementary symmetric function, e_{i}

$$
e_{i}=\sum_{j_{1}<j_{2}<\cdots<j_{i}} x_{j_{1}} \ldots x_{j_{i}}
$$

and

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{k}}
$$

$$
e_{21}=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right)
$$

Symmetric functions

A partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.
The i-th elementary symmetric function, e_{i}

$$
e_{i}=\sum_{j_{1}<j_{2}<\cdots<j_{i}} x_{j_{1}} \ldots x_{j_{i}}
$$

and

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{k}}
$$

$$
e_{21}=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right)
$$

Let Λ be the algebra of symmetric functions

$$
\begin{gathered}
\Lambda=\Lambda^{0} \oplus \Lambda^{1} \oplus \cdots \subset \mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right] \\
\Lambda^{N}=\operatorname{span}_{\mathbb{Q}}\left\{e_{\lambda} \mid \lambda \vdash N\right\} .
\end{gathered}
$$

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
$\bigcirc \rightarrow$ has $X_{G}=e_{21}+3 e_{3} \boldsymbol{V}$

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
$\bigcirc \rightarrow$ has $X_{G}=e_{21}+3 e_{3} \boldsymbol{V}$
has $X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4} \boldsymbol{X}$

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
$\bigcirc \rightarrow$ has $X_{G}=e_{21}+3 e_{3} \boldsymbol{V}$
has $X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4} \boldsymbol{X}$

This is the claw, the smallest which is not e-positive graph.

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
$\bigcirc \rightarrow$ has $X_{G}=e_{21}+3 e_{3} \boldsymbol{V}$

$$
\text { has } X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4}
$$

This is the claw, the smallest which is not e-positive graph.

When is X_{G} a positive linear combination of e_{λ} ?

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
$\bigcirc \rightarrow$ has $X_{G}=e_{21}+3 e_{3} \boldsymbol{V}$

$$
\text { has } X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4}
$$

This is the claw, the smallest which is not e-positive graph.

When is X_{G} a positive linear combination of e_{λ} ? ...or not?

e-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
$\bigcirc \rightarrow$ has $X_{G}=e_{21}+3 e_{3} \boldsymbol{V}$
has $X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4}$

This is the claw, the smallest which is not e-positive graph.

When is X_{G} a positive linear combination of e_{λ} ? ...or not?
Stanley 1995:
We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.

CLAW-CONTRACTIBLE-FREE

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges $=$ claw.

CLAW-CONTRACTIBLE-FREE

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

CLAW-CONTRACTIBLE-FREE

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges $=$ claw.

Proposition (Brouwer-Veldman 1987)

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

CLAW-CONTRACTIBLE-FREE

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges $=$ claw.

Proposition (Brouwer-Veldman 1987)

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

...WITH CHROMATIC SYMMETRIC FUNCTION

$2 e_{222}-6 e_{33}+26 e_{42}+28 e_{51}+102 e_{6}$
$2 e_{321}-6 e_{33}+24 e_{42}+40 e_{51}+120 e_{6}$
$2 e_{222}-12 e_{33}+30 e_{42}+24 e_{51}+186 e_{6}$
$2 e_{321}-6 e_{33}+20 e_{42}+32 e_{51}+228 e_{6}$

...WITH CHROMATIC SYMMETRIC FUNCTION

Smallest counterexamples to Stanley's statement.

Infinite family: SALTIRE GRAPHS

The saltire graph $S A_{n, n}$ for $n \geq 3$ is given by

with $S A_{3,3}$ on the left.

Infinite family: SALTIRE GRAPHS

Theorem (D-Foley-van Willigenburg 2017)

$S A_{n, n}$ for $n \geq 3$ is claw-contractible-free and

$$
\left[e_{n n}\right] X_{S A_{n, n}}=-n(n-1)(n-2) .
$$

CCF:

And CLAW-FREE: TRIANGULAR TOWER GRAPHS

Claw-free: does not contain the claw as an induced subgraph.

And CLAW-FREE: TRIANGULAR TOWER GRAPHS

Claw-free: does not contain the claw as an induced subgraph.

And CLAW-FREE: TRIANGULAR TOWER GRAPHS

The triangular tower graph $T T_{n, n, n}$ for $n \geq 3$ is given by

with $T T_{3,3,3}$ on the left.

And CLAW-FREE: TRIANGULAR TOWER GRAPHS

Theorem (D-Foley-van Willigenburg 2017)

$T T_{n, n, n}$ for $n \geq 3$ is claw-contractible-free, claw-free and

$$
\left[e_{n n n}\right] X_{T T_{n, n, n}}=-n(n-1)^{2}(n-2) .
$$

CCF + CF:

Conjectures

(1) Bloated $K_{3,3}$:

with $3 n$ vertices has

$$
-\left(3 \times 2^{n}\right) e_{3^{n}}
$$

(2) No G exists that is connected, claw-contractible-free, claw-free and not e-positive with 10, 11 vertices.

Scarcity

- $N=6: 4$ of 112 connected graphs ccf and not e-positive.
- $N=7: 7$ of 853 connected graphs ccf and not e-positive.
- $N=8: 27$ of 11117 connected graphs ccf and not e-positive.
- Of 293 terms in $T T_{7,7,7}$ only -ve at e_{777}.
- Of 564 terms in $T T_{8,8,8}$ only -ves at e_{888} and $-1944 e_{444444}$.
- Of 1042 terms in $T T_{9,9,9}$ only - ves at eg99 and $-768 e_{333333333}$.

A Picture speaks 1000 Words

A Picture speaks 1000 Words

Thank you very much!

