A toolbox for clustering properties of Macdonald polynomials

Laura Colmenarejo
York University - Fields Institute with J-G. Luque and C. F. Dunkl.

Algebraic Combinatorixx2 May, 2017

Theoretical Physics
Many-body problem Quantum Hall Effect

Theoretical Physics
Many-body problem Quantum Hall Effect

Combinatorics
Expand the powers of the discriminant on Schur functions

Discriminant

Discriminant

- Invariant: determine if a polynomial has only simple roots

Discriminant

- Invariant: determine if a polynomial has only simple roots
- Symmetric functions: $\Delta\left(x_{1}, \ldots, x_{n}\right)= \pm \prod_{i \neq j}\left(x_{i}-x_{j}\right)^{2}$

$$
\Delta\left(x_{1}, x_{2}\right)=s_{2}-3 s_{11}
$$

Discriminant

- Invariant: determine if a polynomial has only simple roots
- Symmetric functions: $\Delta\left(x_{1}, \ldots, x_{n}\right)= \pm \prod_{i \neq j}\left(x_{i}-x_{j}\right)^{2}$

$$
\Delta\left(x_{1}, x_{2}\right)=s_{2}-3 s_{11}
$$

- Square of the Vandermonde determinant

$$
\Delta\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]^{2}
$$

Discriminant

- Invariant: determine if a polynomial has only simple roots
- Symmetric functions: $\Delta\left(x_{1}, \ldots, x_{n}\right)= \pm \prod_{i \neq j}\left(x_{i}-x_{j}\right)^{2}$

$$
\Delta\left(x_{1}, x_{2}\right)=s_{2}-3 s_{11}
$$

- Square of the Vandermonde determinant

$$
\Delta\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]^{2}
$$

- Classification of entanglement: use the (geometric) invariant theory to classify quantum systems of particles (qubit systems)

Back to Physics: Jack and Macdonald polynomials

Back to Physics: Jack and Macdonald polynomials

Why Jack polynomials?

Back to Physics:
 Jack and Macdonald polynomials

Why Jack polynomials? \mathbb{X} (finite) alphabet, α parameter

- Operators involved in the many-body problem
- Form of the eigenfunctions and eigenvectors involved
- Clustering properties

Back to Physics:
 Jack and Macdonald polynomials

Why Jack polynomials? \mathbb{X} (finite) alphabet, α parameter

- Operators involved in the many-body problem
- Form of the eigenfunctions and eigenvectors involved
- Clustering properties

Why Macdonald polynomials?

Back to Physics: Jack and Macdonald polynomials

Why Jack polynomials? \mathbb{X} (finite) alphabet, α parameter

- Operators involved in the many-body problem
- Form of the eigenfunctions and eigenvectors involved
- Clustering properties

Why Macdonald polynomials? \mathbb{X} (finite) alphabet, (q, t)
parameters

- Generalization of the Jack polynomials: $q=t^{\alpha}$ and $t \longrightarrow 1$
- Not only one, but four versions (for each!)

Back to Physics:
 Jack and Macdonald polynomials

Why Jack polynomials? \mathbb{X} (finite) alphabet, α parameter

- Operators involved in the many-body problem
- Form of the eigenfunctions and eigenvectors involved
- Clustering properties

Why Macdonald polynomials? \mathbb{X} (finite) alphabet, (q, t)

parameters

- Generalization of the Jack polynomials: $q=t^{\alpha}$ and $t \longrightarrow 1$
- Not only one, but four versions (for each!)
Non-symmetric

Symmetric

Homogeneous

Macdonald poly.
Jack poly.

MY MOTIVATION

We compute the non-symmetric shifted Macdonald polynomial associated to the vector [$2,1,0$] and we get this nice result

```
MSS[ [2, 1, 0])
[q^2**^^2,t*q, 1]
- 
```



```
    +2txIx3+tx\mp@subsup{2}{}{2}+3tx2x3+tx\mp@subsup{3}{}{2}+x\mp@subsup{I}{}{2}x2+x\mp@subsup{I}{}{2}x3+xIx\mp@subsup{2}{}{2}+2xIx2x3+xIx\mp@subsup{3}{}{2}+x\mp@subsup{|}{}{2}x3+x2x\mp@subsup{3}{}{2}+qxI+qx2+qx3-tx2-tx3-x\mp@subsup{I}{}{2}-2xIx2-2xIx3
    -x\mp@subsup{2}{}{2}-2x2x3-x\mp@subsup{3}{}{2}-q+x1+x2+x3)
```


My motivation

We compute the non-symmetric shifted Macdonald polynomial associated to the vector [$2,1,0$] and we get this nice result

```
MS([2, 1,0])
[\mp@subsup{q}{}{\wedge}\mp@subsup{2}{}{*}\mp@subsup{t}{}{\wedge}2,}\mp@subsup{t}{}{*}q, 1
- 
```



```
    -x\mp@subsup{2}{}{2}-2x2x3-x\mp@subsup{3}{}{2}-q+x{+x2+x3)
```

But if we consider the specialization given by $q t^{2}=1$, then

$$
\left.M_{[2,1,0]}\right|_{q=\frac{1}{t^{2}}}=-t^{2}\left(t x_{3}-x_{2}\right)\left(t x_{3}-x_{1}\right)\left(t x_{2}-x_{1}\right)
$$

Affine Hecke algebra of the symmetric group

$$
\mathcal{H}_{N}(q, t)=\mathbb{C}(q, t)\left[x_{1}^{ \pm}, \ldots, x_{N}^{ \pm}, T_{1}^{ \pm}, \ldots, T_{N-1}^{ \pm}, \tau\right]
$$

Affine Hecke algebra of the symmetric group

$$
\mathcal{H}_{N}(q, t)=\mathbb{C}(q, t)\left[x_{1}^{ \pm}, \ldots, x_{N}^{ \pm}, T_{1}^{ \pm}, \ldots, T_{N-1}^{ \pm}, \tau\right]
$$

- $T_{i}=t+\left(s_{i}-1\right) \frac{t x_{i+1}-x_{i}}{x_{i+1}-x_{i}}$
- $f(x) \tau=f\left(\frac{x_{N}}{q}, x_{1}, \ldots, x_{N-1}\right)$

Affine Hecke algebra of the symmetric group

$$
\mathcal{H}_{N}(q, t)=\mathbb{C}(q, t)\left[x_{1}^{ \pm}, \ldots, x_{N}^{ \pm}, T_{1}^{ \pm}, \ldots, T_{N-1}^{ \pm}, \tau\right]
$$

- $T_{i}=t+\left(s_{i}-1\right) \frac{t x_{i+1}-x_{i}}{x_{i+1}-x_{i}}$
- $f(x) \tau=f\left(\frac{x_{N}}{q}, x_{1}, \ldots, x_{N-1}\right)$

The operators T_{i} satisfy the relations of the Hecke algebra in the symmetric group:

- $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$ (braid relation)
- $T_{i} T_{j}=T_{j} T_{i}$, for $|i-j|>1$
- $\left(T_{i}-t\right)\left(T_{i}+1\right)=0$

Operators and polynomials

$\underline{(q, t) \text {-Cherednik operators }}$

$$
\xi_{i}:=t^{1-i} T_{i-1} \ldots T_{1} \tau T_{N-1}^{-1} \ldots T_{i}^{-1}
$$

Operators and polynomials

$\underline{(q, t)-C h e r e d n i k ~ o p e r a t o r s ~}$

$$
\xi_{i}:=t^{1-i} T_{i-1} \ldots T_{1} \tau T_{N-1}^{-1} \ldots T_{i}^{-1}
$$

Non-symmetric Macdonald polynomials $\left(E_{v}\right)_{v \in \mathbb{N}^{N}}$: unique basis of simultaneous eigenfunctions of the operators ξ_{i}.

Operators and polynomials

$\underline{(q, t) \text {-Cherednik operators }}$

$$
\xi_{i}:=t^{1-i} T_{i-1} \ldots T_{1} \tau T_{N-1}^{-1} \ldots T_{i}^{-1}
$$

Non-symmetric Macdonald polynomials $\left(E_{v}\right)_{v \in \mathbb{N}^{N}}$: unique basis of simultaneous eigenfunctions of the operators ξ_{i}.

Knop-Cherednik operators:

$$
\Xi_{i}:=t^{1-i} T_{i-1} \ldots T_{1} \tau\left(1-\frac{1}{x_{N}}\right) T_{N-1}^{-1} \ldots T_{i}^{-1}+\frac{1}{x_{i}}
$$

Operators and polynomials

$\underline{(q, t)-C h e r e d n i k ~ o p e r a t o r s ~}$

$$
\xi_{i}:=t^{1-i} T_{i-1} \ldots T_{1} \tau T_{N-1}^{-1} \ldots T_{i}^{-1}
$$

Non-symmetric Macdonald polynomials $\left(E_{v}\right)_{v \in \mathbb{N}^{N}}$: unique basis of simultaneous eigenfunctions of the operators ξ_{i}.

Knop-Cherednik operators:

$$
\bar{\Xi}_{i}:=t^{1-i} T_{i-1} \ldots T_{1} \tau\left(1-\frac{1}{x_{N}}\right) T_{N-1}^{-1} \ldots T_{i}^{-1}+\frac{1}{x_{i}}
$$

Non-symmetric shifted Macdonald polynomials $\left(M_{v}\right)_{v \in \mathbb{N}^{N}}$: unique basis of simultaneous eigenfunctions of the operators $\bar{\Xi}_{i}$.

Properties I

- Symmetric version: apply the symmetrizing operator $\mathcal{S}_{N}=\sum_{\sigma \in \mathfrak{S}_{N}} T_{\sigma}$.

Properties I

- Symmetric version: apply the symmetrizing operator $\mathcal{S}_{N}=\sum_{\sigma \in \mathfrak{S}_{N}} T_{\sigma}$.
- Dominance properties:

$$
\begin{gathered}
E_{v} \stackrel{(*)}{=} x^{v}+\sum_{u \prec v} \alpha_{u, v} x^{u} \quad M_{v} \stackrel{(*)}{=} x^{v}+\sum_{u \prec v} \alpha_{u, v} x^{u}, \\
M_{v}=E_{v}+\sum_{|u|<|v|} \alpha_{u, v} E_{u}
\end{gathered}
$$

Properties I

- Symmetric version: apply the symmetrizing operator $\mathcal{S}_{N}=\sum_{\sigma \in \mathfrak{S}_{N}} T_{\sigma}$.
- Dominance properties:

$$
\begin{gathered}
E_{v} \stackrel{(*)}{=} x^{v}+\sum_{u \prec v} \alpha_{u, v} x^{u} \quad M_{v} \stackrel{(*)}{=} x^{v}+\sum_{u \prec v} \alpha_{u, v} x^{u}, \\
M_{v}=E_{v}+\sum_{|u|<|v|} \alpha_{u, v} E_{u}
\end{gathered}
$$

- Eigenvalues: spectral vectors $\operatorname{Spec}(v)$

Properties I

- Symmetric version: apply the symmetrizing operator $\mathcal{S}_{N}=\sum_{\sigma \in \mathfrak{S}_{N}} T_{\sigma}$.
- Dominance properties:

$$
\begin{gathered}
E_{v} \stackrel{(*)}{=} x^{v}+\sum_{u \prec v} \alpha_{u, v} x^{u} \quad M_{v} \stackrel{(*)}{=} x^{v}+\sum_{u \prec v} \alpha_{u, v} x^{u}, \\
M_{v}=E_{v}+\sum_{|u|<|v|} \alpha_{u, v} E_{u}
\end{gathered}
$$

- Eigenvalues: spectral vectors $\operatorname{Spec}(v)$
- Yang-Baxter graph: provides a method to compute non-symmetric (shifted) Macdonald polynomials

Properties II

Notation: the reciprocal vector of v is $\langle v\rangle[i]=\frac{1}{\operatorname{Spec}(v)[i]}$.

Properties II

Notation: the reciprocal vector of v is $\langle v\rangle[i]=\frac{1}{\operatorname{Spec}(v)[i]}$.

- Interwining: if $v[i]<v[i+1]$,

$$
M_{v . s_{i}}=M_{v}\left(T_{i}+\frac{1-t}{1-\frac{\langle v\rangle[i+1]}{\langle v\rangle[i]}}\right)
$$

- Affine operation: $M_{v . \Phi}=M_{v} \tau\left(x_{N}-1\right)$

Properties II

Notation: the reciprocal vector of v is $\langle v\rangle[i]=\frac{1}{\operatorname{Spec}(v)[i]}$.

- Interwining: if $v[i]<v[i+1]$,

$$
M_{v . s_{i}}=M_{v}\left(T_{i}+\frac{1-t}{1-\frac{\langle v\rangle[i+1]}{\langle v\rangle[i]}}\right)
$$

- Affine operation: $M_{v . \Phi}=M_{v} \tau\left(x_{N}-1\right)$
- Vanishing properties:
- $M_{v}(\langle u\rangle)=0$ for $|v| \leq|u|, u \neq v$
- $M_{v}(\langle v\rangle)= \pm t^{\star} h_{t, q}(v, q)$, where $h_{q, t}(v, z)$ is the (q, t)-hook product of v

Dunkl Operator and Singular Polynomials

We define the Dunkl operator as

$$
D_{i}=\Xi_{i}-\xi_{i} .
$$

A singular polynomial is a polynomial in the kernel of each D_{i}.

Dunkl Operator and Singular Polynomials

We define the Dunkl operator as

$$
D_{i}=\bar{\Xi}_{i}-\xi_{i} .
$$

A singular polynomial is a polynomial in the kernel of each D_{i}.

Remark: If M_{v} is singular and the dimension of the eigenspace still equals 1 , then $M_{v} \stackrel{(*)}{=} E_{v}$.

Dunkl Operator and Singular Polynomials

We define the Dunkl operator as

$$
D_{i}=\bar{\Xi}_{i}-\xi_{i}
$$

A singular polynomial is a polynomial in the kernel of each D_{i}.

Remark: If M_{v} is singular and the dimension of the eigenspace still equals 1 , then $M_{v} \stackrel{(*)}{=} E_{v}$.

General question): For which vector and for which specialization of the parameters (or even variables), the Macdonald polynomials M_{v} are singular?

Dunkl Operator and Singular Polynomials

We define the Dunkl operator as

$$
D_{i}=\bar{\Xi}_{i}-\xi_{i}
$$

A singular polynomial is a polynomial in the kernel of each D_{i}.

Remark: If M_{v} is singular and the dimension of the eigenspace still equals 1 , then $M_{v} \stackrel{(*)}{=} E_{v}$.

General question): For which vector and for which specialization of the parameters (or even variables), the Macdonald polynomials M_{v} are singular?

We can find many examples of singular Macdonald polynomials, as well as conjectures, but the general form remains unknown.

SOLUTION FOR THE STAIRCASE

Theorem (Dunkl, Luque, C. - 2015)

Let $v_{n, k}=[(n-1) k,(n-2) k, \ldots, k, 0]$. Consider the specialization $q^{k} t^{2}=1$, with k odd or $q^{\frac{k}{2}} t \neq 1$. Then,

$$
M_{v}(q, t)=E_{v}(q, t)= \pm t^{\star} \prod_{l=1}^{k} \prod_{i<j}\left(x_{i}-\frac{1}{t q^{\prime}} x_{j}\right)
$$

Solution for the staircase

Theorem (Dunkl, Luque, C. - 2015)

Let $v_{n, k}=[(n-1) k,(n-2) k, \ldots, k, 0]$. Consider the specialization $q^{k} t^{2}=1$, with k odd or $q^{\frac{k}{2}} t \neq 1$. Then,

$$
M_{v}(q, t)=E_{v}(q, t)= \pm t^{\star} \prod_{l=1}^{k} \prod_{i<j}\left(x_{i}-\frac{1}{t q^{\prime}} x_{j}\right)
$$

Examples

$$
\begin{gathered}
\left.M_{[2,1,0]}\right|_{q=\frac{1}{t^{2}}}=-t^{2}\left(t x_{3}-x_{2}\right)\left(t x_{3}-x_{1}\right)\left(t x_{2}-x_{1}\right) \\
\left.M_{[4,2,0]}\right|_{q=\frac{-1}{t}}=t^{7}\left(x_{1}-t x_{2}\right)\left(x_{1}-t x_{3}\right)\left(x_{2}-t x_{3}\right)\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)
\end{gathered}
$$

Solution for the quasi-staircase?

Conjecture (Dunkl, Luque, C.)

Let $v=v_{n, k, \alpha, \beta}$ be the quasi-staircase. Consider the specialization $q^{k} t^{\alpha+1}=1$, with $g=1$ or $q^{\frac{k}{g}} t^{\frac{\alpha+1}{g}} \neq 1$, where $g=\operatorname{gcd}(k, \alpha+1)$. Then,

$$
\begin{aligned}
& M_{v}\left(x_{1}, \ldots, x_{\beta}, y_{1}, \ldots, t^{\alpha-1} y_{1}, \ldots, t^{\alpha-1} y_{n-1}\right)= \\
& \quad=E_{v}\left(x_{1}, \ldots, x_{\beta}, y_{1}, \ldots, t^{\alpha-1} y_{1}, \ldots, t^{\alpha-1} y_{n-1}\right)= \\
& = \pm t^{\star} \prod_{l=1}^{k}\left[\left[\prod_{i=1}^{\beta} \prod_{j=1}^{n-1}\left(x_{i}-\frac{1}{t q^{\prime}} y_{j}\right)\right]\left[\prod_{s=1}^{\alpha} \prod_{i<j}\left(t^{s} y_{i}-\frac{1}{t q^{\prime}} y_{j}\right)\right]\right]
\end{aligned}
$$

EXAMPLES

$$
\begin{aligned}
& M_{21100}\left(x_{1}, y_{1}, t y_{1}, y_{2}, t y_{2} ; \frac{1}{t^{3}}, t\right)= \\
& =t^{4}\left(y_{1}-t^{2} y_{2}\right)\left(y_{1}-t y_{2}\right)\left(x_{1}-t^{2} y_{2}\right)\left(x_{1}-t^{2} y_{1}\right) . \\
& \begin{array}{l}
M_{42200}\left(x_{1}, y_{1}, z^{2} y_{1}, y_{2}, z^{2} y_{2} ; \frac{1}{z^{3}}, z^{2}\right)= \\
=z^{27}\left(y_{1}-z y_{2}\right)\left(y_{1}-z^{2} y_{2}\right)\left(y_{1}-z^{4} y_{2}\right)\left(z y_{1}-y_{2}\right) \\
\quad\left(x_{1}-z y_{2}\right)\left(x_{1}-z^{4} y_{1}\right)\left(x_{1}-z y_{1}\right)\left(x_{1}-z^{4} y_{1}\right) .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& M_{300}\left(x_{1}, y_{1}, z y_{1} ; \frac{\omega}{z}, z\right)= \\
& =\frac{-1}{4} z^{3}\left(x_{1}-z^{2} y_{1}\right)\left(2 x_{1}+y_{1}+i \sqrt{3} y_{1}\right)\left(-2 x_{1}-z y_{1}+i \sqrt{3} z y_{1}\right)
\end{aligned}
$$

where $\omega=\frac{-1}{2}+\frac{1}{2} \sqrt{3} i$.

Final Remarks

- The difficult part is to prove the singularity of M_{v}.

Final Remarks

- The difficult part is to prove the singularity of M_{v}.
- Other results:
- If λ has no zero parts, we can describe M_{λ} in terms of $M_{\lambda-\left(\lambda_{N}, \ldots, \lambda_{N}\right)}$ (up to a factor)

Final REMARKS

- The difficult part is to prove the singularity of M_{v}.
- Other results:
- If λ has no zero parts, we can describe M_{λ} in terms of $M_{\lambda-\left(\lambda_{N}, \ldots, \lambda_{N}\right)}$ (up to a factor)
- If λ has zero parts, we can consider a standard specialization. For instance,

$$
M_{32000}\left(x_{1}, x_{2}, t^{2}, t, 1\right) \stackrel{(*)}{=} M_{32}\left(\frac{x_{1}}{t^{3}}, \frac{x_{2}}{t^{3}}\right)
$$

Final REMARKS

- The difficult part is to prove the singularity of M_{v}.
- Other results:
- If λ has no zero parts, we can describe M_{λ} in terms of $M_{\lambda-\left(\lambda_{N}, \ldots, \lambda_{N}\right)}$ (up to a factor)
- If λ has zero parts, we can consider a standard specialization. For instance,

$$
M_{32000}\left(x_{1}, x_{2}, t^{2}, t, 1\right) \stackrel{(*)}{=} M_{32}\left(\frac{x_{1}}{t^{3}}, \frac{x_{2}}{t^{3}}\right)
$$

- Can we describe all the nice specializations?

Thank you very much!

¡Muchas gracias!

References

- Jack polynomial fractional quantum Hall states and their generalizations, Baratta, W.; Forrester, Peter J. Nuclear Phys. B 843 (2011).
- Staircase Macdonald polynomials and the q-discriminant, Boussicault, A.; Luque, J-G. Discrete Math. Theor. Comput. Sci. Proc., 2008.
- Clustering properties of rectangular Macdonald polynomials, Dunkl, C. F.; Luque, J-G. Ann. Inst. Henri Poincar D 2 (2015).
- A combinatorial formula for nonsymmetric Macdonald polynomials, Haglund, J.; Haiman, M.; Loehr, N. Amer. J. Math. 130 (2008).
- Highest weight Macdonald and Jack polynomials, Jolicoeur, Th.; Luque, J. G. J. Phys. A 44 (2011).
- The binomial formula for non-symmetric Macdonald polynomials, Sahi, S.. Duke Math. J. 94 (1998).

