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A Pictorial Guide
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permutation of the unit interval positroid induced by P by reading the semiorder (Dyck)
path in northwest direction.

Example 1.2. The vertical assignment on the left of Figure 2 shows a set I of unit
intervals along with a canonically labeled unit interval order P on [5] describing the
order relations among the intervals in I (see Theorem 2.2). The vertical assignment on
the right illustrates the recipe given in Theorem 1.1 to read the decorated permutation
⇡ = (1 2 10 3 9 4 8 7 5 6) associated to the unit interval positroid induced by P
directly from the antiadjacency matrix. Note that the decorated permutation ⇡ is a
10-cycle satisfying conditions (1) and (2) of our main theorem. The solid and dashed
assignment signs represent functions that we shall introduce later.

Figure 2. Following the solid assignments: unit interval representation
I, its unit interval order P , the antiadjacency matrix '(P ), and the
semiorder (Dyck) path of '(P ) showing the decorated permutation ⇡.

This paper is organized as follows. In Section 2 we establish the notation and
formally present the fundamental concepts and objects used throughout this paper.
Then, in Section 3, we formally introduce canonical labelings and canonical interval
representations of unit interval orders. Also, we use canonical labelings to exhibit an
explicit bijection from the set of non-isomorphic unit interval orders on [n] to the set
of n ⇥ n Dyck matrices. Section 4 is dedicated to the description of the unit interval
positroids via their decorated permutations, which yields the direct implication of the
main theorem. Finally, in Section 5, we show how to read the decorated permutation
of a unit interval positroid from either an antiadjacency matrix or a canonical interval
representation of the corresponding unit interval order, which allows us to complete
the proof of the main theorem.

(1 2 10 3 9 4 8 7 5 6), , , , , , , , ,
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Section 1

Unit Interval Orders
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Unit Interval Orders

Definition

A poset P is a unit interval order if there exists a bijective map
i 7→ [qi, qi + 1] from P to S = {[qi, qi + 1] | 1 ≤ i ≤ n, qi ∈ R} such that
for distinct i, j ∈ P , i <P j if and only if qi + 1 < qj . We then say that
S is an interval representation of P .

Example:
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Subposets of Unit Interval Orders

A subset Q is an induced subposet of P if there is an injective map
f : Q→ P such that r <Q s if and only if f(r) <P f(s).

P is a Q-free poset if P does not contain any induced subposet
isomorphic to Q.

Theorem (Scott–Suppes)

A poset is a unit interval order if and only if it is simultaneously
(3 + 1)-free and (2 + 2)-free.
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Natural and Altitude Preserving Labelings

Let P be a poset on [n].

P is naturally labeled if i <P j implies that i < j as integers.

A labeling on P is altitude preserving if α(i) < α(j) implies i < j
(as integers), where α(i) = |Λi| − |Vi| is called the altitude of i.

Figure: A poset with an altitude preserving labeling on [6].
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Section 2

Positroids
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Matroids

Definition (Matroid)

Let E be a finite set, and let B be a nonempty collection of subsets,
called bases, of E. The pair M = (E,B) is a matroid if they satisfy the
Basis Exchange Axiom :

for all A,B ∈ B and a ∈ A \B, there exists b ∈ B \A such that
(A \ {a}) ∪ {b} ∈ B.

Example: Given the bases

B =
{
{2, 4, 6}, {2, 5, 6}

}
,

then the pair M = ([6],B) a matroid.
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Matroid Example

Consider the 3× 6 real matrix

X =




0 0 0 1 1 1
0 2 0 −1 −1 0
0 0 0 1 1 0


.
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Matroid Example

Consider the 3× 6 real matrix

1 2 3 4 5 6

X =




0 0 0 1 1 1
0 2 0 −1 −1 0
0 0 0 1 1 0


.

Label the columns 1 through 6 and notice X has rank 3.

Then B ∈ B is a set of 3 columns that span R3.

The matroid represented by X is M = ([6],B) with bases

B =
{
{2, 4, 6}, {2, 5, 6}

}
.
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Positroids

Definition: A matroid ([n],B) of rank d is representable if there is
X ∈Md×n(R) with columns X1, . . . , Xn such that B ⊆ [n] belongs to B
iff {Xi | i ∈ B} is a basis for Rd.

Definition (Positroid)

A positroid on [n] of rank d is a matroid that can be represented by a
matrix in Mat+d,n.

Notation: Let Mat≥0d,n denote the set of all full rank d× n real
matrices with nonnegative maximal minors.
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Positroids

Example: Recall the 3× 6 real matrix

X =




0 0 0 1 1 1
0 2 0 −1 −1 0
0 0 0 1 1 0


 .

All maximal minors are nonnegative, thus X ∈ Mat+3,6.

The matroid M = ([6],B) represented by X is a positroid.
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Dyck Matrices

Definition (Dyck Matrix)

A binary square matrix is said to be a Dyck matrix if its zero entries
are above the main diagonal and its one entries are separated from its
zero entries by a Dyck path supported on the main diagonal. We let
Dn denote the set of Dyck matrices of size n.

A Dyck path
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Dyck Matrices

Example: A 6× 6 Dyck matrix and its Dyck path:

Observations:

Every Dyck matrix is totally nonnegative.

|Dn| = 1
n+1

(
2n
n

)
, the n-th Catalan number.

Note: A square matrix is totally nonnegative if all its minors are ≥ 0.
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Antiadjacency Matrices of Labeled Posets

Definition (Antiadjacency Matrix)

If P is a poset [n], then the antiadjacency matrix of P is the n× n
binary matrix A = (ai,j) with ai,j = 0 iff i 6= j and i <P j.

Proposition (Skandera–Reed)

An n-labeled unit interval order has an altitude preserving labeling if
and only if its antiadjacency matrix is a Dyck matrix.

Example:
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Postnikov’s Map

Lemma (Postnikov)

For an n× n real matrix A = (ai,j), consider the n× 2n matrix
B = φ(A), where




a1,1 . . . a1,n
...

. . .
...

an−1,1 . . . an−1,n
an,1 . . . an,n




φ7→




1 . . . 0 0 ±an,1 . . . ±an,n
...

. . .
...

...
...

. . .
...

0 . . . 1 0 −a2,1 . . . −a2,n
0 . . . 0 1 a1,1 . . . a1,n


.

Under this correspondence, ∆I,J(A) = ∆(n+1−[n]\I)∪(n+J)(B) for all
I, J ⊆ [n] satisfying |I| = |J | (here ∆I,J(A) is the minor of A
determined by the rows I and columns J , and ∆K(B) is the maximal
minor of B determined by columns K).

This allows us to associate a positroid to each Dyck matrix
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Postnikov’s Map

Example: By Lemma, the Dyck matrix A produces the postroid
represented by φ(A):

1 1 0

1 1 1

1 1 1







A

7→
1 0 0 1 1 1

0 1 0 -1 -1 -1

0 0 1 1 1 0







φ(A)
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Postnikov’s Map

Example: By Lemma, the Dyck matrix A produces the postroid
represented by φ(A):

1 1 0

1 1 1
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A

7→
1 0 0 1 1 1

0 1 0 -1 -1 -1
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φ(A)

where the minors of A correspond with maximal minors of φ(A):

For row index set I = {1, 2} and column index set J = {2, 3}, we have
∆I,J(A) = ∆{1,5,6}(φ(A)).

Thus, every Dyck matrix produces a positroid.
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Unit Interval Positroids

Definition (Unit Interval Positroid)

For D ∈ Dn, the positroid on [2n] represented by φ(D) is called a unit
interval positroid. Let Pn denote the set of all unit interval positroids
on [2n].

Theorem (C-G)

For every n, the following sequence of maps is bijective:

Un → Dn → Pn.

Unit Interval Orders ↔ Dyck matrices ↔ Unit Interval Positroids

Corollary: There are 1
n+1

(
2n
n

)
unit interval positroids on [2n].
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Section 3

Decorated Permutations and Unit Interval Positroids
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Decorated Permutations

Definition (Decorated Permutation)

A decorated permutation of [n] is an element π ∈ Sn whose fixed points
j are marked either “clockwise”(denoted by π(j) = j) or

“counterclockwise” (denoted by π(j) = j).

Example:

263̄145 = (12654)(3̄)
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Example of a Decorated Permutation

263̄145 = (12654)(3̄)
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Decorated Permutations of Unit Interval
Positroids

Theorem (C-G)

Number the n vertical steps of the Dyck path of D ∈ Dn from bottom to
top with 1, . . . , n and the n horizontal steps from left to right with
n+ 1, . . . , 2n. Then the decorated permutation of the unit interval
positroid induced by D is obtained by reading the Dyck path of D in the
northwest direction.
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Decorated Permutation from Dyck Matrix

Example: The decorated permutation π associated to the positroid
represented by the 5× 5 Dyck matrix D

1 0 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 1 1 1 1

0
BBBBBB@

1
CCCCCCA

8

→
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1 1 1 1 1
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BBBBBB@

1
CCCCCCA

8

→

can be read from the Dyck path of D, obtaining

π = (1, 2, 10, 3, 9, 4, 8, 7, 5, 6).
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Decorated Permutations of Unit Interval
Positroids

Theorem (C-G)

Decorated permutations associated to unit interval positroids on [2n]
are 2n-cycles (1 j1 . . . j2n−1) satisfying the following two conditions:

1 in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in
increasing order while the elements n+ 1, . . . , 2n appear in
decreasing order;

2 for every 1 ≤ k ≤ 2n− 1, the set {1, j1, . . . , jk} contains at least as
many elements of the set {1, . . . , n} as elements of the set
{n+ 1, . . . , 2n}.

The decorated permutation of a unit interval positroid
is a Dyck path.
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Section 4

Decorated Permutations and Interval Representations
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Canonical Interval Representation

Proposition (C-G)

Let P be a unit interval order on [n]. Then the labeling of P preserves
altitude if and only if there exists an interval representation
{[qi, qi + 1] | 1 ≤ i ≤ n} of P such that q1 < · · · < qn.

Example:
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Decorated Permutation Read from Canonical
Interval Representation

Theorem (C-G)

Labeling the left and right endpoints of the intervals [qi, qi + 1] by n+ i
and n+ 1− i, respectively, we obtain the decorated permutation of the
positroid induced by P by reading the label set {1, . . . , 2n} from the real
line from right to left.

Example: The decorated permutation (1, 12, 2, 3, 11, 10, 4, 5, 9, 6, 8, 7)
is obtained by reading the labels from right to left.
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Intervals to Positroids and back

DYCK PATHS AND POSITROIDS FROM UNIT INTERVAL ORDERS 3

permutation of the unit interval positroid induced by P by reading the semiorder (Dyck)
path in northwest direction.

Example 1.2. The vertical assignment on the left of Figure 2 shows a set I of unit
intervals along with a canonically labeled unit interval order P on [5] describing the
order relations among the intervals in I (see Theorem 2.2). The vertical assignment on
the right illustrates the recipe given in Theorem 1.1 to read the decorated permutation
⇡ = (1 2 10 3 9 4 8 7 5 6) associated to the unit interval positroid induced by P
directly from the antiadjacency matrix. Note that the decorated permutation ⇡ is a
10-cycle satisfying conditions (1) and (2) of our main theorem. The solid and dashed
assignment signs represent functions that we shall introduce later.

Figure 2. Following the solid assignments: unit interval representation
I, its unit interval order P , the antiadjacency matrix '(P ), and the
semiorder (Dyck) path of '(P ) showing the decorated permutation ⇡.

This paper is organized as follows. In Section 2 we establish the notation and
formally present the fundamental concepts and objects used throughout this paper.
Then, in Section 3, we formally introduce canonical labelings and canonical interval
representations of unit interval orders. Also, we use canonical labelings to exhibit an
explicit bijection from the set of non-isomorphic unit interval orders on [n] to the set
of n ⇥ n Dyck matrices. Section 4 is dedicated to the description of the unit interval
positroids via their decorated permutations, which yields the direct implication of the
main theorem. Finally, in Section 5, we show how to read the decorated permutation
of a unit interval positroid from either an antiadjacency matrix or a canonical interval
representation of the corresponding unit interval order, which allows us to complete
the proof of the main theorem.

(1 2 10 3 9 4 8 7 5 6), , , , , , , , ,
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Thank you!

email: a.chavez@berkeley.edu

Reference: A. Chavez and F. Gotti. Dyck Paths and Positroids from
Unit Interval Orders. https://arxiv.org/abs/1611.09279.
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What’s in a name?

(1, 2, 3)

1

(3, 4, 5)
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