Dyck Paths and Positroids from Unit Interval Orders

Anastasia Chavez
Felix Gotti

UC Berkeley
Algebraic Combinatorixx 2

May 16, 2017

A Pictorial Guide

Outline

(1) Unit Interval Orders
(2) Unit Interval Positroids
(3) Decorated Permutations
(4) Interval Representations

Section 1

Unit Interval Orders

Unit Interval Orders

Definition

A poset P is a unit interval order if there exists a bijective map $i \mapsto\left[q_{i}, q_{i}+1\right]$ from P to $S=\left\{\left[q_{i}, q_{i}+1\right] \mid 1 \leq i \leq n, q_{i} \in \mathbb{R}\right\}$ such that for distinct $i, j \in P, i<_{P} j$ if and only if $q_{i}+1<q_{j}$. We then say that S is an interval representation of P.

Unit Interval Orders

Definition

A poset P is a unit interval order if there exists a bijective map $i \mapsto\left[q_{i}, q_{i}+1\right]$ from P to $S=\left\{\left[q_{i}, q_{i}+1\right] \mid 1 \leq i \leq n, q_{i} \in \mathbb{R}\right\}$ such that for distinct $i, j \in P, i<_{P} j$ if and only if $q_{i}+1<q_{j}$. We then say that S is an interval representation of P.

Example:

Subposets of Unit Interval Orders

- A subset Q is an induced subposet of P if there is an injective map $f: Q \rightarrow P$ such that $r<_{Q} s$ if and only if $f(r)<_{P} f(s)$.
- P is a Q-free poset if P does not contain any induced subposet isomorphic to Q.

Subposets of Unit Interval Orders

- A subset Q is an induced subposet of P if there is an injective map $f: Q \rightarrow P$ such that $r<_{Q} s$ if and only if $f(r)<_{P} f(s)$.
- P is a Q-free poset if P does not contain any induced subposet isomorphic to Q.

Theorem (Scott-Suppes)

A poset is a unit interval order if and only if it is simultaneously $(\mathbf{3}+\mathbf{1})$-free and $(\mathbf{2}+\mathbf{2})$-free.

Subposets of Unit Interval Orders

- A subset Q is an induced subposet of P if there is an injective map $f: Q \rightarrow P$ such that $r<_{Q} s$ if and only if $f(r)<_{P} f(s)$.
- P is a Q-free poset if P does not contain any induced subposet isomorphic to Q.

Theorem (Scott-Suppes)

A poset is a unit interval order if and only if it is simultaneously $(\mathbf{3}+\mathbf{1})$-free and $(\mathbf{2}+\mathbf{2})$-free.

Natural and Altitude Preserving Labelings

Let P be a poset on $[n]$.

- P is naturally labeled if $i<_{P} j$ implies that $i<j$ as integers.
- A labeling on P is altitude preserving if $\alpha(i)<\alpha(j)$ implies $i<j$ (as integers), where $\alpha(i)=\left|\Lambda_{i}\right|-\left|\mathrm{V}_{i}\right|$ is called the altitude of i.

Figure: A poset with an altitude preserving labeling on [6].

SEction 2

Positroids

Matroids

Definition (Matroid)

Let E be a finite set, and let \mathcal{B} be a nonempty collection of subsets, called bases, of E. The pair $M=(E, \mathcal{B})$ is a matroid if they satisfy the Basis Exchange Axiom:

- for all $A, B \in \mathcal{B}$ and $a \in A \backslash B$, there exists $b \in B \backslash A$ such that $(A \backslash\{a\}) \cup\{b\} \in \mathcal{B}$.

Example: Given the bases

$$
\mathcal{B}=\{\{2,4,6\},\{2,5,6\}\}
$$

then the pair $M=([6], \mathcal{B})$ a matroid.

Matroid Example

Consider the 3×6 real matrix

$$
X=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Matroid Example

Consider the 3×6 real matrix

$$
X=\left(\begin{array}{rrrrrr}
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- Label the columns 1 through 6 and notice X has rank 3 .

Matroid Example

Consider the 3×6 real matrix

$$
X=\left(\begin{array}{rrrrrr}
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- Label the columns 1 through 6 and notice X has rank 3 .
- Then $B \in \mathcal{B}$ is a set of 3 columns that span \mathbb{R}^{3}.

Matroid Example

Consider the 3×6 real matrix

$$
X=\left(\begin{array}{rrrrrr}
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- Label the columns 1 through 6 and notice X has rank 3 .
- Then $B \in \mathcal{B}$ is a set of 3 columns that span \mathbb{R}^{3}.
- The matroid represented by X is $M=([6], \mathcal{B})$ with bases

$$
\mathcal{B}=\{\{2,4,6\},\{2,5,6\}\} .
$$

Positroids

Definition: A matroid $([n], \mathcal{B})$ of rank d is representable if there is $X \in M_{d \times n}(\mathbb{R})$ with columns X_{1}, \ldots, X_{n} such that $B \subseteq[n]$ belongs to \mathcal{B} iff $\left\{X_{i} \mid i \in B\right\}$ is a basis for \mathbb{R}^{d}.

Definition (Positroid)

A positroid on $[n]$ of rank d is a matroid that can be represented by a matrix in $\mathrm{Mat}_{d, n}^{+}$.

Notation: Let Mat ${ }_{d, n}^{\geq 0}$ denote the set of all full rank $d \times n$ real matrices with nonnegative maximal minors.

Positroids

Example: Recall the 3×6 real matrix

$$
X=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- All maximal minors are nonnegative, thus $X \in \operatorname{Mat}_{3,6}^{+}$.
- The matroid $M=([6], \mathcal{B})$ represented by X is a positroid.

Dyck Matrices

Definition (Dyck Matrix)

A binary square matrix is said to be a Dyck matrix if its zero entries are above the main diagonal and its one entries are separated from its zero entries by a Dyck path supported on the main diagonal. We let \mathcal{D}_{n} denote the set of Dyck matrices of size n.

Dyck Matrices

Definition (Dyck Matrix)

A binary square matrix is said to be a Dyck matrix if its zero entries are above the main diagonal and its one entries are separated from its zero entries by a Dyck path supported on the main diagonal. We let \mathcal{D}_{n} denote the set of Dyck matrices of size n.

A Dyck path

Dyck Matrices

Example: A 6×6 Dyck matrix and its Dyck path:

$$
\left(\begin{array}{ll:llll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Observations:

- Every Dyck matrix is totally nonnegative.
- $\left|\mathcal{D}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$, the n-th Catalan number.

Note: A square matrix is totally nonnegative if all its minors are ≥ 0.

Antiadjacency Matrices of Labeled Posets

Definition (Antiadjacency Matrix)

If P is a poset [n], then the antiadjacency matrix of P is the $n \times n$ binary matrix $A=\left(a_{i, j}\right)$ with $a_{i, j}=0$ iff $i \neq j$ and $i<_{P} j$.

Proposition (Skandera-REEd)

An n-labeled unit interval order has an altitude preserving labeling if and only if its antiadjacency matrix is a Dyck matrix.

Antiadjacency Matrices of Labeled Posets

Definition (Antiadjacency Matrix)

If P is a poset $[n]$, then the antiadjacency matrix of P is the $n \times n$ binary matrix $A=\left(a_{i, j}\right)$ with $a_{i, j}=0$ iff $i \neq j$ and $i<_{P} j$.

Proposition (Skandera-REEd)

An n-labeled unit interval order has an altitude preserving labeling if and only if its antiadjacency matrix is a Dyck matrix.

Example:

Postnikov's Map

Lemma (Postnikov)

For an $n \times n$ real matrix $A=\left(a_{i, j}\right)$, consider the $n \times 2 n$ matrix $B=\phi(A)$, where

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{n-1,1} & \ldots & a_{n-1, n} \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right) \stackrel{\phi}{\mapsto}\left(\begin{array}{ccccccc}
1 & \ldots & 0 & 0 & \pm a_{n, 1} & \ldots & \pm a_{n, n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & -a_{2,1} & \ldots & -a_{2, n} \\
0 & \ldots & 0 & 1 & a_{1,1} & \ldots & a_{1, n}
\end{array}\right)
$$

Under this correspondence, $\Delta_{I, J}(A)=\Delta_{(n+1-[n] \backslash I) \cup(n+J)}(B)$ for all $I, J \subseteq[n]$ satisfying $|I|=|J|$ (here $\Delta_{I, J}(A)$ is the minor of A determined by the rows I and columns J, and $\Delta_{K}(B)$ is the maximal minor of B determined by columns K).

Postnikov's Map

Lemma (Postnikov)

For an $n \times n$ real matrix $A=\left(a_{i, j}\right)$, consider the $n \times 2 n$ matrix $B=\phi(A)$, where

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{n-1,1} & \ldots & a_{n-1, n} \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right) \stackrel{\phi}{\mapsto}\left(\begin{array}{ccccccc}
1 & \ldots & 0 & 0 & \pm a_{n, 1} & \ldots & \pm a_{n, n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & -a_{2,1} & \ldots & -a_{2, n} \\
0 & \ldots & 0 & 1 & a_{1,1} & \ldots & a_{1, n}
\end{array}\right) .
$$

Under this correspondence, $\Delta_{I, J}(A)=\Delta_{(n+1-[n] \backslash I) \cup(n+J)}(B)$ for all $I, J \subseteq[n]$ satisfying $|I|=|J|$ (here $\Delta_{I, J}(A)$ is the minor of A determined by the rows I and columns J, and $\Delta_{K}(B)$ is the maximal minor of B determined by columns K).

This allows us to associate a positroid to each Dyck matrix

Postnikov's Map

Example: By Lemma, the Dyck matrix A produces the postroid represented by $\phi(A)$:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \mapsto\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Postnikov's Map

Example: By Lemma, the Dyck matrix A produces the postroid represented by $\phi(A)$:
where the minors of A correspond with maximal minors of $\phi(A)$:
For row index set $I=\{1,2\}$ and column index set $J=\{2,3\}$, we have $\Delta_{I, J}(A)=\Delta_{\{1,5,6\}}(\phi(A))$.

Postnikov's Map

Example: By Lemma, the Dyck matrix A produces the postroid represented by $\phi(A)$:
where the minors of A correspond with maximal minors of $\phi(A)$:
For row index set $I=\{1,2\}$ and column index set $J=\{2,3\}$, we have $\Delta_{I, J}(A)=\Delta_{\{1,5,6\}}(\phi(A))$.
Thus, every Dyck matrix produces a positroid.

Unit Interval Positroids

Definition (Unit Interval Positroid)

For $D \in \mathcal{D}_{n}$, the positroid on [2n] represented by $\phi(D)$ is called a unit interval positroid. Let \mathcal{P}_{n} denote the set of all unit interval positroids on $[2 n]$.

Unit Interval Positroids

Definition (Unit Interval Positroid)

For $D \in \mathcal{D}_{n}$, the positroid on [2n] represented by $\phi(D)$ is called a unit interval positroid. Let \mathcal{P}_{n} denote the set of all unit interval positroids on $[2 n]$.

Theorem (C-G)

For every n, the following sequence of maps is bijective:

$$
\mathcal{U}_{n} \rightarrow \mathcal{D}_{n} \rightarrow \mathcal{P}_{n}
$$

Unit Interval Positroids

Definition (Unit Interval Positroid)

For $D \in \mathcal{D}_{n}$, the positroid on [2n] represented by $\phi(D)$ is called a unit interval positroid. Let \mathcal{P}_{n} denote the set of all unit interval positroids on $[2 n]$.

Theorem (C-G)

For every n, the following sequence of maps is bijective:

$$
\mathcal{U}_{n} \rightarrow \mathcal{D}_{n} \rightarrow \mathcal{P}_{n}
$$

Unit Interval Orders \leftrightarrow Dyck matrices \leftrightarrow Unit Interval Positroids
Corollary: There are $\frac{1}{n+1}\binom{2 n}{n}$ unit interval positroids on $[2 n]$.

Section 3

Decorated Permutations and Unit Interval Positroids

Decorated Permutations

Definition (Decorated Permutation)

A decorated permutation of $[n]$ is an element $\pi \in S_{n}$ whose fixed points j are marked either "clockwise" (denoted by $\pi(j)=\underline{j}$) or "counterclockwise" (denoted by $\pi(j)=\bar{j})$.

Example:

$$
26 \overline{3} 145=(12654)(\overline{3})
$$

Example of a Decorated Permutation

$$
26 \overline{3} 145=(12654)(\overline{3})
$$

Example of a Decorated Permutation

$$
26 \overline{3} 145=(12654)(\overline{3})
$$

Decorated Permutations of Unit Interval Positroids

Theorem (C-G)

Number the n vertical steps of the Dyck path of $D \in \mathcal{D}_{n}$ from bottom to top with $1, \ldots, n$ and the n horizontal steps from left to right with $n+1, \ldots, 2 n$. Then the decorated permutation of the unit interval positroid induced by D is obtained by reading the Dyck path of D in the northwest direction.

Decorated Permutation from Dyck Matrix

Example: The decorated permutation π associated to the positroid represented by the 5×5 Dyck matrix D

$$
\left(\begin{array}{ccccc}
\substack{1 \\
0} & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Decorated Permutation from Dyck Matrix

Example: The decorated permutation π associated to the positroid represented by the 5×5 Dyck matrix D

Decorated Permutation from Dyck Matrix

Example: The decorated permutation π associated to the positroid represented by the 5×5 Dyck matrix D

Decorated Permutation from Dyck Matrix

Example: The decorated permutation π associated to the positroid represented by the 5×5 Dyck matrix D

$$
\left(\begin{array}{ccccc}
\hdashline 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}\right)
$$

can be read from the Dyck path of D, obtaining

$$
\pi=(1,2,10,3,9,4,8,7,5,6)
$$

Decorated Permutations of Unit Interval Positroids

Theorem (C-G)

Decorated permutations associated to unit interval positroids on $[2 n]$ are $2 n$-cycles $\left(1 j_{1} \ldots j_{2 n-1}\right)$ satisfying the following two conditions:
(1) in the sequence $\left(1, j_{1}, \ldots, j_{2 n-1}\right)$ the elements $1, \ldots, n$ appear in increasing order while the elements $n+1, \ldots, 2 n$ appear in decreasing order;
(2) for every $1 \leq k \leq 2 n-1$, the set $\left\{1, j_{1}, \ldots, j_{k}\right\}$ contains at least as many elements of the set $\{1, \ldots, n\}$ as elements of the set $\{n+1, \ldots, 2 n\}$.

Decorated Permutations of Unit Interval Positroids

Theorem (C-G)

Decorated permutations associated to unit interval positroids on $[2 n]$ are $2 n$-cycles $\left(1 j_{1} \ldots j_{2 n-1}\right)$ satisfying the following two conditions:
(1) in the sequence $\left(1, j_{1}, \ldots, j_{2 n-1}\right)$ the elements $1, \ldots, n$ appear in increasing order while the elements $n+1, \ldots, 2 n$ appear in decreasing order;
(2) for every $1 \leq k \leq 2 n-1$, the set $\left\{1, j_{1}, \ldots, j_{k}\right\}$ contains at least as many elements of the set $\{1, \ldots, n\}$ as elements of the set $\{n+1, \ldots, 2 n\}$.

The decorated permutation of a unit interval positroid is a Dyck path.

SEction 4

Decorated Permutations and Interval Representations

Canonical Interval Representation

Proposition (C-G)

Let P be a unit interval order on $[n]$. Then the labeling of P preserves altitude if and only if there exists an interval representation $\left\{\left[q_{i}, q_{i}+1\right] \mid 1 \leq i \leq n\right\}$ of P such that $q_{1}<\cdots<q_{n}$.

Example:

Decorated Permutation Read from Canonical Interval Representation

Theorem (C-G)

Labeling the left and right endpoints of the intervals $\left[q_{i}, q_{i}+1\right]$ by $n+i$ and $n+1-i$, respectively, we obtain the decorated permutation of the positroid induced by P by reading the label set $\{1, \ldots, 2 n\}$ from the real line from right to left.

Example: The decorated permutation (1, 12, 2, 3, 11, 10, 4, 5, 9, 6, 8, 7) is obtained by reading the labels from right to left.

Intervals to Positroids and back

Thank you!

email: a.chavez@berkeley.edu

Reference: A. Chavez and F. Gotti. Dyck Paths and Positroids from Unit Interval Orders. https://arxiv.org/abs/1611.09279.

Acknowledgments:

Thank you to Dr. Federico Ardila and Dr. Lauren Williams for their ongoing support.

Special thanks to Alejandro Morales for suggesting the question that motivated this project.

What's in A name?

$(1,2,3)$

$(3,4,5)$

