## DYCK PATHS AND POSITROIDS FROM UNIT INTERVAL ORDERS

Anastasia Chavez Felix Gotti

UC Berkeley

Algebraic Combinatorixx 2

May 16, 2017

ANASTASIA CHAVEZ FELIX GOTTI

## A PICTORIAL GUIDE



#### OUTLINE



- **2** Unit Interval Positroids
- **3** Decorated Permutations
- **4** INTERVAL REPRESENTATIONS



## Unit Interval Orders

ANASTASIA CHAVEZ FELIX GOTTI

Dyck Paths and Positroids from Unit Interval Orders

-

ъ

3.5

# UNIT INTERVAL ORDERS

#### DEFINITION

A poset P is a unit interval order if there exists a bijective map  $i \mapsto [q_i, q_i + 1]$  from P to  $S = \{[q_i, q_i + 1] \mid 1 \le i \le n, q_i \in \mathbb{R}\}$  such that for distinct  $i, j \in P, i <_P j$  if and only if  $q_i + 1 < q_j$ . We then say that S is an interval representation of P.

# UNIT INTERVAL ORDERS

#### DEFINITION

A poset P is a unit interval order if there exists a bijective map  $i \mapsto [q_i, q_i + 1]$  from P to  $S = \{[q_i, q_i + 1] \mid 1 \le i \le n, q_i \in \mathbb{R}\}$  such that for distinct  $i, j \in P, i <_P j$  if and only if  $q_i + 1 < q_j$ . We then say that S is an interval representation of P.

#### Example:



## SUBPOSETS OF UNIT INTERVAL ORDERS

- A subset Q is an *induced* subposet of P if there is an injective map  $f: Q \to P$  such that  $r <_Q s$  if and only if  $f(r) <_P f(s)$ .
- *P* is a *Q*-free poset if *P* does not contain any induced subposet isomorphic to *Q*.

## SUBPOSETS OF UNIT INTERVAL ORDERS

- A subset Q is an *induced* subposet of P if there is an injective map  $f: Q \to P$  such that  $r <_Q s$  if and only if  $f(r) <_P f(s)$ .
- P is a Q-free poset if P does not contain any induced subposet isomorphic to Q.

#### THEOREM (SCOTT-SUPPES)

A poset is a unit interval order if and only if it is simultaneously (3+1)-free and (2+2)-free.

## SUBPOSETS OF UNIT INTERVAL ORDERS

- A subset Q is an *induced* subposet of P if there is an injective map  $f: Q \to P$  such that  $r <_Q s$  if and only if  $f(r) <_P f(s)$ .
- *P* is a *Q*-free poset if *P* does not contain any induced subposet isomorphic to *Q*.

#### THEOREM (SCOTT-SUPPES)

A poset is a unit interval order if and only if it is simultaneously (3+1)-free and (2+2)-free.



Anastasia Chavez Felix Gotti

DYCK PATHS AND POSITROIDS FROM UNIT INTERVAL ORDERS

NATURAL AND ALTITUDE PRESERVING LABELINGS

Let P be a poset on [n].

- P is naturally labeled if  $i <_P j$  implies that i < j as integers.
- A labeling on P is altitude preserving if  $\alpha(i) < \alpha(j)$  implies i < j (as integers), where  $\alpha(i) = |\Lambda_i| |V_i|$  is called the altitude of *i*.



FIGURE: A poset with an altitude preserving labeling on [6].

ANASTASIA CHAVEZ FELIX GOTTI



## Positroids

ANASTASIA CHAVEZ FELIX GOTTI

A B + 
 A B +
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(< ≥) < ≥)</p>

ъ

### MATROIDS

#### **DEFINITION** (MATROID)

Let *E* be a finite set, and let  $\mathcal{B}$  be a nonempty collection of subsets, called *bases*, of *E*. The pair  $M = (E, \mathcal{B})$  is a *matroid* if they satisfy the **Basis Exchange Axiom**:

• for all  $A, B \in \mathcal{B}$  and  $a \in A \setminus B$ , there exists  $b \in B \setminus A$  such that  $(A \setminus \{a\}) \cup \{b\} \in \mathcal{B}$ .

**Example:** Given the bases

$$\mathcal{B} = \{\{2, 4, 6\}, \{2, 5, 6\}\},\$$

then the pair  $M = ([6], \mathcal{B})$  a matroid.

Consider the  $3 \times 6$  real matrix

$$X = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

ANASTASIA CHAVEZ FELIX GOTTI

Consider the  $3 \times 6$  real matrix

$$X = \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

• Label the columns 1 through 6 and notice X has rank 3.

B • • B •

Consider the  $3 \times 6$  real matrix

$$X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

- Label the columns 1 through 6 and notice X has rank 3.
- Then  $B \in \mathcal{B}$  is a set of 3 columns that span  $\mathbb{R}^3$ .

Consider the  $3 \times 6$  real matrix

$$X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

- Label the columns 1 through 6 and notice X has rank 3.
- Then  $B \in \mathcal{B}$  is a set of 3 columns that span  $\mathbb{R}^3$ .
- The matroid represented by X is  $M = ([6], \mathcal{B})$  with bases

$$\mathcal{B} = \{\{2, 4, 6\}, \{2, 5, 6\}\}.$$

Anastasia Chavez Felix Gotti

### Positroids

**Definition:** A matroid  $([n], \mathcal{B})$  of rank d is *representable* if there is  $X \in M_{d \times n}(\mathbb{R})$  with columns  $X_1, \ldots, X_n$  such that  $B \subseteq [n]$  belongs to  $\mathcal{B}$  iff  $\{X_i \mid i \in B\}$  is a basis for  $\mathbb{R}^d$ .

#### **DEFINITION** (POSITROID)

A *positroid* on [n] of rank d is a matroid that can be represented by a matrix in  $Mat^+_{d,n}$ .

**Notation:** Let  $\operatorname{Mat}_{d,n}^{\geq 0}$  denote the set of all full rank  $d \times n$  real matrices with nonnegative maximal minors.

#### Positroids

**Example:** Recall the  $3 \times 6$  real matrix

$$X = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

- All maximal minors are nonnegative, thus  $X \in Mat_{3.6}^+$ .
- The matroid  $M = ([6], \mathcal{B})$  represented by X is a positroid.

Anastasia Chavez Felix Gotti

## DYCK MATRICES

### DEFINITION (DYCK MATRIX)

A binary square matrix is said to be a *Dyck matrix* if its zero entries are above the main diagonal and its one entries are separated from its zero entries by a Dyck path supported on the main diagonal. We let  $\mathcal{D}_n$  denote the set of Dyck matrices of size n.

## DYCK MATRICES

### DEFINITION (DYCK MATRIX)

A binary square matrix is said to be a *Dyck matrix* if its zero entries are above the main diagonal and its one entries are separated from its zero entries by a Dyck path supported on the main diagonal. We let  $\mathcal{D}_n$  denote the set of Dyck matrices of size n.

A Dyck path



## DYCK MATRICES

**Example:** A  $6 \times 6$  Dyck matrix and its Dyck path:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

#### **Observations:**

- Every Dyck matrix is totally nonnegative.
- $|\mathcal{D}_n| = \frac{1}{n+1} {\binom{2n}{n}}$ , the *n*-th Catalan number.

Note: A square matrix is *totally nonnegative* if all its minors are  $\geq 0$ .

## ANTIADJACENCY MATRICES OF LABELED POSETS

#### DEFINITION (ANTIADJACENCY MATRIX)

If P is a poset [n], then the antiadjacency matrix of P is the  $n \times n$  binary matrix  $A = (a_{i,j})$  with  $a_{i,j} = 0$  iff  $i \neq j$  and  $i <_P j$ .

#### PROPOSITION (SKANDERA-REED)

An n-labeled unit interval order has an altitude preserving labeling if and only if its antiadjacency matrix is a Dyck matrix.

## ANTIADJACENCY MATRICES OF LABELED POSETS

#### DEFINITION (ANTIADJACENCY MATRIX)

If P is a poset [n], then the antiadjacency matrix of P is the  $n \times n$  binary matrix  $A = (a_{i,j})$  with  $a_{i,j} = 0$  iff  $i \neq j$  and  $i <_P j$ .

#### PROPOSITION (SKANDERA-REED)

An n-labeled unit interval order has an altitude preserving labeling if and only if its antiadjacency matrix is a Dyck matrix.

Example:



#### LEMMA (POSTNIKOV)

For an  $n \times n$  real matrix  $A = (a_{i,j})$ , consider the  $n \times 2n$  matrix  $B = \phi(A)$ , where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}$$

Under this correspondence,  $\Delta_{I,J}(A) = \Delta_{(n+1-[n]\setminus I)\cup(n+J)}(B)$  for all  $I, J \subseteq [n]$  satisfying |I| = |J| (here  $\Delta_{I,J}(A)$  is the minor of A determined by the rows I and columns J, and  $\Delta_K(B)$  is the maximal minor of B determined by columns K).

### Lemma (Postnikov)

For an  $n \times n$  real matrix  $A = (a_{i,j})$ , consider the  $n \times 2n$  matrix  $B = \phi(A)$ , where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}$$

Under this correspondence,  $\Delta_{I,J}(A) = \Delta_{(n+1-[n]\setminus I)\cup(n+J)}(B)$  for all  $I, J \subseteq [n]$  satisfying |I| = |J| (here  $\Delta_{I,J}(A)$  is the minor of A determined by the rows I and columns J, and  $\Delta_K(B)$  is the maximal minor of B determined by columns K).

This allows us to associate a positroid to each Dyck matrix

**Example:** By Lemma, the Dyck matrix A produces the postroid represented by  $\phi(A)$ :

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A \qquad \qquad \phi(A)$$

A D > A D >

**Example:** By Lemma, the Dyck matrix A produces the postroid represented by  $\phi(A)$ :

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ \end{pmatrix}$$

$$A \qquad \phi(A)$$

where the minors of A correspond with maximal minors of  $\phi(A)$ :

For row index set  $I = \{1, 2\}$  and column index set  $J = \{2, 3\}$ , we have  $\Delta_{I,J}(A) = \Delta_{\{1,5,6\}}(\phi(A)).$ 

**Example:** By Lemma, the Dyck matrix A produces the postroid represented by  $\phi(A)$ :

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ \end{pmatrix}$$

$$A \qquad \phi(A)$$

where the minors of A correspond with maximal minors of  $\phi(A)$ :

For row index set  $I = \{1, 2\}$  and column index set  $J = \{2, 3\}$ , we have  $\Delta_{I,J}(A) = \Delta_{\{1,5,6\}}(\phi(A))$ .

Thus, every Dyck matrix produces a positroid.

## UNIT INTERVAL POSITROIDS

### DEFINITION (UNIT INTERVAL POSITROID)

For  $D \in \mathcal{D}_n$ , the positroid on [2n] represented by  $\phi(D)$  is called a *unit interval positroid*. Let  $\mathcal{P}_n$  denote the set of all unit interval positroids on [2n].

# UNIT INTERVAL POSITROIDS

### Definition (Unit Interval Positroid)

For  $D \in \mathcal{D}_n$ , the positroid on [2n] represented by  $\phi(D)$  is called a *unit interval positroid*. Let  $\mathcal{P}_n$  denote the set of all unit interval positroids on [2n].

THEOREM (C-G)

For every n, the following sequence of maps is bijective:

 $\mathcal{U}_n \to \mathcal{D}_n \to \mathcal{P}_n.$ 

Anastasia Chavez Felix Gotti

# UNIT INTERVAL POSITROIDS

### Definition (Unit Interval Positroid)

For  $D \in \mathcal{D}_n$ , the positroid on [2n] represented by  $\phi(D)$  is called a *unit interval positroid*. Let  $\mathcal{P}_n$  denote the set of all unit interval positroids on [2n].

#### THEOREM (C-G)

For every n, the following sequence of maps is bijective:

 $\mathcal{U}_n \to \mathcal{D}_n \to \mathcal{P}_n.$ 

Unit Interval Orders  $\leftrightarrow$  Dyck matrices  $\leftrightarrow$  Unit Interval Positroids

**Corollary:** There are  $\frac{1}{n+1}\binom{2n}{n}$  unit interval positroids on [2n].



## Decorated Permutations and Unit Interval Positroids

ANASTASIA CHAVEZ FELIX GOTTI

## DECORATED PERMUTATIONS

#### DEFINITION (DECORATED PERMUTATION)

A decorated permutation of [n] is an element  $\pi \in S_n$  whose fixed points j are marked either "clockwise" (denoted by  $\pi(j) = \underline{j}$ ) or "counterclockwise" (denoted by  $\pi(j) = \overline{j}$ ).

#### Example:

$$26\bar{3}145 = (12654)(\bar{3})$$

Anastasia Chavez Felix Gotti

## EXAMPLE OF A DECORATED PERMUTATION

 $26\bar{3}145 = (12654)(\bar{3})$ 

Anastasia Chavez Felix Gotti

## EXAMPLE OF A DECORATED PERMUTATION

 $26\bar{3}145 = (12654)(\bar{3})$ 



Anastasia Chavez Felix Gotti

# Decorated Permutations of Unit Interval Positroids

#### THEOREM (C-G)

Number the n vertical steps of the Dyck path of  $D \in \mathcal{D}_n$  from bottom to top with  $1, \ldots, n$  and the n horizontal steps from left to right with  $n + 1, \ldots, 2n$ . Then the decorated permutation of the unit interval positroid induced by D is obtained by reading the Dyck path of D in the northwest direction.

**Example:** The decorated permutation  $\pi$  associated to the positroid represented by the 5 × 5 Dyck matrix D



**Example:** The decorated permutation  $\pi$  associated to the positroid represented by the 5 × 5 Dyck matrix D



**Example:** The decorated permutation  $\pi$  associated to the positroid represented by the 5 × 5 Dyck matrix D



**Example:** The decorated permutation  $\pi$  associated to the positroid represented by the 5 × 5 Dyck matrix D



can be read from the Dyck path of D, obtaining

 $\pi = (1, 2, 10, 3, 9, 4, 8, 7, 5, 6).$ 

# Decorated Permutations of Unit Interval Positroids

### THEOREM (C-G)

Decorated permutations associated to unit interval positroids on [2n] are 2n-cycles  $(1 \ j_1 \ \dots \ j_{2n-1})$  satisfying the following two conditions:

- in the sequence  $(1, j_1, \ldots, j_{2n-1})$  the elements  $1, \ldots, n$  appear in increasing order while the elements  $n + 1, \ldots, 2n$  appear in decreasing order;
- for every 1 ≤ k ≤ 2n − 1, the set {1, j<sub>1</sub>,..., j<sub>k</sub>} contains at least as many elements of the set {1,...,n} as elements of the set {n + 1,..., 2n}.

# Decorated Permutations of Unit Interval Positroids

### THEOREM (C-G)

Decorated permutations associated to unit interval positroids on [2n] are 2n-cycles  $(1 \ j_1 \ \dots \ j_{2n-1})$  satisfying the following two conditions:

- in the sequence  $(1, j_1, \ldots, j_{2n-1})$  the elements  $1, \ldots, n$  appear in increasing order while the elements  $n + 1, \ldots, 2n$  appear in decreasing order;
- for every 1 ≤ k ≤ 2n − 1, the set {1, j<sub>1</sub>,..., j<sub>k</sub>} contains at least as
   many elements of the set {1,...,n} as elements of the set
   {n + 1,..., 2n}.

#### The decorated permutation of a unit interval positroid is a Dyck path.

A (10) A (10) A (10) A



## Decorated Permutations and Interval Representations

ANASTASIA CHAVEZ FELIX GOTTI

## CANONICAL INTERVAL REPRESENTATION

#### **PROPOSITION** (C-G)

Let P be a unit interval order on [n]. Then the labeling of P preserves altitude if and only if there exists an interval representation  $\{[q_i, q_i + 1] \mid 1 \leq i \leq n\}$  of P such that  $q_1 < \cdots < q_n$ .

#### Example:



# DECORATED PERMUTATION READ FROM CANONICAL INTERVAL REPRESENTATION

#### THEOREM (C-G)

Labeling the left and right endpoints of the intervals  $[q_i, q_i + 1]$  by n + iand n + 1 - i, respectively, we obtain the decorated permutation of the positroid induced by P by reading the label set  $\{1, \ldots, 2n\}$  from the real line from right to left.

**Example:** The decorated permutation (1, 12, 2, 3, 11, 10, 4, 5, 9, 6, 8, 7) is obtained by reading the labels from right to left.



### INTERVALS TO POSITROIDS AND BACK



### THANK YOU!

email: a.chavez@berkeley.edu

**Reference:** A. Chavez and F. Gotti. *Dyck Paths and Positroids from Unit Interval Orders*. https://arxiv.org/abs/1611.09279.

#### Acknowledgments:

Thank you to Dr. Federico Ardila and Dr. Lauren Williams for their ongoing support.

Special thanks to Alejandro Morales for suggesting the question that motivated this project.

## What's in a name?









(3, 4, 5)



-

ANASTASIA CHAVEZ FELIX GOTTI