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Classical q-binomial coefficient

Definition

The Gaussian polynomial or q-binomial is the familiar q-analogue
of the binomial coefficient given by[n

k

]
q

=
[n]q!

[k]q! · [n − k]q!
,

where [n]q = 1 + q + · · ·+ qn−1 and [n]q! = [1]q · [2]q · · · [n]q.
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Theorem (MacMahon)

The q-binomial coefficient has the following combinatorial
interpretation. [n

k

]
q

=
∑

w∈S(0n−k ,1k )

qinv(w),

where S(0n−k , 1k) denotes the set of all 0-1 permutations
consisting of n − k zeros and k ones, and for
w = w1w2 · · ·wn ∈ S(0n−k , 1k) the number of inversions is
inv(w) = |{(i , j) : i < j and wi > wj}|.
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Theorem (Fu–Reiner–Stanton–Thiem)[n
k

]
q

=
∑

w∈Ω(n,k)

qa(w)(1 + q)p(w), where Ω(n, k) is a subset of

S(0n−k , 1k) and (a(w), p(w)) is a bistatistic defined on Ω(n, k).
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Goal 1

Find compact q-(1 + q)-encodings of classical q-analogues.

Goal 2

Understand compact encodings of classical q-analogues via
enumerative, poset theoretic and topological viewpoints.

We do this for the q-Stirling numbers of the first and second kinds.
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Set partitions

Definition

A set partition of the n elements {1, 2, . . . , n} is a decomposition
of this set into mutually disjoint nonempty sets called blocks.

Example

125/36/47 is a set partition of 7 elements into 3 blocks.

Theorem

The Stirling number of the second kind S(n, k) counts the number
of set partitions of n elements into k blocks.
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Restricted growth words

Definition

Let π = B1/B2/ · · · /Bk be a set partition of {1, . . . , n} in
standard form, where the blocks are arranged such that
min(B1) < min(B2) < · · · < min(Bn). We denote the set of
all partitions of {1, . . . , n} by Πn.

Given a partition π ∈ Πn, we encode it using a restricted
growth word w(π) = w1 · · ·wn, where wi = j if the element i
occurs in the j-th block Bj of π.

Let R(n, k) denote the set of all RG -words of length n with
maximum letter k.
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Example

The partition π = 125/36/47 has RG -word w = 1123123.

Restricted growth words are also known as restricted growth
functions. They have been studied by Hutchinson, Milne and Rota.
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q-Stirling numbers of the 2nd kind

Definition

The q-analogue of the Stirling number of the second kind is given
by the recurrence formula

Sq[n, k] = Sq[n − 1, k − 1] + [k]qSq[n − 1, k], for 0 ≤ k ≤ n ,

where Sq[n, 0] = δn,0. Setting q = 1 gives the familiar Stirling
number of the second kind S(n, k) which enumerates the number
of π ∈ Πn with exactly k blocks.
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Definition

For w = w1 · · ·wn ∈ R(n, k), define wt(w) = Πn
i=1 wt(wi ), where

wt(w1) = 1 and for 2 ≤ i ≤ n, we have

wt(wi ) =

{
qwi−1 if wi ≤ max{w1, . . . ,wi−1},
1 if wi > max{w1, . . . ,wi−1}.
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Example

Partition RG -word w wt(w)

1/234 1222 1 · 1 · q · q = q2

12/34 1122 1 · 1 · 1 · q = q

13/24 1212 1 · 1 · 1 · q = q

14/23 1221 1 · 1 · q · 1 = q

134/2 1211 1 · 1 · 1 · 1 = 1

124/3 1121 1 · 1 · 1 · 1 = 1

123/4 1112 1 · 1 · 1 · 1 = 1

Using RG -words, we can compute that Sq[4, 2] = q2 + 3q + 3.
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Lemma

The q-Stirling number of the second kind Sq[n, k] is given by

Sq[n, k] =
∑

w∈R(n,k)

wt(w).
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Allowable RG -words

Definition

An allowable RG -word w is of the form

w = u1 · 2 · u2 · 4 · u3 · 6 · u4 · · · ,

where u2i−1 is a word on the alphabet {1, 3, . . . , 2i − 1}.
Denote the set of all allowable RG -words from R(n, k) by
A(n, k).

For an allowable word w ∈ A(n, k), we give it a new weight
wt′(w) = Πn

i=1 wt′(wi ), where wt′(w1) = 1 and for 2 ≤ i ≤ n,

wt′(wi ) =


qwi−1 · (1 + q) if wi < max{w1, . . . ,wi−1} ,
qwi−1 if wi = max{w1, . . . ,wi−1} ,
1 if wi > max{w1, . . . ,wi−1} .
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The example A(4, 2)

Partition RG -word w wt(w) Allowed? wt′(w)

1/234 1222 1 · 1 · q · q = q2 No N/A

12/34 1122 1 · 1 · 1 · q = q No N/A

13/24 1212 1 · 1 · 1 · q = q No N/A

14/23 1221 1 · 1 · q · 1 = q No N/A

134/2 1211 1 · 1 · 1 · 1 = 1 Yes (q + 1)2

124/3 1121 1 · 1 · 1 · 1 = 1 Yes (q + 1)

123/4 1112 1 · 1 · 1 · 1 = 1 Yes 1

For the allowable words, we have

(q + 1)2 + (q + 1) + 1 = q2 + 3q + 3
= Sq[4, 2] .
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Theorem (Cai–Readdy)

Sq[n, k] =
∑

w∈A(n,k)

wt′(w) =
∑

w∈A(n,k)

qA(w) · (1 + q)B(w).
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Stembridge’s q = −1 phenomenon

If we set q = −1 in Sq[n, k], then (q + 1) will become 0, and we
are left with words that are of the form

π = u1 · 2 · u3 · 4 · u5 · 6 · · · ,

where u2i−1 is a word which only uses the letter 2i − 1. We call
such words unmatched words, and we have the following

Lemma (Cai–Readdy)

The number of all unmatched words in A(n, k) is(
n − 1− bk/2c
b(k − 1)/2c

)
.
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Stirling poset of the second kind Π(n, k)

Definition

Let Π(n, k) denote the poset with all the elements from R(n, k)
and u ≺ w if w = u1 · · · ui−1(ui + 1)ui+1 · · · un for some index i .
Also see that if u ≺ w , then wt(w) = q · wt(u). We call this poset
the Stirling poset of the second kind.
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12333

12233 12323 12332

11233 12223 12232 12313 12322 1233112133

11223 11232 12123 12213 12231 12312 1232112132

11123 11213 11231 12113 12131 12311

Figure: The Stirling poset of the second kind Π(5, 3).
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Let’s come back to the (1 + q)n.

This is the q-analogue of 2n.

2n is the number of subsets of an n-element set!
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Theorem (Cai–Readdy)

The Stirling poset of the second kind Π(n, k) can be decomposed
into disjoint union of Boolean intervals

Π(n, k) =
⋃
·

w∈A(n,k)

[w , α(w)].

Furthermore, if an allowable word w ∈ A(n, k) has weight
wt′(w) = qi · (1 + q)j , then the rank of the element w is i and the
interval [w , α(w)] is isomorphic to the Boolean algebra on j
elements.
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Constructing a Boolean algebra

12311343

12321343 12312343 12311344

12322343 12321344 12312344

12322344
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12333

12233 12323 12332

11233 12223 12232 12313 12322 1233112133
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Figure: The decomposition of the poset Π(5, 3) into Boolean algebras.
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Definition

A partial matching on a poset P is a matching on the underlying
graph of the Hasse diagram of P, that is, a subset M ⊆ P × P
satisfying the following.

1 The ordered pair (a, b) ∈ M implies a ≺ b.

2 Each element a ∈ P belongs to at most one element in M.

When (a, b) ∈ M, we write u(a) = b. A partial matching on P is
acyclic if there does not exist a cycle

a1 ≺ u(a1) � a2 ≺ u(a2) � · · · � an ≺ u(an) � a1

with n ≥ 2, and the elements a1, a2, . . . , an are distinct.

An acyclic matching on a poset is also called a discrete Morse
matching.
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Figure: The matching on the poset Π(5, 3).
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Theorem (Cai–Readdy)

This matching on Π(n, k) is an acyclic matching.
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Algebraic complex

Definition

Let P be a graded poset and Wi denote the rank i elements. We
say the poset P supports a chain complex (C , ∂) of F-vector space
Ci if each Ci has basis indexed by the rank i elements Wi and
∂ : Wi −→Wi−1 is a boundary map. Furthermore, for x ∈Wi and
y ∈Wi−1 the coefficient ∂x ,y of y in ∂i (x) is zero unless y <P x in
the poset.
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Topological q = −1 phenomenon

Theorem (Hersh–Shareshian–Stanton)

Let P be a graded poset supporting an algebraic complex (C , ∂).
Assume the poset P has a discrete Morse matching M such that
for all matched pairs (y , x) with y < x one has ∂y ,x ∈ F∗. If all
unmatched poset elements occur in ranks of the same parity, then
dim(Hi (C , ∂)) = |Pun M|, that is, the number of unmatched
elements of rank i .
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Integer homology of Π(n, k)

Theorem (Cai–Readdy)

For the algebra complex (C , ∂) supported by the Stirling poset of
the second kind Π(n, k), a basis for the integer homology is given
by the increasing allowable RG -words in A(n, k). Furthermore, we
have ∑

i≥0

(dimHi (C , ∂;Z))qi =

[
n − 1− bk2 c
bk−1

2 c

]
q2

.
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q-Stirling numbers of the first kind

We have a similar analysis for the q-Stirling numbers of the first
kind via rook placements.

Theorem (de Médicis–Leroux)

The q-Stirling number of the first kind cq[n, k] is given by

cq[n, k] =
∑

T∈P(n,n−k)

qs(T ),

where the sum is over all rook placements of n − k rooks on a
staircase board of length n.
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Theorem (Cai–Readdy)

The q-Stirling number of the first kind is given by

cq[n, k] =
∑

T∈Q(n,n−k)

qs(T ) · (1 + q)r(T ),

where the sum is over all rook placements of n − k rooks on an
alternating shaded staircase board of length n.
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Figure: Computing the q-Stirling number of the first kind cq[4, 2] using
allowable rook placements.
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Figure: The Stirling poset of the first kind Γ(4, 2)
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Integer homology of Γ(m, n)

Theorem (Cai–Readdy)

For the algebraic complex (C, ∂) supported by the Stirling poset of
the first kind Γ(m, n), a basis for the integer homology is given by
the rook placements in P(m, n) having all of the rooks occur in
shaded squares in the first row. Furthermore,∑

i≥0

dim(Hi (C, ∂;Z)) · qi = qn(n−1) ·
[
bm/2c

n

]
q2

.
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Thank you!
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