A new expression of the q-Stirling numbers

Yue Cai
Texas A\&M University

May 16, 2017

Joint work with Margaret Readdy.

Classical q-binomial coefficient

Definition

The Gaussian polynomial or q-binomial is the familiar q-analogue of the binomial coefficient given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}!\cdot[n-k]_{q}!},
$$

where $[n]_{q}=1+q+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q} \cdot[2]_{q} \cdots[n]_{q}$.

Theorem (MacMahon)

The q-binomial coefficient has the following combinatorial interpretation.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{w \in \mathfrak{S}\left(0^{n-k}, 1^{k}\right)} q^{\operatorname{inv(w)}}
$$

where $\mathfrak{S}\left(0^{n-k}, 1^{k}\right)$ denotes the set of all 0-1 permutations consisting of $n-k$ zeros and k ones, and for $w=w_{1} w_{2} \cdots w_{n} \in \mathfrak{S}\left(0^{n-k}, 1^{k}\right)$ the number of inversions is $\operatorname{inv}(w)=\mid\left\{(i, j): i<j\right.$ and $\left.w_{i}>w_{j}\right\} \mid$.

Theorem (Fu-Reiner-Stanton-Thiem)

$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\sum_{w \in \Omega(n, k)} q^{a(w)}(1+q)^{p(w)}$, where $\Omega(n, k)$ is a subset of
$\mathfrak{S}\left(0^{n-k}, 1^{k}\right)$ and $(a(w), p(w))$ is a bistatistic defined on $\Omega(n, k)$.

Goal 1

Find compact $q-(1+q)$-encodings of classical q-analogues.

Goal 1

Find compact $q-(1+q)$-encodings of classical q-analogues.

Goal 2

Understand compact encodings of classical q-analogues via enumerative, poset theoretic and topological viewpoints.

Goal 1

Find compact $q-(1+q)$-encodings of classical q-analogues.

Goal 2

Understand compact encodings of classical q-analogues via enumerative, poset theoretic and topological viewpoints.

We do this for the q-Stirling numbers of the first and second kinds.

Set partitions

Definition

A set partition of the n elements $\{1,2, \ldots, n\}$ is a decomposition of this set into mutually disjoint nonempty sets called blocks.

Set partitions

Definition

A set partition of the n elements $\{1,2, \ldots, n\}$ is a decomposition of this set into mutually disjoint nonempty sets called blocks.

Example

$125 / 36 / 47$ is a set partition of 7 elements into 3 blocks.

Set partitions

Definition

A set partition of the n elements $\{1,2, \ldots, n\}$ is a decomposition of this set into mutually disjoint nonempty sets called blocks.

Example

$125 / 36 / 47$ is a set partition of 7 elements into 3 blocks.

Theorem

The Stirling number of the second kind $S(n, k)$ counts the number of set partitions of n elements into k blocks.

Restricted growth words

Definition

- Let $\pi=B_{1} / B_{2} / \cdots / B_{k}$ be a set partition of $\{1, \ldots, n\}$ in standard form, where the blocks are arranged such that $\min \left(B_{1}\right)<\min \left(B_{2}\right)<\cdots<\min \left(B_{n}\right)$. We denote the set of all partitions of $\{1, \ldots, n\}$ by Π_{n}.
- Given a partition $\pi \in \Pi_{n}$, we encode it using a restricted growth word $w(\pi)=w_{1} \cdots w_{n}$, where $w_{i}=j$ if the element i occurs in the j-th block B_{j} of π.
- Let $\mathcal{R}(n, k)$ denote the set of all $R G$-words of length n with maximum letter k.

Example

The partition $\pi=125 / 36 / 47$ has $R G$-word $w=1123123$.
Restricted growth words are also known as restricted growth functions. They have been studied by Hutchinson, Milne and Rota.

q-Stirling numbers of the 2nd kind

Definition

The q-analogue of the Stirling number of the second kind is given by the recurrence formula

$$
S_{q}[n, k]=S_{q}[n-1, k-1]+[k]_{q} S_{q}[n-1, k], \text { for } 0 \leq k \leq n,
$$

where $S_{q}[n, 0]=\delta_{n, 0}$. Setting $q=1$ gives the familiar Stirling number of the second kind $S(n, k)$ which enumerates the number of $\pi \in \Pi_{n}$ with exactly k blocks.

Definition

For $w=w_{1} \cdots w_{n} \in \mathcal{R}(n, k)$, define $w t(w)=\prod_{i=1}^{n} w t\left(w_{i}\right)$, where $\mathrm{wt}\left(w_{1}\right)=1$ and for $2 \leq i \leq n$, we have

$$
w t\left(w_{i}\right)= \begin{cases}q^{w_{i}-1} & \text { if } w_{i} \leq \max \left\{w_{1}, \ldots, w_{i-1}\right\} \\ 1 & \text { if } w_{i}>\max \left\{w_{1}, \ldots, w_{i-1}\right\}\end{cases}
$$

Example

Partition	$R G$-word w	$\mathrm{wt}(w)$
$1 / 234$	1222	$1 \cdot 1 \cdot q \cdot q=q^{2}$
$12 / 34$	1122	$1 \cdot 1 \cdot 1 \cdot q=q$
$13 / 24$	1212	$1 \cdot 1 \cdot 1 \cdot q=q$
$14 / 23$	1221	$1 \cdot 1 \cdot q \cdot 1=q$
$134 / 2$	1211	$1 \cdot 1 \cdot 1 \cdot 1=1$
$124 / 3$	1121	$1 \cdot 1 \cdot 1 \cdot 1=1$
$123 / 4$	1112	$1 \cdot 1 \cdot 1 \cdot 1=1$

Using $R G$-words, we can compute that $S_{q}[4,2]=q^{2}+3 q+3$.

Lemma

The q-Stirling number of the second kind $S_{q}[n, k]$ is given by

$$
S_{q}[n, k]=\sum_{w \in \mathcal{R}(n, k)} w t(w) .
$$

Allowable $R G$-words

Definition

- An allowable RG-word w is of the form

$$
w=u_{1} \cdot 2 \cdot u_{2} \cdot 4 \cdot u_{3} \cdot 6 \cdot u_{4} \cdots,
$$

where $u_{2 i-1}$ is a word on the alphabet $\{1,3, \ldots, 2 i-1\}$.
Denote the set of all allowable $R G$-words from $\mathcal{R}(n, k)$ by $\mathcal{A}(n, k)$.

- For an allowable word $w \in \mathcal{A}(n, k)$, we give it a new weight $\mathrm{wt}^{\prime}(w)=\Pi_{i=1}^{n} \mathrm{wt}^{\prime}\left(w_{i}\right)$, where $\mathrm{wt}^{\prime}\left(w_{1}\right)=1$ and for $2 \leq i \leq n$,

$$
w^{\prime}\left(w_{i}\right)= \begin{cases}q^{w_{i}-1} \cdot(1+q) & \text { if } w_{i}<\max \left\{w_{1}, \ldots, w_{i-1}\right\} \\ q^{w_{i}-1} & \text { if } w_{i}=\max \left\{w_{1}, \ldots, w_{i-1}\right\} \\ 1 & \text { if } w_{i}>\max \left\{w_{1}, \ldots, w_{i-1}\right\}\end{cases}
$$

The example $\mathcal{A}(4,2)$

Partition	$R G$-word w	$\mathrm{wt}(w)$	Allowed?	$\mathrm{wt}^{\prime}(w)$
$1 / 234$	1222	$1 \cdot 1 \cdot q \cdot q=q^{2}$	No	N/A
$12 / 34$	1122	$1 \cdot 1 \cdot 1 \cdot q=q$	No	N/A
$13 / 24$	1212	$1 \cdot 1 \cdot 1 \cdot q=q$	No	N/A
$14 / 23$	1221	$1 \cdot 1 \cdot q \cdot 1=q$	No	N/A
$134 / 2$	1211	$1 \cdot 1 \cdot 1 \cdot 1=1$	Yes	$(q+1)^{2}$
$124 / 3$	1121	$1 \cdot 1 \cdot 1 \cdot 1=1$	Yes	$(q+1)$
$123 / 4$	1112	$1 \cdot 1 \cdot 1 \cdot 1=1$	Yes	1

For the allowable words, we have

$$
\begin{aligned}
(q+1)^{2}+(q+1)+1 & =q^{2}+3 q+3 \\
& =S_{q}[4,2] .
\end{aligned}
$$

Theorem (Cai-Readdy)

$$
S_{q}[n, k]=\sum_{w \in \mathcal{A}(n, k)} w t^{\prime}(w)=\sum_{w \in \mathcal{A}(n, k)} q^{A(w)} \cdot(1+q)^{B(w)} .
$$

Stembridge's $q=-1$ phenomenon

If we set $q=-1$ in $S_{q}[n, k]$, then $(q+1)$ will become 0 , and we are left with words that are of the form

$$
\pi=u_{1} \cdot 2 \cdot u_{3} \cdot 4 \cdot u_{5} \cdot 6 \cdots
$$

where $u_{2 i-1}$ is a word which only uses the letter $2 i-1$. We call such words unmatched words, and we have the following

Lemma (Cai-Readdy)

The number of all unmatched words in $\mathcal{A}(n, k)$ is
$\binom{n-1-\lfloor k / 2\rfloor}{\lfloor(k-1) / 2\rfloor}$.

Stirling poset of the second kind $\Pi(n, k)$

Definition

Let $\Pi(n, k)$ denote the poset with all the elements from $\mathcal{R}(n, k)$ and $u \prec w$ if $w=u_{1} \cdots u_{i-1}\left(u_{i}+1\right) u_{i+1} \cdots u_{n}$ for some index i. Also see that if $u \prec w$, then $w t(w)=q \cdot w t(u)$. We call this poset the Stirling poset of the second kind.

Figure: The Stirling poset of the second kind $\Pi(5,3)$.

Let's come back to the $(1+q)^{n}$.

Let's come back to the $(1+q)^{n}$.

This is the q-analogue of 2^{n}.

Let's come back to the $(1+q)^{n}$.

This is the q-analogue of 2^{n}.
2^{n} is the number of subsets of an n-element set!

Theorem (Cai-Readdy)

The Stirling poset of the second kind $\Pi(n, k)$ can be decomposed into disjoint union of Boolean intervals

$$
\Pi(n, k)=\bigcup_{w \in \mathcal{A}(n, k)}[w, \alpha(w)] .
$$

Furthermore, if an allowable word $w \in \mathcal{A}(n, k)$ has weight $w t^{\prime}(w)=q^{i} \cdot(1+q)^{j}$, then the rank of the element w is i and the interval $[w, \alpha(w)]$ is isomorphic to the Boolean algebra on j elements.

Constructing a Boolean algebra

Constructing a Boolean algebra

123213431231234312311344

Constructing a Boolean algebra

Constructing a Boolean algebra

123223431232134412312344

12311343

Constructing a Boolean algebra

Constructing a Boolean algebra

Figure: The decomposition of the poset $\Pi(5,3)$ into Boolean algebras.

Definition

A partial matching on a poset P is a matching on the underlying graph of the Hasse diagram of P, that is, a subset $M \subseteq P \times P$ satisfying the following.
(1) The ordered pair $(a, b) \in M$ implies $a \prec b$.
(2) Each element $a \in P$ belongs to at most one element in M.

When $(a, b) \in M$, we write $u(a)=b$. A partial matching on P is acyclic if there does not exist a cycle

$$
a_{1} \prec u\left(a_{1}\right) \succ a_{2} \prec u\left(a_{2}\right) \succ \cdots \succ a_{n} \prec u\left(a_{n}\right) \succ a_{1}
$$

with $n \geq 2$, and the elements $a_{1}, a_{2}, \ldots, a_{n}$ are distinct.
An acyclic matching on a poset is also called a discrete Morse matching.

Figure: The matching on the poset $\Pi(5,3)$.

Theorem (Cai-Readdy)

This matching on $\Pi(n, k)$ is an acyclic matching.

Algebraic complex

Definition

Let P be a graded poset and W_{i} denote the rank i elements. We say the poset P supports a chain complex (C, ∂) of \mathbb{F}-vector space C_{i} if each C_{i} has basis indexed by the rank i elements W_{i} and $\partial: W_{i} \longrightarrow W_{i-1}$ is a boundary map. Furthermore, for $x \in W_{i}$ and $y \in W_{i-1}$ the coefficient $\partial_{x, y}$ of y in $\partial_{i}(x)$ is zero unless $y<p x$ in the poset.

Topological $q=-1$ phenomenon

Theorem (Hersh-Shareshian-Stanton)

Let P be a graded poset supporting an algebraic complex (C, ∂). Assume the poset P has a discrete Morse matching M such that for all matched pairs (y, x) with $y<x$ one has $\partial_{y, x} \in \mathbb{F}^{*}$. If all unmatched poset elements occur in ranks of the same parity, then $\operatorname{dim}\left(H_{i}(C, \partial)\right)=\left|P^{\text {un }} M\right|$, that is, the number of unmatched elements of rank i.

Integer homology of $\Pi(n, k)$

Theorem (Cai-Readdy)

For the algebra complex (C, ∂) supported by the Stirling poset of the second kind $\Pi(n, k)$, a basis for the integer homology is given by the increasing allowable $R G$-words in $\mathcal{A}(n, k)$. Furthermore, we have

$$
\sum_{i \geq 0}\left(\operatorname{dim} H_{i}(C, \partial ; \mathbb{Z})\right) q^{i}=\left[\begin{array}{c}
n-1-\left\lfloor\frac{k}{2}\right\rfloor \\
\left\lfloor\frac{k-1}{2}\right\rfloor
\end{array}\right]_{q^{2}}
$$

q-Stirling numbers of the first kind

We have a similar analysis for the q-Stirling numbers of the first kind via rook placements.

q-Stirling numbers of the first kind

We have a similar analysis for the q-Stirling numbers of the first kind via rook placements.

Theorem (de Médicis-Leroux)

The q-Stirling number of the first kind $c_{q}[n, k]$ is given by

$$
c_{q}[n, k]=\sum_{T \in P(n, n-k)} q^{s(T)},
$$

where the sum is over all rook placements of $n-k$ rooks on a staircase board of length n.

Theorem (Cai-Readdy)

The q-Stirling number of the first kind is given by

$$
c_{q}[n, k]=\sum_{T \in Q(n, n-k)} q^{s(T)} \cdot(1+q)^{r(T)},
$$

where the sum is over all rook placements of $n-k$ rooks on an alternating shaded staircase board of length n.

Figure: Computing the q-Stirling number of the first kind $c_{q}[4,2]$ using allowable rook placements.

Figure: The Stirling poset of the first kind $\Gamma(4,2)$

Integer homology of $\Gamma(m, n)$

Theorem (Cai-Readdy)

For the algebraic complex (\mathcal{C}, ∂) supported by the Stirling poset of the first kind $\Gamma(m, n)$, a basis for the integer homology is given by the rook placements in $P(m, n)$ having all of the rooks occur in shaded squares in the first row. Furthermore,

$$
\sum_{i \geq 0} \operatorname{dim}\left(H_{i}(\mathcal{C}, \partial ; \mathbb{Z})\right) \cdot q^{i}=q^{n(n-1)} \cdot\left[\begin{array}{c}
\lfloor m / 2\rfloor \\
n
\end{array}\right]_{q^{2}}
$$

References

- Y. Cai and M. Readdy, q-Stirling numbers: A new view, Advances in Applied Mathematics 86 (2017), 50-80.
- S. Fu, V. Reiner, D. Stanton and N. Thiem, The negative q-binomial, Electronic Journal of Combinatorics 19 (2012), P36.
- S. Milne, Restricted growth functions and incidence relations of the lattice of partitions of an n-set, Advances in Math. 26 (1977), 290-305.
- R. Forman, A User's Guide to Discrete Morse Theory, Séminaire Lotharingien de Combinatoire B48c (2002), 35 pp.

Thank you!

