A new expression of the q-Stirling numbers

Yue Cai

Texas A&M University

May 16, 2017

Joint work with Margaret Readdy.

A 10

→ Ξ →

Classical q-binomial coefficient

Definition

The Gaussian polynomial or *q*-binomial is the familiar *q*-analogue of the binomial coefficient given by

$$\begin{bmatrix}n\\k\end{bmatrix}_q = \frac{[n]_q!}{[k]_q! \cdot [n-k]_q!},$$

where $[n]_q = 1 + q + \cdots + q^{n-1}$ and $[n]_q! = [1]_q \cdot [2]_q \cdots [n]_q$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (MacMahon)

The q-binomial coefficient has the following combinatorial interpretation.

$$\begin{bmatrix}n\\k\end{bmatrix}_q = \sum_{w \in \mathfrak{S}(0^{n-k}, 1^k)} q^{\mathsf{inv}(w)},$$

where $\mathfrak{S}(0^{n-k}, 1^k)$ denotes the set of all 0-1 permutations consisting of n - k zeros and k ones, and for $w = w_1 w_2 \cdots w_n \in \mathfrak{S}(0^{n-k}, 1^k)$ the number of inversions is $\operatorname{inv}(w) = |\{(i,j) : i < j \text{ and } w_i > w_j\}|.$

Theorem (Fu-Reiner-Stanton-Thiem)

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \sum_{w \in \Omega(n,k)} q^{a(w)} (1+q)^{p(w)}, \text{ where } \Omega(n,k) \text{ is a subset of}$$

 $\mathfrak{S}(0^{n-k}, 1^{k}) \text{ and } (a(w), p(w)) \text{ is a bistatistic defined on } \Omega(n,k).$

- * @ * * 医 * * 医

Goal 1

Find compact q-(1 + q)-encodings of classical q-analogues.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Goal 1

Find compact q-(1 + q)-encodings of classical q-analogues.

Goal 2

Understand compact encodings of classical *q*-analogues via enumerative, poset theoretic and topological viewpoints.

□ > < = > <

Goal 1

Find compact q-(1 + q)-encodings of classical q-analogues.

Goal 2

Understand compact encodings of classical *q*-analogues via enumerative, poset theoretic and topological viewpoints.

We do this for the *q*-Stirling numbers of the first and second kinds.

Set partitions

Definition

A set partition of the *n* elements $\{1, 2, ..., n\}$ is a decomposition of this set into mutually disjoint nonempty sets called blocks.

□ > < = > <

Set partitions

Definition

A set partition of the *n* elements $\{1, 2, ..., n\}$ is a decomposition of this set into mutually disjoint nonempty sets called blocks.

Example

125/36/47 is a set partition of 7 elements into 3 blocks.

< 同 > < 回 > < 回 >

Set partitions

Definition

A set partition of the *n* elements $\{1, 2, ..., n\}$ is a decomposition of this set into mutually disjoint nonempty sets called blocks.

Example

125/36/47 is a set partition of 7 elements into 3 blocks.

Theorem

The Stirling number of the second kind S(n, k) counts the number of set partitions of n elements into k blocks.

- 4 同 6 4 日 6 4 日 6

Restricted growth words

Definition

- Let $\pi = B_1/B_2/\cdots/B_k$ be a set partition of $\{1, \ldots, n\}$ in standard form, where the blocks are arranged such that $\min(B_1) < \min(B_2) < \cdots < \min(B_n)$. We denote the set of all partitions of $\{1, \ldots, n\}$ by \prod_n .
- Given a partition $\pi \in \Pi_n$, we encode it using a *restricted* growth word $w(\pi) = w_1 \cdots w_n$, where $w_i = j$ if the element *i* occurs in the *j*-th block B_j of π .
- Let $\mathcal{R}(n, k)$ denote the set of all *RG*-words of length *n* with maximum letter *k*.

Example

The partition $\pi = 125/36/47$ has *RG*-word w = 1123123.

Restricted growth words are also known as restricted growth functions. They have been studied by Hutchinson, Milne and Rota.

/□ ▶ < 글 ▶ < 글

q-Stirling numbers of the 2nd kind

Definition

The *q*-analogue of the Stirling number of the second kind is given by the recurrence formula

$$S_q[n,k] = S_q[n-1,k-1] + [k]_q S_q[n-1,k], \text{ for } 0 \le k \le n,$$

where $S_q[n, 0] = \delta_{n,0}$. Setting q = 1 gives the familiar Stirling number of the second kind S(n, k) which enumerates the number of $\pi \in \prod_n$ with exactly k blocks.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

For $w = w_1 \cdots w_n \in \mathcal{R}(n, k)$, define $wt(w) = \prod_{i=1}^n wt(w_i)$, where $wt(w_1) = 1$ and for $2 \le i \le n$, we have

$$\mathsf{wt}(w_i) = \begin{cases} q^{w_i-1} & \text{if } w_i \leq \max\{w_1, \dots, w_{i-1}\}, \\ 1 & \text{if } w_i > \max\{w_1, \dots, w_{i-1}\}. \end{cases}$$

同 ト イ ヨ ト イ ヨ ト

 $\begin{array}{l} q\text{-}(1+q)\text{-binomial coefficient} \\ q\text{-Stirling numbers of the second kind} \\ \text{Poset homology} \end{array}$

Example

Partition	RG-word w	$\operatorname{wt}(w)$
1/234	1222	$1 \cdot 1 \cdot q \cdot q = q^2$
12/34	1122	$1 \cdot 1 \cdot 1 \cdot q = q$
13/24	1212	$1 \cdot 1 \cdot 1 \cdot q = q$
14/23	1221	$1 \cdot 1 \cdot q \cdot 1 = q$
134/2	1211	$1\cdot 1\cdot 1\cdot 1=1$
124/3	1121	$1 \cdot 1 \cdot 1 \cdot 1 = 1$
123/4	1112	$1 \cdot 1 \cdot 1 \cdot 1 = 1$

Using RG-words, we can compute that $S_q[4,2] = q^2 + 3q + 3$.

(日) (同) (三) (三)

Lemma

The q-Stirling number of the second kind $S_q[n, k]$ is given by

$$S_q[n,k] = \sum_{w \in \mathcal{R}(n,k)} \operatorname{wt}(w).$$

(日) (同) (三) (三)

э

Allowable *RG*-words

Definition

• An allowable RG-word w is of the form

$$w = u_1 \cdot 2 \cdot u_2 \cdot 4 \cdot u_3 \cdot 6 \cdot u_4 \cdots,$$

where u_{2i-1} is a word on the alphabet $\{1, 3, \ldots, 2i-1\}$. Denote the set of all allowable *RG*-words from $\mathcal{R}(n, k)$ by $\mathcal{A}(n, k)$.

• For an allowable word $w \in \mathcal{A}(n, k)$, we give it a new weight $wt'(w) = \prod_{i=1}^{n} wt'(w_i)$, where $wt'(w_1) = 1$ and for $2 \le i \le n$,

$$\mathsf{wt}'(w_i) = \begin{cases} q^{w_i - 1} \cdot (1 + q) & \text{if } w_i < \max\{w_1, \dots, w_{i-1}\}, \\ q^{w_i - 1} & \text{if } w_i = \max\{w_1, \dots, w_{i-1}\}, \\ 1 & \text{if } w_i > \max\{w_1, \dots, w_{i-1}\}. \end{cases}$$

< 1¹→ >

The example $\mathcal{A}(4,2)$

Partition	RG-word w	$\operatorname{wt}(w)$	Allowed?	wt'(w)
1/234	1222	$1 \cdot 1 \cdot q \cdot q = q^2$	No	N/A
12/34	1122	$1 \cdot 1 \cdot 1 \cdot q = q$	No	N/A
13/24	1212	$1 \cdot 1 \cdot 1 \cdot q = q$	No	N/A
14/23	1221	$1 \cdot 1 \cdot q \cdot 1 = q$	No	N/A
134/2	1211	$1 \cdot 1 \cdot 1 \cdot 1 = 1$	Yes	$(q + 1)^2$
124/3	1121	$1 \cdot 1 \cdot 1 \cdot 1 = 1$	Yes	(q + 1)
123/4	1112	$1 \cdot 1 \cdot 1 \cdot 1 = 1$	Yes	1

For the allowable words, we have

$$(q+1)^2 + (q+1) + 1 = q^2 + 3q + 3$$

= $S_q[4,2]$.

・ 同 ト ・ ヨ ト ・ ヨ

Theorem (Cai–Readdy)

$$S_q[n,k] = \sum_{w \in \mathcal{A}(n,k)} \operatorname{wt}'(w) = \sum_{w \in \mathcal{A}(n,k)} q^{\mathcal{A}(w)} \cdot (1+q)^{\mathcal{B}(w)}.$$

<ロト <部ト < 注ト < 注ト

э

Stembridge's q = -1 phenomenon

If we set q = -1 in $S_q[n, k]$, then (q + 1) will become 0, and we are left with words that are of the form

$$\pi = u_1 \cdot 2 \cdot u_3 \cdot 4 \cdot u_5 \cdot 6 \cdots,$$

where u_{2i-1} is a word which only uses the letter 2i - 1. We call such words *unmatched* words, and we have the following

Lemma (Cai–Readdy)

The number of all unmatched words in $\mathcal{A}(n, k)$ is $\binom{n-1-\lfloor k/2 \rfloor}{\lfloor (k-1)/2 \rfloor}$.

同 ト イ ヨ ト イ ヨ ト

Stirling poset of the second kind $\Pi(n, k)$

Definition

Let $\Pi(n, k)$ denote the poset with all the elements from $\mathcal{R}(n, k)$ and $u \prec w$ if $w = u_1 \cdots u_{i-1}(u_i + 1)u_{i+1} \cdots u_n$ for some index *i*. Also see that if $u \prec w$, then wt(w) = $q \cdot wt(u)$. We call this poset the Stirling poset of the second kind.

□ > < = > <

Figure: The Stirling poset of the second kind $\Pi(5,3)$.

Let's come back to the $(1+q)^n$.

/□ ▶ < 글 ▶ < 글

э

Let's come back to the $(1+q)^n$.

This is the q-analogue of 2^n .

A 3 b

Let's come back to the $(1+q)^n$.

This is the q-analogue of 2^n .

 2^n is the number of subsets of an *n*-element set!

Theorem (Cai–Readdy)

The Stirling poset of the second kind $\Pi(n, k)$ can be decomposed into disjoint union of Boolean intervals

$$\Pi(n,k) = \bigcup_{w \in \mathcal{A}(n,k)} [w, \alpha(w)].$$

Furthermore, if an allowable word $w \in \mathcal{A}(n, k)$ has weight $wt'(w) = q^i \cdot (1+q)^j$, then the rank of the element w is i and the interval $[w, \alpha(w)]$ is isomorphic to the Boolean algebra on j elements.

Constructing a Boolean algebra

123<mark>11</mark>34<mark>3</mark>

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Constructing a Boolean algebra

12321343 12312343 12311344

123<mark>11</mark>34<mark>3</mark>

 $\begin{array}{c} q\text{-}(1+q)\text{-binomial coefficient} \\ q\text{-Stirling numbers of the second kind} \\ \hline \\ \textbf{Poset homology} \end{array}$

Constructing a Boolean algebra

Constructing a Boolean algebra

1232234<mark>3</mark> 12321344 12312344

Constructing a Boolean algebra

Constructing a Boolean algebra

イロト イポト イヨト イヨト

э

Figure: The decomposition of the poset $\Pi(5,3)$ into Boolean algebras.

3

* E > * E >

 $\begin{array}{c} q\text{-}(1+q)\text{-binomial coefficient} \\ q\text{-Stirling numbers of the second kind} \\ \textbf{Poset homology} \end{array}$

Definition

A partial matching on a poset P is a matching on the underlying graph of the Hasse diagram of P, that is, a subset $M \subseteq P \times P$ satisfying the following.

• The ordered pair $(a, b) \in M$ implies $a \prec b$.

2 Each element $a \in P$ belongs to at most one element in M.

When $(a, b) \in M$, we write u(a) = b. A partial matching on P is *acyclic* if there does not exist a cycle

$$a_1 \prec u(a_1) \succ a_2 \prec u(a_2) \succ \cdots \succ a_n \prec u(a_n) \succ a_1$$

with $n \ge 2$, and the elements a_1, a_2, \ldots, a_n are distinct.

An acyclic matching on a poset is also called a *discrete Morse matching*.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} q\text{-}(1+q)\text{-binomial coefficient} \\ q\text{-Stirling numbers of the second kind} \\ \hline \\ \textbf{Poset homology} \end{array}$

Figure: The matching on the poset $\Pi(5,3)$.

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Theorem (Cai–Readdy)

This matching on $\Pi(n, k)$ is an acyclic matching.

・ 同 ト ・ ヨ ト ・ ヨ

Algebraic complex

Definition

Let *P* be a graded poset and W_i denote the rank *i* elements. We say the *poset P supports a chain complex* (C, ∂) of \mathbb{F} -vector space C_i if each C_i has basis indexed by the rank *i* elements W_i and $\partial : W_i \longrightarrow W_{i-1}$ is a boundary map. Furthermore, for $x \in W_i$ and $y \in W_{i-1}$ the coefficient $\partial_{x,y}$ of *y* in $\partial_i(x)$ is zero unless $y <_P x$ in the poset.

Topological q = -1 phenomenon

Theorem (Hersh–Shareshian–Stanton)

Let P be a graded poset supporting an algebraic complex (C, ∂) . Assume the poset P has a discrete Morse matching M such that for all matched pairs (y, x) with y < x one has $\partial_{y,x} \in \mathbb{F}^*$. If all unmatched poset elements occur in ranks of the same parity, then $\dim(H_i(C, \partial)) = |P^{un M}|$, that is, the number of unmatched elements of rank i.

Integer homology of $\Pi(n, k)$

Theorem (Cai–Readdy)

For the algebra complex (C, ∂) supported by the Stirling poset of the second kind $\Pi(n, k)$, a basis for the integer homology is given by the increasing allowable RG-words in $\mathcal{A}(n, k)$. Furthermore, we have

$$\sum_{i\geq 0} (\dim H_i(C,\partial;\mathbb{Z}))q^i = \begin{bmatrix} n-1-\lfloor \frac{k}{2} \rfloor \\ \lfloor \frac{k-1}{2} \rfloor \end{bmatrix}_{q^2}$$

q-Stirling numbers of the first kind

We have a similar analysis for the q-Stirling numbers of the first kind via rook placements.

/□ ▶ < □ ▶ < □

q-Stirling numbers of the first kind

We have a similar analysis for the q-Stirling numbers of the first kind via rook placements.

Theorem (de Médicis-Leroux)

The q-Stirling number of the first kind $c_q[n, k]$ is given by

$$c_q[n,k] = \sum_{T \in P(n,n-k)} q^{s(T)},$$

where the sum is over all rook placements of n - k rooks on a staircase board of length n.

Theorem (Cai–Readdy)

The q-Stirling number of the first kind is given by

$$c_q[n,k] = \sum_{T \in Q(n,n-k)} q^{s(T)} \cdot (1+q)^{r(T)},$$

where the sum is over all rook placements of n - k rooks on an alternating shaded staircase board of length n.

□ > < = > <

Figure: Computing the *q*-Stirling number of the first kind $c_q[4,2]$ using allowable rook placements.

A B > A B >

A 1

э

Figure: The Stirling poset of the first kind $\Gamma(4,2)$

(日) (同) (三) (三)

э

Integer homology of $\Gamma(m, n)$

Theorem (Cai–Readdy)

For the algebraic complex (C, ∂) supported by the Stirling poset of the first kind $\Gamma(m, n)$, a basis for the integer homology is given by the rook placements in P(m, n) having all of the rooks occur in shaded squares in the first row. Furthermore,

$$\sum_{i\geq 0} \dim(H_i(\mathcal{C},\partial;\mathbb{Z})) \cdot q^i = q^{n(n-1)} \cdot \begin{bmatrix} \lfloor m/2 \rfloor \\ n \end{bmatrix}_{q^2}$$

References

- Y. CAI AND M. READDY, *q*-Stirling numbers: A new view, Advances in Applied Mathematics **86** (2017), 50–80.
- S. FU, V. REINER, D. STANTON AND N. THIEM, The negative *q*-binomial, *Electronic Journal of Combinatorics* **19** (2012), P36.
- S. MILNE, Restricted growth functions and incidence relations of the lattice of partitions of an *n*-set, *Advances in Math.* **26** (1977), 290–305.
- R. FORMAN, A User's Guide to Discrete Morse Theory, Séminaire Lotharingien de Combinatoire **B48c** (2002), 35 pp.

| 4 同 1 4 三 1 4 三 1

Thank you!

・ 同 ト ・ ヨ ト ・ ヨ

э