The Canonical Join Complex of the Tamari Lattice

Emily Barnard
Northeastern University

Combinatorixx 2, Banff
May 16, 2017

The canonical join representation (CJR)

- The CJR is a lattice-theoretic "minimal factorization" in terms of the join operation.
- There is an analogous factorization in terms of the meet called the canonical meet representation.
- Historically, these factorizations appeared as a tool for solving the word problem for free lattices.

The canonical join representation (CJR)

What is the canonical join representation for the top element?

Definition

The canonical join representation of an element w in L is the unique lowest irredundant expression $\bigvee A=w$.

The canonical join representation (CJR)

What is the canonical join representation for the top element?

Observation
Each irredundant join of atoms is a canonical join representation.

Precise Definition

The canonical join representation of an element w in L is the unique lowest irredundant expression $\bigvee A=w$. More precisely:

- The expression $\bigvee A=w$ is a join-representation for w.
- The join $\bigvee A$ is irredundant if

$$
\bigvee A^{\prime}<\bigvee A \text { for each proper subset } A^{\prime} \subset A
$$

- If $\bigvee A$ is irredundant then A is an antichain.
- For $\bigvee A$ and $\bigvee B$ irredundant, we say A is "lower" than B if the order ideal generated by A is contained in the order ideal generated by B.

The canonical join complex

Definition

The canonical join complex $\Gamma(L)$ is the collection of subsets $A \subset L$ satisfying:
$\bigvee A$ is a canonical join representation.

What is the canonical join complex?

The canonical join complex

Definition

The canonical join complex $\Gamma(L)$ is the collection of subsets $A \subset L$ satisfying:
$\bigvee A$ is a canonical join representation.

The weak order on S_{n}

Definition

- Write each permutation $w \in S_{n}$ as $w_{1} \ldots w_{n}$ where $w_{i}=w(i)$.
- One moves up by a cover relation in the weak order by swapping consecutive entries in $w_{1} \ldots w_{n}$ that are in order.

The type-B Coxeter group

Figure: The weak order on the type-B Coxeter group B_{2}.

The Tamari lattice

Definition

- A permutation $w=w_{1} \ldots w_{n}$ avoids the 312-pattern if it has no subsequence of entries

$$
w_{i}>w_{l}>w_{k} \text { with } 1 \leqslant i<k<l \leqslant n
$$

- The Tamari lattice T_{n} is the subposet of the weak order on S_{n} induced by the permutations that avoid the 312-pattern.
- The type-B Tamari lattice T_{n}^{s} is the subposet of the weak order on B_{n} induced by the signed permutations that avoid:
(1) the 312-pattern where the " 2 " is positive and
(2) the 231-pattern where the " 2 " is negative.

Main results

Theorem [B.]
The canonical join complex of the Tamari lattice T_{n} is shellable.

- It is contractible when n is even.
- It is homotopy equivalent to a wedge of $\frac{1}{r+1}\binom{2 r}{r}$ many spheres, all of dimension $r-1$, when $n=2 r+1$.

Main results

Theorem [B.]
The canonical join complex of the type-B Tamari lattice T_{n}^{s} is shellable.

The canonical join complex is homotopy equivalent to:
(1) a wedge of $\operatorname{Cat}\left(B_{r}\right)=\binom{2 r}{r}$ many spheres all of dimension $r-1$, when $n=2 r$;
(2) a wedge of $\mathrm{Cat}^{+}\left(B_{r}\right)-\operatorname{Cat}\left(A_{r-2}\right)=2\binom{2 r-2}{r-2}$ many spheres, equally distributed in dimensions $r-1$ and $r-2$, when $n=2 r-1$ for $r>1$.

Main results

Definition

- For each finite Coxeter group W, each c-Cambrian lattice is a lattice quotient of the weak order on W that is parametrized by an orientation c of the associated Coxeter diagram.
- When W is S_{n} and c is a linear orientation, we recover the Tamari lattice T_{n}.

Theorem [B.]
For each orientation c of the type-A Coxeter diagram, the canonical join complex of the corresponding c-Cambrian lattice is vertex decomposable.

Modeling CJR's in S_{n}

Noncrossing Arc Diagrams

- Draw n nodes in a vertical column and label them in increasing order from bottom to top.
- Each diagram consists of a (possibly empty) collection of curves called arcs.
- Each pair of arcs α and α^{\prime} satisfies:
(C1) α and α^{\prime} do not share the same top endpoint or the same bottom endpoint;
(C2) α and α^{\prime} do not intersect in their interiors.

Modeling CJR's in S_{n}

Definition

A collection of arcs are compatible if there is a noncrossing arc diagram containing them.

Theorem [Reading]

The canonical join complex of the weak order on S_{n} is isomorphic to the complex of compatible arcs on n nodes.

The canonical join complex of T_{n}

- A right arc is an arc that does not pass to the left of any node.
- A simple arc is an arc that connects consecutive nodes.

Corollary [Reading]
The canonical join complex of the Tamari lattice T_{n} is isomorphic to the complex of compatible right arcs on n nodes.

Notation
Write $\Delta(n)$ for the complex of compatible right arcs on n nodes.

Decreasing dimension

Observation

- For each $n>2$, the complex $\Delta(n)$ is not pure.
- Any shelling of $\Delta(n)$ must begin with the diagram consisting of all simple arcs (i.e. the largest facet).

Theorem [B.]
Suppose that $\mathcal{L}=F_{1}, \ldots, F_{m}$ is linear ordering of the facets of $\Delta(n)$ satisfying:

$$
\text { If }\left|F_{i}\right|>\left|F_{k}\right| \text { then } i<k
$$

Then \mathcal{L} is a shelling of $\Delta(n)$, and F_{i} is a homology facet if and only if F_{i} contains no simple arcs.

Counting homology facets

- When $n=2 r$, we prove by induction that each facet of $\Delta(n)$ contains a simple arc.
- When $n=2 r+1$, we define a bijection from the set of homology facets to the set of noncrossing perfect matchings on $\{1, \ldots, 2 r\}$.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

j)

Proof sketch for the type-B Tamari lattice

- Argue that the canonical join complex of T_{n}^{s} is shellable.
- Argue that a facet F is a homology facet if and only if F does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Thank you!

