The Canonical Join Complex of the Tamari Lattice

Emily Barnard

Northeastern University

Combinatorixx 2, Banff

May 16, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The canonical join representation (CJR)

- The CJR is a lattice-theoretic "minimal factorization" in terms of the join operation.
- There is an analogous factorization in terms of the meet called the **canonical meet representation**.
- Historically, these factorizations appeared as a tool for solving the *word problem* for free lattices.

The canonical join representation (CJR)

What is the canonical join representation for the top element?

Definition

The **canonical join representation** of an element w in L is the unique lowest irredundant expression $\bigvee A = w$.

The canonical join representation (CJR)

What is the canonical join representation for the top element?

Observation

Each irredundant join of atoms is a canonical join representation.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Precise Definition

The **canonical join representation** of an element w in L is the unique lowest irredundant expression $\bigvee A = w$. More precisely:

- The expression $\bigvee A = w$ is a **join-representation** for *w*.
- The join $\bigvee A$ is **irredundant** if

$$\bigvee A' < \bigvee A$$
 for each proper subset $A' \subset A$.

- If $\bigvee A$ is irredundant then A is an antichain.
- For ∨ A and ∨ B irredundant, we say A is "lower" than B if the order ideal generated by A is contained in the order ideal generated by B.

The canonical join complex

Definition

The **canonical join complex** $\Gamma(L)$ is the collection of subsets $A \subset L$ satisfying:

 $\bigvee A$ is a canonical join representation.

What is the canonical join complex?

The canonical join complex

Definition

The **canonical join complex** $\Gamma(L)$ is the collection of subsets $A \subset L$ satisfying:

 $\bigvee A$ is a canonical join representation.

The weak order on S_n

Definition

- Write each permutation $w \in S_n$ as $w_1 \dots w_n$ where $w_i = w(i)$.
- One moves up by a cover relation in the weak order by swapping consecutive entries in $w_1 \dots w_n$ that are in order.

The type-B Coxeter group

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Figure: The weak order on the type-B Coxeter group B_2 .

The Tamari lattice

Definition

• A permutation $w = w_1 \dots w_n$ avoids the 312-pattern if it has no subsequence of entries

 $w_i > w_l > w_k$ with $1 \leq i < k < l \leq n$.

- The Tamari lattice T_n is the subposet of the weak order on S_n induced by the permutations that avoid the 312-pattern.
- The **type-B Tamari lattice** T_n^s is the subposet of the weak order on B_n induced by the signed permutations that avoid:
 - 1 the 312-pattern where the "2" is positive and
 - **2** the 231-pattern where the "2" is negative.

Main results

Theorem [B.]

The canonical join complex of the Tamari lattice T_n is shellable.

- It is contractible when *n* is even.
- It is homotopy equivalent to a wedge of $\frac{1}{r+1} \binom{2r}{r}$ many spheres, all of dimension r-1, when n = 2r + 1.

Main results

Theorem [B.]

The canonical join complex of the type-B Tamari lattice T_n^s is shellable.

The canonical join complex is homotopy equivalent to:

- **1** a wedge of $Cat(B_r) = \binom{2r}{r}$ many spheres all of dimension r-1, when n = 2r;
- 2 a wedge of $\operatorname{Cat}^+(B_r) \operatorname{Cat}(A_{r-2}) = 2\binom{2r-2}{r-2}$ many spheres, equally distributed in dimensions r-1 and r-2, when n = 2r-1 for r > 1.

Main results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

- For each finite Coxeter group *W*, each *c*-Cambrian lattice is a lattice quotient of the weak order on *W* that is parametrized by an orientation *c* of the associated Coxeter diagram.
- When W is S_n and c is a linear orientation, we recover the Tamari lattice T_n .

Theorem [B.]

For each orientation c of the type-A Coxeter diagram, the canonical join complex of the corresponding c-Cambrian lattice is vertex decomposable.

Modeling CJR's in S_n

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Noncrossing Arc Diagrams

- Draw *n* nodes in a vertical column and label them in increasing order from bottom to top.
- Each diagram consists of a (possibly empty) collection of curves called **arcs**.
- Each pair of arcs α and α' satisfies:
 - (C1) α and α' do not share the same top endpoint or the same bottom endpoint;
 - (C2) α and α' do not intersect in their interiors.

Modeling CJR's in S_n

III<td

Theorem [Reading]

The canonical join complex of the weak order on S_n is isomorphic to the complex of compatible arcs on *n* nodes.

The canonical join complex of T_n

- A **right arc** is an arc that does not pass to the left of any node.
- A **simple arc** is an arc that connects consecutive nodes.

Corollary [Reading]

The canonical join complex of the Tamari lattice T_n is isomorphic to the complex of compatible right arcs on n nodes.

Notation

Write $\Delta(n)$ for the complex of compatible right arcs on *n* nodes.

Decreasing dimension

Observation

- For each n > 2, the complex $\Delta(n)$ is not pure.
- Any shelling of Δ(n) must begin with the diagram consisting of all simple arcs (i.e. the largest facet).

Theorem [B.]

Suppose that $\mathcal{L} = F_1, \ldots, F_m$ is linear ordering of the facets of $\Delta(n)$ satisfying:

If $|F_i| > |F_k|$ then i < k.

Then \mathcal{L} is a shelling of $\Delta(n)$, and F_i is a homology facet if and only if F_i contains no simple arcs.

Counting homology facets

- When n = 2r, we prove by induction that each facet of Δ(n) contains a simple arc.
- When n = 2r + 1, we define a bijection from the set of homology facets to the set of noncrossing perfect matchings on {1,..., 2r}.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.

• Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.

• Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.

• Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

- Argue that the canonical join complex of T_n^s is shellable.
- Argue that a facet *F* is a homology facet if and only if *F* does not contain a simple symmetric arc.
- Define a bijection from the set of homology facets onto certain symmetric noncrossing perfect matchings.

Thank you!