Discrete Homotopy and Homology Groups

Hélène Barcelo
Mathematical Sciences Research Institute

> BIRS - Algebraic Combinatorixx 2
> May16, 2017

Overview

Overview

- Invariants of Dynamic Processes: $A_{n}^{q}\left(\Delta, \sigma_{o}\right)$
(Atkin, Maurer, Malle, Lovász 1970's)

Overview

- Invariants of Dynamic Processes: $A_{n}^{q}\left(\Delta, \sigma_{o}\right)$
(Atkin, Maurer, Malle, Lovász 1970's)
- Discrete Homotopy Theory for Graphs

$$
A_{1}^{q}\left(\Delta, \sigma_{0}\right) \cong \pi_{1}\left(\Gamma_{\Delta}^{q}, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma_{\Delta}^{q}}, x_{0}\right)
$$

Overview

- Invariants of Dynamic Processes: $A_{n}^{q}\left(\Delta, \sigma_{o}\right)$
(Atkin, Maurer, Malle, Lovász 1970's)
- Discrete Homotopy Theory for Graphs

$$
A_{1}^{q}\left(\Delta, \sigma_{0}\right) \cong \pi_{1}\left(\Gamma_{\Delta}^{q}, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma_{\Delta}^{q}}, x_{0}\right)
$$

- Discrete Homotopy for Cubical Sets

Overview

- Invariants of Dynamic Processes: $A_{n}^{q}\left(\Delta, \sigma_{o}\right)$
(Atkin, Maurer, Malle, Lovász 1970's)
- Discrete Homotopy Theory for Graphs

$$
A_{1}^{q}\left(\Delta, \sigma_{0}\right) \cong \pi_{1}\left(\Gamma_{\Delta}^{q}, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma_{\Delta}^{q}}, x_{0}\right)
$$

- Discrete Homotopy for Cubical Sets
- Discrete Homology Theory

Overview

- Invariants of Dynamic Processes: $A_{n}^{q}\left(\Delta, \sigma_{o}\right)$
(Atkin, Maurer, Malle, Lovász 1970's)
- Discrete Homotopy Theory for Graphs

$$
A_{1}^{q}\left(\Delta, \sigma_{0}\right) \cong \pi_{1}\left(\Gamma_{\Delta}^{q}, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma_{\Delta}^{q}}, x_{0}\right)
$$

- Discrete Homotopy for Cubical Sets
- Discrete Homology Theory
- Unexpected Application of Discrete Homotopy Theory

$$
A_{1}^{r}(\operatorname{Cay}(G / N)) \cong N
$$

detects normal subgroups

Discrete Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)

Discrete Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)
Definitions

Discrete Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White) Definitions

1. 「 - graph (Δ simplicial complex; X metric space)
v_{0} - distinguished vertex $\left(\sigma_{0} ; x_{0}\right)$
\mathbb{Z}^{n} - infinite lattice (usual metric)

Discrete Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White) Definitions

1. 「 - graph (Δ simplicial complex; X metric space)
v_{0} - distinguished vertex $\left(\sigma_{0} ; x_{0}\right)$
\mathbb{Z}^{n} - infinite lattice (usual metric)
2. $\mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ - set of graph homs $f: \mathbb{Z}^{n} \rightarrow V(\Gamma)$, that is,

$$
\begin{aligned}
& \text { if } d(\vec{a}, \vec{b})=1 \text { in } \mathbb{Z}^{n} \text { then } d(f(\vec{a}), f(\vec{b}))=0 \text { or } 1 \text {, with } \\
& f(\vec{i})=v_{0} \text { almost everywhere }
\end{aligned}
$$

Discrete Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White) Definitions

1. Γ - graph (Δ simplicial complex; X metric space)
v_{0}-distinguished vertex $\left(\sigma_{0} ; x_{0}\right)$
\mathbb{Z}^{n} - infinite lattice (usual metric)
2. $\mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ - set of graph homs $f: \mathbb{Z}^{n} \rightarrow V(\Gamma)$, that is,

$$
\begin{aligned}
& \text { if } d(\vec{a}, \vec{b})=1 \text { in } \mathbb{Z}^{n} \text { then } d(f(\vec{a}), f(\vec{b}))=0 \text { or } 1 \text {, with } \\
& f(\vec{i})=v_{0} \text { almost everywhere }
\end{aligned}
$$

3. f, g are discrete homotopic if there exist $h \in \mathcal{A}_{n+1}\left(\Gamma, v_{0}\right)$ and $k, \ell \in \mathbb{N}$ such that for all $\vec{i} \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
& h(\vec{i}, k)=f(\vec{i}) \\
& h(\vec{i}, \ell)=g(\vec{i})
\end{aligned}
$$

Discrete Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White) Definitions

1. Γ - graph (Δ simplicial complex; X metric space)
v_{0} - distinguished vertex $\left(\sigma_{0} ; x_{0}\right)$
\mathbb{Z}^{n} - infinite lattice (usual metric)
2. $\mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ - set of graph homs $f: \mathbb{Z}^{n} \rightarrow V(\Gamma)$, that is,

$$
\begin{aligned}
& \text { if } d(\vec{a}, \vec{b})=1 \text { in } \mathbb{Z}^{n} \text { then } d(f(\vec{a}), f(\vec{b}))=0 \text { or } 1 \text {, with } \\
& f(\vec{i})=v_{0} \text { almost everywhere }
\end{aligned}
$$

3. f, g are discrete homotopic if there exist $h \in \mathcal{A}_{n+1}\left(\Gamma, v_{0}\right)$ and $k, \ell \in \mathbb{N}$ such that for all $\vec{i} \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
& h(\vec{i}, k)=f(\vec{i}) \\
& h(\vec{i}, \ell)=g(\vec{i})
\end{aligned}
$$

4. $A_{n}\left(\Gamma, v_{0}\right)$ - set of equivalence classes of maps in $\mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ Note: translation preserves discrete homotopy

Discrete Homotopy Theory for Graphs

Group Structure

Discrete Homotopy Theory for Graphs

Group Structure

- Multiplication: for $f, g \in \mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ of radius M, N,

Discrete Homotopy Theory for Graphs

Group Structure

- Multiplication: for $f, g \in \mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ of radius M, N,

$$
f g(\vec{i})= \begin{cases}f(\vec{i}) & i_{1} \leq M \\ g\left(i_{1}-(M+N), i_{2}, \ldots i_{n}\right) & i_{1}>M\end{cases}
$$

Discrete Homotopy Theory for Graphs

Group Structure

- Multiplication: for $f, g \in \mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ of radius M, N,

$$
f g(\vec{i})= \begin{cases}f(\vec{i}) & i_{1} \leq M \\ g\left(i_{1}-(M+N), i_{2}, \ldots i_{n}\right) & i_{1}>M\end{cases}
$$

$$
[f g]=[f][g]
$$

Discrete Homotopy Theory for Graphs

Group Structure

- Identity: $e(\vec{i})=v_{0} \quad \forall \vec{i} \in \mathbb{Z}^{n}$

Discrete Homotopy Theory for Graphs

Group Structure

- Identity: $e(\vec{i})=v_{0} \quad \forall \vec{i} \in \mathbb{Z}^{n}$
- Inverses: $f^{-1}(\vec{i})=f\left(-i_{1}, \ldots, i_{n}\right) \quad \forall \vec{i} \in \mathbb{Z}^{n}$

Discrete Homotopy Theory for Graphs

Group Structure

- Identity: $e(\vec{i})=v_{0} \quad \forall \vec{i} \in \mathbb{Z}^{n}$
- Inverses: $f^{-1}(\vec{i})=f\left(-i_{1}, \ldots, i_{n}\right) \quad \forall \vec{i} \in \mathbb{Z}^{n}$

Example $(n=2)$

Discrete Homotopy Theory for Graphs

Group Structure

- Identity: $e(\vec{i})=v_{0} \quad \forall \vec{i} \in \mathbb{Z}^{n}$
- Inverses: $f^{-1}(\vec{i})=f\left(-i_{1}, \ldots, i_{n}\right) \quad \forall \vec{i} \in \mathbb{Z}^{n}$

Example $(n=2)$

$f:$| 1 | I | B | M | O | C |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | R | O | T | A | N |
| -1 | S | I | X | X | I |
| -2 | R | E | P | U | S |
| | -2 | -1 | 0 | 1 | 2 |

Discrete Homotopy Theory for Graphs

Group Structure

- Identity: $e(\vec{i})=v_{0} \quad \forall \vec{i} \in \mathbb{Z}^{n}$
- Inverses: $f^{-1}(\vec{i})=f\left(-i_{1}, \ldots, i_{n}\right) \quad \forall \vec{i} \in \mathbb{Z}^{n}$

Example $(n=2)$

Discrete Homotopy Theory for Graphs

Group Structure
$A_{n}\left(\Gamma, v_{0}\right)$ is an abelian group $\forall n \geq 2$

Discrete Homotopy Theory for Graphs

Group Structure $A_{n}\left(\Gamma, v_{0}\right)$ is an abelian group $\forall n \geq 2$

Discrete Homotopy Theory for Graphs

Examples

Discrete Homotopy Theory for Graphs

Examples

$$
A_{1}\left({ }^{v_{0}} \quad v_{1}, v_{0}\right)=1
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\left.\left.\left.\begin{array}{rl}
A_{1}\left(v_{0}\right. & v_{1} \\
v_{0}
\end{array}\right)=1 . v_{0}\right)=v_{v_{0}}^{v_{2}}, v_{0}\right)=1 .
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{aligned}
A_{1}\left(\mathrm{v}_{0}\right. & v_{1} \\
\left., v_{0}\right) & =1 \\
A_{1}\left(\Omega_{v_{0}}^{v_{2}}, v_{0}\right) & =1
\end{aligned}
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{aligned}
& A_{1}\left(v_{0}^{v_{0}}, v_{0}\right)=1 \\
& A_{1}(\underbrace{v_{2}}_{v_{0}}, v_{0})=1 \\
& A_{1}\left({ }_{v_{0}}^{v_{3}} \square_{v_{1}}^{v_{2}}, v_{0}\right)=1
\end{aligned}
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{gathered}
A_{1}\left({\frac{v_{0}}{v_{1}}}^{v_{1}}, v_{0}\right)=1 \\
A_{1}\left(\Omega_{v_{0}}^{v_{2}}, v_{0}\right)=1 \\
A_{1}\left(v_{v_{0}}^{v_{3}} \square_{v_{1}}^{v_{2}}, v_{0}\right)=1
\end{gathered}
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{aligned}
A_{1}\left({\frac{v_{0}}{v_{1}}}_{v_{1}}^{v_{0}}\right) & =1 \\
A_{1}\left(\bigwedge_{v_{0}}^{v_{2}}, v_{v_{1}}\right) & =1 \\
A_{1}\left(v_{v_{0}}^{v_{3}} \square_{v_{1}}^{v_{2}}, v_{0}\right) & =1 \\
A_{1}\left(\square, v_{0}\right) & \cong \mathbb{Z}
\end{aligned}
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{aligned}
& A_{1}\left(\frac{v_{0}}{v_{1}}, v_{0}\right)=1 \\
& A_{1}(\underbrace{v_{2}}_{v_{0}}, v_{v_{1}})=1 \\
& A_{1}\left({\underset{v}{3}}^{v_{3}} \square_{v_{1}}^{v_{2}}, v_{0}\right)=1 \\
& \quad A_{1}\left(\square, v_{0}\right) \cong \mathbb{Z} \\
& \quad A_{1}\left(\Gamma, v_{0}\right) \cong \pi_{1}\left(\Gamma, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma}, v_{0}\right)
\end{aligned}
$$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{aligned}
& A_{1}\left(\underline{v}_{0}^{v_{1}}, v_{0}\right)=1 \\
& A_{1}\left(\bigwedge_{v_{0}}^{v_{2}} \bigwedge_{v_{1}}^{v_{2}}, v_{0}\right)=1 \\
& A_{1}\left(\int_{v_{0}}^{v_{3}} \square_{v_{1}}^{v_{2}}, v_{0}\right)=1 \\
& A_{1}\left(\square, v_{0}\right) \cong \mathbb{Z} \\
& A_{1}\left(\Gamma, v_{0}\right) \cong \pi_{1}\left(\Gamma, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma}, v_{0}\right) \\
& \quad(2 \text {-dim cell complex: attach } 2 \text {-cells to } \triangle, \square \text { of } \Gamma)
\end{aligned}
$$

Discrete Homotopy Theory

- $A_{n}^{q}\left(\Delta, \sigma_{0}\right) \cong A_{n}\left(\Gamma_{\Delta}^{q}, \sigma_{0}\right)$
Γ_{Δ}^{q} vertices $=$ all maximal simplices of Δ of $\operatorname{dim} \geq q$ $\left(\sigma, \sigma^{\prime}\right) \in E\left(\Gamma_{\Delta}^{q}\right) \Longleftrightarrow \operatorname{dim}\left(\sigma \cap \sigma^{\prime}\right) \geq q$

Discrete Homotopy Theory

- $A_{n}^{q}\left(\Delta, \sigma_{0}\right) \cong A_{n}\left(\Gamma_{\Delta}^{q}, \sigma_{0}\right)$
Γ_{Δ}^{q} vertices $=$ all maximal simplices of Δ of $\operatorname{dim} \geq q$ $\left(\sigma, \sigma^{\prime}\right) \in E\left(\Gamma_{\Delta}^{q}\right) \Longleftrightarrow \operatorname{dim}\left(\sigma \cap \sigma^{\prime}\right) \geq q$
- $A_{n}^{r}\left(X, x_{0}\right) r$-Lipschitz maps $f: \mathbb{Z}^{n} \rightarrow X$ (stabilizing in all directions)
$f: X \rightarrow Y$ is r-Lipschitz $\Longleftrightarrow d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq r d\left(x_{1}, x_{2}\right)$

Is it a Good Analogy to Classical Homotopy?

1. If Γ is connected, $A_{n}\left(\Gamma, v_{0}\right)$ independent of v_{0}

Is it a Good Analogy to Classical Homotopy?

1. If Γ is connected, $A_{n}\left(\Gamma, v_{0}\right)$ independent of v_{0}
2. Siefert-van Kampen: if

$$
\Gamma=\Gamma_{1} \cup \Gamma_{2}
$$

Γ_{i} connected
$v_{0} \in \Gamma_{1} \cap \Gamma_{2}$
$\Gamma_{1} \cap \Gamma_{2}$ connected
\triangle, \square lie in one of the Γ_{i}

Is it a Good Analogy to Classical Homotopy?

1. If Γ is connected, $A_{n}\left(\Gamma, v_{0}\right)$ independent of v_{0}
2. Siefert-van Kampen: if

$$
\Gamma=\Gamma_{1} \cup \Gamma_{2}
$$

Γ_{i} connected
$v_{0} \in \Gamma_{1} \cap \Gamma_{2}$
$\Gamma_{1} \cap \Gamma_{2}$ connected
\triangle, \square lie in one of the Γ_{i}
then

$$
A_{1}\left(\Gamma, v_{0}\right) \cong A_{1}\left(\Gamma_{1}, v_{0}\right) * A_{1}\left(\Gamma_{2}, v_{0}\right) / N\left([\ell] *[\ell]^{-1}\right)
$$

for ℓ a loop in $\Gamma_{1} \cap \Gamma_{2}$

Is it a Good Analogy to Classical Homotopy?

1. If Γ is connected, $A_{n}\left(\Gamma, v_{0}\right)$ independent of v_{0}
2. Siefert-van Kampen: if

$$
\Gamma=\Gamma_{1} \cup \Gamma_{2}
$$

Γ_{i} connected
$v_{0} \in \Gamma_{1} \cap \Gamma_{2}$
$\Gamma_{1} \cap \Gamma_{2}$ connected
\triangle, \square lie in one of the Γ_{i}
then

$$
A_{1}\left(\Gamma, v_{0}\right) \cong A_{1}\left(\Gamma_{1}, v_{0}\right) * A_{1}\left(\Gamma_{2}, v_{0}\right) / N\left([\ell] *[\ell]^{-1}\right)
$$

for ℓ a loop in $\Gamma_{1} \cap \Gamma_{2}$
3. Relative discrete homotopy theory and long exact sequences

Is it a Good Analogy to Classical Homotopy?

1. If Γ is connected, $A_{n}\left(\Gamma, v_{0}\right)$ independent of v_{0}
2. Siefert-van Kampen: if

$$
\Gamma=\Gamma_{1} \cup \Gamma_{2}
$$

Γ_{i} connected
$v_{0} \in \Gamma_{1} \cap \Gamma_{2}$
$\Gamma_{1} \cap \Gamma_{2}$ connected
\triangle, \square lie in one of the Γ_{i}
then

$$
A_{1}\left(\Gamma, v_{0}\right) \cong A_{1}\left(\Gamma_{1}, v_{0}\right) * A_{1}\left(\Gamma_{2}, v_{0}\right) / N\left([\ell] *[\ell]^{-1}\right)
$$

for ℓ a loop in $\Gamma_{1} \cap \Gamma_{2}$
3. Relative discrete homotopy theory and long exact sequences
4. Associated discrete homology theory... ?

Discrete Homology Theory for Graphs

(B., Capraro, White)

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes
- Front: $\left(A_{i}^{n} \sigma\right)\left(a_{1}, \ldots, a_{n-1}\right)=\sigma\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{n-1}\right)$

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes
- Front: $\left(A_{i}^{n} \sigma\right)\left(a_{1}, \ldots, a_{n-1}\right)=\sigma\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{n-1}\right)$
- Back: $\left(B_{i}^{n} \sigma\right)\left(b_{1}, \ldots, b_{n-1}\right)=\sigma\left(b_{1}, \ldots, b_{i-1}, 1, b_{i}, \ldots, b_{n-1}\right)$

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes
- Front: $\left(A_{i}^{n} \sigma\right)\left(a_{1}, \ldots, a_{n-1}\right)=\sigma\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{n-1}\right)$
- Back: $\left(B_{i}^{n} \sigma\right)\left(b_{1}, \ldots, b_{n-1}\right)=\sigma\left(b_{1}, \ldots, b_{i-1}, 1, b_{i}, \ldots, b_{n-1}\right)$
- Degenerate singular n-cube: if $\exists i$ s.t. $\left(A_{i}^{n} \sigma\right)=\left(B_{i}^{n} \sigma\right)$

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes
- Front: $\left(A_{i}^{n} \sigma\right)\left(a_{1}, \ldots, a_{n-1}\right)=\sigma\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{n-1}\right)$
- Back: $\left(B_{i}^{n} \sigma\right)\left(b_{1}, \ldots, b_{n-1}\right)=\sigma\left(b_{1}, \ldots, b_{i-1}, 1, b_{i}, \ldots, b_{n-1}\right)$
- Degenerate singular n-cube: if $\exists i$ s.t. $\left(A_{i}^{n} \sigma\right)=\left(B_{i}^{n} \sigma\right)$
- $D_{n}(\Gamma):=$ free abelian group generated by all degenerate singular n-cubes

Discrete Homology Theory for Graphs

(B., Capraro, White)

Necessities

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes
- Front: $\left(A_{i}^{n} \sigma\right)\left(a_{1}, \ldots, a_{n-1}\right)=\sigma\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{n-1}\right)$
- Back: $\left(B_{i}^{n} \sigma\right)\left(b_{1}, \ldots, b_{n-1}\right)=\sigma\left(b_{1}, \ldots, b_{i-1}, 1, b_{i}, \ldots, b_{n-1}\right)$
- Degenerate singular n-cube: if $\exists i$ s.t. $\left(A_{i}^{n} \sigma\right)=\left(B_{i}^{n} \sigma\right)$
- $D_{n}(\Gamma):=$ free abelian group generated by all degenerate singular n-cubes

$$
C_{n}(\Gamma):=\mathcal{L}_{n}(\Gamma) / D_{n}(\Gamma)
$$

elements of C_{n} correspond to n-chains

Discrete Homology Theory for Graphs

Necessities
4. Boundary operators ∂_{n} for each $n \geq 1$

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i}\left(A_{i}^{n}(\sigma)-B_{i}^{n}(\sigma)\right)
$$

Discrete Homology Theory for Graphs

Necessities
4. Boundary operators ∂_{n} for each $n \geq 1$

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i}\left(A_{i}^{n}(\sigma)-B_{i}^{n}(\sigma)\right)
$$

- extend linearly to $\mathcal{L}_{n}(\Gamma)$

Discrete Homology Theory for Graphs

Necessities
4. Boundary operators ∂_{n} for each $n \geq 1$

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i}\left(A_{i}^{n}(\sigma)-B_{i}^{n}(\sigma)\right)
$$

- extend linearly to $\mathcal{L}_{n}(\Gamma)$
- $\partial_{n}\left(D_{n}(\Gamma)\right) \subseteq D_{n-1}(\Gamma)$

Discrete Homology Theory for Graphs

Necessities

4. Boundary operators ∂_{n} for each $n \geq 1$

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i}\left(A_{i}^{n}(\sigma)-B_{i}^{n}(\sigma)\right)
$$

- extend linearly to $\mathcal{L}_{n}(\Gamma)$
- $\partial_{n}\left(D_{n}(\Gamma)\right) \subseteq D_{n-1}(\Gamma)$
- so $\partial_{n}: C_{n}(\Gamma) \rightarrow C_{n-1}(\Gamma)$ is well-defined

Discrete Homology Theory for Graphs

Necessities

4. Boundary operators ∂_{n} for each $n \geq 1$

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i}\left(A_{i}^{n}(\sigma)-B_{i}^{n}(\sigma)\right)
$$

- extend linearly to $\mathcal{L}_{n}(\Gamma)$
- $\partial_{n}\left(D_{n}(\Gamma)\right) \subseteq D_{n-1}(\Gamma)$
- so $\partial_{n}: C_{n}(\Gamma) \rightarrow C_{n-1}(\Gamma)$ is well-defined
- $\partial_{n} \circ \partial_{n+1}=0$

Discrete Homology Theory for Graphs

Definition
The discrete homology groups of $\mathrm{\Gamma}$:

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{lm}\left(\partial_{n+1}\right)
$$

Discrete Homology Theory for Graphs

Definition
The discrete homology groups of $\mathrm{\Gamma}$:

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{lm}\left(\partial_{n+1}\right)
$$

Examples

Discrete Homology Theory for Graphs

Definition
The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Examples

$$
D H_{n}(-)=0 \quad \forall n \geq 1
$$

Discrete Homology Theory for Graphs

Definition

The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Examples

$$
D H_{n}(-)=0 \quad \forall n \geq 1 \quad D H_{n}(\triangle)=0 \quad \forall n \geq 1
$$

Discrete Homology Theory for Graphs

Definition

The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Examples

$$
\begin{array}{lll}
D H_{n}(-)=0 & \forall n \geq 1 & D H_{n}(\triangle)=0
\end{array} \quad \forall n \geq 1
$$

Discrete Homology Theory for Graphs

Definition

The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Examples

$$
\begin{array}{llll}
D H_{n}(-)=0 & \forall n \geq 1 & D H_{n}(\triangle)=0 & \forall n \geq 1 \\
D H_{n}(\square)=0 & \forall n \geq 1 & D H_{1}(\triangle)=\mathbb{Z} &
\end{array}
$$

Discrete Homology Theory for Graphs

Definition

The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Examples

$$
\begin{array}{llll}
D H_{n}(-)=0 & \forall n \geq 1 & D H_{n}(\triangle)=0 & \forall n \geq 1 \\
D H_{n}(\square)=0 & \forall n \geq 1 & D H_{1}(\triangle)=\mathbb{Z} &
\end{array}
$$

Definition
If $\Gamma^{\prime} \subseteq \Gamma$, then $\partial_{n}\left(C_{n}\left(\Gamma^{\prime}\right)\right) \subseteq C_{n-1}\left(\Gamma^{\prime}\right)$ and there are maps

$$
\partial_{n}: C_{n}\left(\Gamma, \Gamma^{\prime}\right)=C_{n}(\Gamma) / C_{n}\left(\Gamma^{\prime}\right) \rightarrow C_{n-1}\left(\Gamma, \Gamma^{\prime}\right)
$$

Discrete Homology Theory for Graphs

Definition

The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Examples

$$
\begin{array}{llll}
D H_{n}(-)=0 & \forall n \geq 1 & D H_{n}(\triangle)=0 & \forall n \geq 1 \\
D H_{n}(\square)=0 & \forall n \geq 1 & D H_{1}(\triangle)=\mathbb{Z} &
\end{array}
$$

Definition
If $\Gamma^{\prime} \subseteq \Gamma$, then $\partial_{n}\left(C_{n}\left(\Gamma^{\prime}\right)\right) \subseteq C_{n-1}\left(\Gamma^{\prime}\right)$ and there are maps

$$
\partial_{n}: C_{n}\left(\Gamma, \Gamma^{\prime}\right)=C_{n}(\Gamma) / C_{n}\left(\Gamma^{\prime}\right) \rightarrow C_{n-1}\left(\Gamma, \Gamma^{\prime}\right)
$$

The relative homology groups of $\left(\Gamma, \Gamma^{\prime}\right)$:

$$
D H_{n}\left(\Gamma, \Gamma^{\prime}\right)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

How to Judge if Homology Theory is Good?

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma) \quad n \geq 2$

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma) \quad n \geq 2$
2. Discrete version of Eilenberg-Steenrod axioms and Mayer-Vietoris sequence

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma) \quad n \geq 2$
2. Discrete version of Eilenberg-Steenrod axioms and Mayer-Vietoris sequence
3. Which groups can we obtain?

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma) \quad n \geq 2$
2. Discrete version of Eilenberg-Steenrod axioms and Mayer-Vietoris sequence
3. Which groups can we obtain?

- For a fine enough rectangulation R of a compact, metrizable, smooth, path-connected manifold M, let Γ_{R} be the natural graph associated to R. Then

$$
\pi_{1}(M) \cong A_{1}\left(\Gamma_{R}\right)
$$

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma) \quad n \geq 2$
2. Discrete version of Eilenberg-Steenrod axioms and Mayer-Vietoris sequence
3. Which groups can we obtain?

- For a fine enough rectangulation R of a compact, metrizable, smooth, path-connected manifold M, let Γ_{R} be the natural graph associated to R. Then

$$
\pi_{1}(M) \cong A_{1}\left(\Gamma_{R}\right)
$$

- For each abelian group G and $\bar{n} \in \mathbb{N}$, there is a finite connected simple graph Γ such that

$$
D H_{n}(\Gamma)= \begin{cases}G & \text { if } n=\bar{n} \\ 0 & \text { if } n \leq \bar{n}\end{cases}
$$

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma) \quad n \geq 2$
2. Discrete version of Eilenberg-Steenrod axioms and Mayer-Vietoris sequence
3. Which groups can we obtain?

- For a fine enough rectangulation R of a compact, metrizable, smooth, path-connected manifold M, let Γ_{R} be the natural graph associated to R. Then

$$
\pi_{1}(M) \cong A_{1}\left(\Gamma_{R}\right)
$$

- For each abelian group G and $\bar{n} \in \mathbb{N}$, there is a finite connected simple graph Γ such that

$$
D H_{n}(\Gamma)= \begin{cases}G & \text { if } n=\bar{n} \\ 0 & \text { if } n \leq \bar{n}\end{cases}
$$

- There is a graph S^{n} such that

$$
D H_{k}\left(S^{n}\right)= \begin{cases}\mathbb{Z} & \text { if } k=n \\ 0 & \text { if } k \neq n\end{cases}
$$

Unexpected Application of Discrete Homotopy Theory

$S:=$ finite set
$G:=\langle S\rangle$: finitely generated group
Cay (G, S) : graph with

- Vertex set: G
- Edge set: $\{(g, g s): g \in G, s \in S\}$
- Label set: S

Note: a path from e to g is a word in S equal to g. Words along loops are relators in G (i.e: equal to e.)

Unexpected Application of Discrete Homotopy Theory

$S:=$ finite set
$G:=\langle S\rangle$: finitely generated group
Cay (G, S) : graph with

- Vertex set: G
- Edge set: $\{(g, g s): g \in G, s \in S\}$
- Label set: S

Note: a path from e to g is a word in S equal to g. Words along loops are relators in G (i.e: equal to e.)

Theorem
If F_{S} is the free group on S and N is a normal subgroup of F_{S}, then

$$
\pi_{1}\left(\operatorname{Cay}\left(F_{S} / N, \bar{S}\right), e\right) \cong N
$$

The fundamental group of the Cayley graph detects normal subgroups.

In general (when G is not free),

$$
\pi_{1}(\operatorname{Cay}(G / N, \bar{S}), e) \not \approx N
$$

because relators of G also contribute to $\pi_{1}(\operatorname{Cay}(G / N), e)$.

In general (when G is not free),

$$
\pi_{1}(\operatorname{Cay}(G / N, \bar{S}), e) \not \approx N
$$

because relators of G also contribute to $\pi_{1}(\operatorname{Cay}(G / N), e)$.
We need a tool that ignores small loops but detects big ones.

In general (when G is not free),

$$
\pi_{1}(\operatorname{Cay}(G / N, \bar{S}), e) \not \models N
$$

because relators of G also contribute to $\pi_{1}(\operatorname{Cay}(G / N), e)$.
We need a tool that ignores small loops but detects big ones.
Theorem (Delabie-Khukhro 2017)

$$
A_{1, r}(\operatorname{Cay}(G / N, \bar{S}), e) \cong N
$$

for any constant r such that $2 k \leq 4 r<n$, where

$$
k=\max \left\{|g|_{F_{s}}: g \in R\right\} \quad \text { and } \quad n=\inf \left\{|g|_{G}: g \in N \backslash\{e\}\right\} .
$$

The discrete fundamental group of the Cayley graph detects normal subgroups.

Thank-you!

Complex $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$

Complex $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:

$$
\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, \quad i<j<k
$$

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)$ is $K(\pi, 1)$
(Khovanov 1996)

Complex $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)\right) \cong$ pure braid gp.
(Fox-Fadell 1963)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)$ is $K(\pi, 1)$
(Khovanov 1996)

Complex $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)\right) \cong$ pure braid gp.
(Fox-Fadell 1963)

Real $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)$ is $K(\pi, 1)$
(Khovanov 1996)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)\right) \cong$ pure triplet gp.
(Khovanov 1996)

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)\right) \cong$ pure braid gp.
(Fox-Fadell 1963)
$\pi_{1}(M(\mathbb{C}$-ified refl. arr. type $W))$
\cong pure Artin group
$\cong \operatorname{Ker}(\phi)$
(Brieskorn 1971)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)$ is $K(\pi, 1)$
(Khovanov 1996)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)\right) \cong$ pure triplet gp.
(Khovanov 1996)

Complex $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)\right) \cong$ pure braid gp.
(Fox-Fadell 1963)
$\pi_{1}(M(\mathbb{C}$-ified refl. arr. type $W))$
\cong pure Artin group
$\cong \operatorname{Ker}(\phi)$
(Brieskorn 1971)

Real $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)$ is $K(\pi, 1)$
(Khovanov 1996)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)\right) \cong$ pure triplet gp.
(Khovanov 1996)
$\pi_{1}\left(M\left(W_{n, 3}\right)\right) \cong \operatorname{Ker}\left(\phi^{\prime}\right)$
where $W_{n, 3}$ is a 3-parabolic
subgroup of type W
(B-Severs-White 2009)

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M(\mathbb{C}$-ified refl. arr.) is $K(\pi, 1)$
(Deligne 1972)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:

$$
\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, \quad i<j<k
$$

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M(\mathbb{C}$-ified refl. arr.) is $K(\pi, 1)$
(Deligne 1972)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(W_{n, 3}\right)$ is $K(\pi, 1)$
(Davis-Janusz.-Scott 2008)

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M(\mathbb{C}$-ified refl. arr.) is $K(\pi, 1)$
(Deligne 1972)

Real $K(\pi, 1)$ Spaces

$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(W_{n, 3}\right)$ is $K(\pi, 1)$
(Davis-Janusz.-Scott 2008)

Theorem

$$
A_{1}^{n-k+1}(\text { Coxeter complex } W) \cong \pi_{1}\left(M\left(W_{n, k}\right)\right) \quad 3 \leq k \leq n
$$

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M(\mathbb{C}$-ified refl. arr.) is $K(\pi, 1)$
(Deligne 1972)

Real $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 3}^{\mathbb{R}}$ 3-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(W_{n, 3}\right)$ is $K(\pi, 1)$
(Davis-Janusz.-Scott 2008)

Theorem

$$
A_{1}^{n-k+1}(\text { Coxeter complex } W) \cong \pi_{1}\left(M\left(W_{n, k}\right)\right) \quad 3 \leq k \leq n
$$

Note: We have replaced a group $\left(\pi_{1}\right)$ defined in terms of the topology of a space with a group $\left(A_{1}\right)$ defined in terms of the combinatorial structure of the space.

What is Next?

(B., Green, Welker)

What is Next?

(B., Green, Welker)

Homologies of path complexes and digraphs, by A. Grigoryan, Y. Lin, Y. Muranov, S.-T. Yau

A path complex P on a finite set V is a collection of paths (=sequences of points) on V such that if a path v belongs to P then a truncated path that is obtained from v by removing either the first or the last point, is also in P. Any digraph naturally gives rise to a path complex where allowed paths go along the arrows of the digraph.
A path complex P gives rise to a chain complex with an appropriate boundary operator δ that leads to the notion of path homology groups of P .

What is Next?

(B., Green, Welker)

Homologies of path complexes and digraphs, by A. Grigoryan, Y. Lin, Y. Muranov, S.-T. Yau

A path complex P on a finite set V is a collection of paths (=sequences of points) on V such that if a path v belongs to P then a truncated path that is obtained from v by removing either the first or the last point, is also in P. Any digraph naturally gives rise to a path complex where allowed paths go along the arrows of the digraph.
A path complex P gives rise to a chain complex with an appropriate boundary operator δ that leads to the notion of path homology groups of P .

Conjecture: Path homology and discrete homology groups are isomorphic for undirected graphs.

What is Next?
 (B., Green, Welker)

Homologies of path complexes and digraphs, by A. Grigoryan, Y. Lin, Y. Muranov, S.-T. Yau

A path complex P on a finite set V is a collection of paths (=sequences of points) on V such that if a path v belongs to P then a truncated path that is obtained from v by removing either the first or the last point, is also in P. Any digraph naturally gives rise to a path complex where allowed paths go along the arrows of the digraph.
A path complex P gives rise to a chain complex with an appropriate boundary operator δ that leads to the notion of path homology groups of P .

Conjecture: Path homology and discrete homology groups are isomorphic for undirected graphs.
Note: Path complexes can be regarded as generalization of the notion of simplicial complexes. Any simplicial complex S determines naturally a path complex by associating with any simplex from S the sequence of its vertices.

