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Semidefinite program (SDP)

minimize tr(CX)
subjectto tr(A;X)=b;, i=1,...,m
X >0
e variable is n X n symmetric matrix X

e inequality X > 0 means X is positive semidefinite

e similar to standard form linear program, but with matrix inequality

Applications

e maitrix inequalities arise naturally in many areas (for example, control, statistics)
e relaxations of nonconvex quadratic and polynomial optimization

e used in convex modeling systems (CVX, YALMIP, CVXPY, PICOS, ...)

widely studied since 1990s (following Nesterov & Nemirovski's 1994 book)



Outline

e Semidefinite representations of design criteria
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e Semidefinite descriptions of moment cones



Conic linear programming

Primal: minimize  {c, x)
subjectto (a;,x)=b;, i=1,...,m
xeK
Dual: maximize bly

m
subjectto D) viai+s=c
i=1

s e K*

e K is a proper convex cone (closed, pointed, with nonempty interior)

o K*"={s|{(s,x) >0Vx € K} is the dual cone

Solvers
e popular solvers include SDPT3, SeDuMi, MOSEK
e implementations of primal-dual interior-point methods

e handle ‘symmetric’ cones: second order cone and positive semidefinite cone



Symmetric cones

e second order cone (s.o. cone): {(x1,...,xy,) | (xf + -0+ szz—l)l/z < xn}

e cone of positive semidefinite symmetric matrices (p.s.d. cone)




Modeling software

e surprisingly many functions are ‘s.0.- or p.s.d.-representable’
[Nesterov & Nemirovski 1994]

e conversion rules implemented in modeling software packages

Modeling packages for convex optimization

e CVX, YALMIP (MATLAB)
e CVXPY, PICOS (Python)

e Convex.jl (Julia)



Optimal experiment design with finite design space

minimize (M)
m

subjectto M = 3 w; f(x;)f(x;)!
i=1

>0, i=1,....m

W,‘Il
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variables: m-vector w and symmetric p X p matrix M

Design criteria

o c-optimality: f(M) =c'M ¢

o A-optimality: f(M) =trM~!

o E-optimality: f(M) = Amax(M™1)

e D-optimality: f(M) = —(det M)'/"
e condition number: f(M) = «(M)

these criteria can be minimized using s.0. and p.s.d. conic optimization



Second order cone program formulation of c-optimal design

minimize ¢ M 1c
m

subjectto M = 3 w;f(x;)f(x;)!
i=1

m
w; >0, i=1....m > w =1
i=1

Step 1: equivalent problem with auxiliary variables vyq, ..., ym
m
minimize 2 yiz/wi
i=1

m
subjectto >, f(x;)y;i =c¢
i=1

m
w; >0, i=1,....m > w =1
i=1

equivalence can be shown by optimizing over y



Second order cone program formulation of c-optimal design

m

minimize ) yl.z/wi
Z;Ll

subjectto D, f(x;)y; =c¢
i=1

w; >0, i=1....m > w; =1
Step 2: reformulate nonlinear objective as linear objective with s.0. constraints
m
minimize ). t;
i=1
5 5\ 1/2
subject to (4yl. + (t; — w;) ) <ti+w;, 20 1=1...,m

5 flyi =

m
w; >0, i=1,...,m, w; =1
i=1

first set of constraints is equivalent to yiz/wi <tifori=1,...,m



Semidefinite program formulation of £-optimal design

minimize  Amax(M ™)
m

subjectto M = 3 wif(x;)f(x)!
i=1

>0, i=1,...,m

™Mz =

w; =1
1

l

Equivalent problem: maximize Anin(M) by solving the SDP

maximize t

m

subjectto Y w; f(x;))f(x)! = t1
i=1
w; >0, i=1,...,m

m
2 wi=1
i=1

first constraint is equivalent to Apin(M) > ¢



Semidefinite program formulation of D-optimal design

maximize (det M)/P

subjectto M = f wi f (xi) f ()"
i=1

w; >0, i=1,....m, > w =1

Step 1: introduce Cholesky factor as auxiliary variable
maximize ([]; Ri)YP

- i
'21 wif () f(x)" R
1=

- R I -

R upper triangular, R;; >0, i=1,...,p

>0

subject to

m
w; >0, i=1,...,m, w; =1
-

l

first constraint is equivalentto M > R'R



Semidefinite program formulation of D-optimal design

maximize ¢
subjectto ¢ < (T]; Ri)'/?

- i
51 wif(x)f(x)" RT -
- R I -
R upper triangular, R;; >0, i=1,...,p
m
w; >0, i=1,....m > w =1
i=1

Step 2

e first constraint can be expressed as a set of p.s.d. constraints

e reformulation uses repeated application of equivalence

b a

aé\/ﬁ, a,b,c >0 — la .

]ZO, a>0
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Optimal discriminating design

e p-vector f(x) of basis functions, and m models

nj(x) =0, f(x), 6;€0; j=1,...,m

e moment matrix M = Ef(x)f(x)! depends on distribution of x € C

e m(m — 1)/2 distance measures

Ai(M) = inf  E(pu(x)—n;(x))*= inf  (6; -0, M(6; -6,
ij(M) heat o (ni(x) = 17j(x)) Qﬁ@l:lgje(aj(l j) M(6; —0))

e each A;;j(M) is a concave function of M

Design problem: find distribution that makes all A;;(M) large, e.g., by maximizing

minA;;(M)  or Z wijAij(M)
J Jj>i

[Atkinson and Fedorov 1975]
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Equivalent expressions for A; (M)

for given M, the function A;;(M) is the optimal value of the optimization problem

minimize (6; — Hj)TM(H,- —6;)
subjectto 6, € ©;, 6; € O;

e variables are 6;, 6;

e we now assume that ©;, ©; are convex sets

From convex duality: A;;(M) is the optimal value of the dual problem

maximize t — o0y(z) — oj(-z)

M z/2

L2t =0

subject to !

e variables are ¢, 7

o 04(z) = supyep, 2’ 0 is support function of O (a convex function)
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Optimal discriminating design

maximize minA;;(M)
J>i

subjectto M € M

o M =conv{f(x)f(x)! | x e C}
e optimization problem is convex in the moment matrix M
Reformulation

maximize ¢
subjectto ¢ < t;; — 0y(zij) —oj(=zij), >

M zj/2 o
> 0, >
[ Zl-Tj/z tl']' - J !
Me M

e convex in the variables ¢, t;;, z;j, M

e requires tractable description or approximation of set M of moment matrices
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Polynomial moments and SDP approximations

d

e design space C is a compact set defined by k& polynomial inequalities

: n+d o
e f(x)is vector of ( ) monomials in xi, ..., x;, of degree d or less

gi(x) =0, ...,  gx)=0
e set of moment matrices is M = conv{ f(x)f(x)! | x € C}

Hierarchy of relaxations: outer approximations M C M,,r =0,1, ...

e M, is parameterized by k + 1 linear matrix inequalities of size up to

n+2d+2r
n

e approximations are nested and converge to M as relaxation order r increases

[De Castro, Gamboa, Henrion, Hess, Lasserre 2017] [Lasserre 2010, 2015]

14



Sums of squares

a polynomial f : R" — R is a sum of squares (SOS) of degree 2d or less if

f(x) = ;1 ;‘J Aalgx“x'g = vy(x) Avy(x)  withA >0
la|<d |B|<d

o x®with @ = (ay,. . .,ay) denotes the monomial x;"x5” - - - x;,"

o |a| = 2; @; is degree of monomial x¢

+
e v (x) is vector of( " J

) monomials in x of degree d or less

e SOS property is a semidefinite constraint in coefficients of f(x) and matrix A

e gives a sufficient condition for nonnegativity of f(x)

[Parrilo 2000] [Lasserre 2001]
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Inner approximation of cone of honnegative polynomials

e C is a compact set defined by polynomial inequalities g1(x) > 0, ..., gx(x) > 0
e P is the cone of polynomials of degree d or less that are nonnegative on C

e sufficient condition for p € P:
k
p(x) = po(x) + ) pj(x)g;(x)
j=1

where po(x), ..., pr(x) are sums of squares, i.e.,

pj(x) = Vrj(x)TAerj(x), Aj >0

e defines a p.s.d.-representable inner approximation of #
e increasing the degrees of p; gives hierarchy of nested inner approximations
e outer approximation of polynomial moment cones follows by duality

surveys in books [Lasserre 2010, 2015]
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Example 1

two models in 7 variables:; one exact and one uncertain

ni(x) = 1+x1+---+x7+x%+x1x2+---+x6x7+x%

design space is C = [-1, 1]’
parameter constraint 6 € [0, 4]
relaxation of order 2 gives solution

optimal design has 72 support points
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Example 2

e three models in 3 variables; one exact and two uncertain

ni(x) = 1+x1+x2+X3+x%+x1x2+x1X3+x§+xZX3+x§

172(x) 02,1 + 022x1 + 623x2 + 02.4x3

73(x) :

6’3,1 + 93,2)61 + 93,3)62 + -I—93,4X3 + 93’5)6% + 93,6)6% + 93,7)63

e design spaceis C = [-1,1]°
e parameter constraints are 6, = [1,2]* and 65 € [1, 2]’
e relaxation of order zero gives solution

e optimal design has 8 support points
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SDPs in signal processing and system theory

Classical sum-of-squares theorems

e characterize nonnegativity of univariate (trigonometric) polynomials
[Karlin and Studden 1966] [Krein and Nudelman 1977]

e (generalized) Kalman-Yakubovich-Popov lemma in system theory
e equivalent to sets of linear matrix inequalities

e via convex duality, SDP descriptions of moment cones

Applications

e underlie many of the applications of SDP in control and signal processing

e recent applications to experiment design for system identification
[Jansson and Hjalmarsson 2005] [Hildebrand, Gevers, Solari 2015]
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Positive semidefinite Toeplitz matrices

every n X n positive semidefinite Toeplitz matrix X can be decomposed as

1 I
r ela)k elwk
X — Z |Ck|2 ei2a)k eiZa)k
k=1 : :
ei(n—l)wk ei(n—l)a)k

e cone of positive semidefinite Toeplitz matrices is convex hull of

{aa™ | a = c(1,€9,.. ., =Dy

e this is also the cone of trigonometric moment matrices

e next: extensions from papers on Kalman-Yakubovich-Popov lemma



Quadratic matrix equation

let U, V be p X r matrices that satisfy
vyt =vvH
e U = VS§ with § unitary: follows from singular value decompositions
U=pP0  v=prof
and S = 0,04
e take Schur decomposition S = Q diag(1)Q*:
UQ = VQ diag(1)

with Q unitary and |A;| =--- = [4,| =1
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Decomposition of positive semidefinite Toeplitz matrix

e 1 X n matrix X is Toeplitz if FXF? = GXG" where

F=|0 L |, G=|15L. 0]

e factorize X = YY!; the matrix Y satisfies (FY)(FY) = (GY)(GY)!:

FYQ = GYQdiag(1) with Q unitary, |Ai|=---=|4,] =1

e columns ay, ..., a, of YQ give the decomposition

.
X = Z akalkq, Fa;, = 1;,Gay, Akl =1
k=1

vectors ay have the form ag = cx(1, Ay, ..., A7) with 2y = €'

Note: this holds for any pair F', G of equal dimension
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General quadratic equation

suppose ® € H? with det® < 0, and U, V are p X r matrices with
(DHUUH + (D21UVH + (D12VUH + (D22VVH =0

e then there exist unitary Q, vectors u, v with

H
UQ diag(v) = VQ diag(u), [’;‘:] cD[ Hi ] =0, (i) 20

e second condition restricts A, = uy /vy to circle or line in complex plane
I O 0 1 0 i
LB O B Y R
A unit circle imaginary axis real axis

pairs (ug, vi) with v, = 0 correspond to point A; at infinity
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Quadratic matrix equation and inequality

suppose @, ¥ € H? with det ® < 0, and U, V are p x r matrices with

O UUH + @, UV + 1, VU + @5 VVH =0
\PHUUH + LleUVH + \1112VUH + \PQQVVH <0

e then there exist unitary Q, vectors u, v with (ug, vi) # 0, such that

UQ diag(v) = VQ diag(u)

B EEEENAE

e |ast two conditions restrict A, = uy /v to segment of circle or line

e efficiently computed using standard matrix decompositions (SVD, Schur)

[lwasaki, Meinsma, Hara 2000] [Iwasaki and Hara 2003]



Generalized Carathéodory decomposition

the following two properties are equivalent:

e X is in the convex hull of {aa” | a € A}
A={a| uGa =vFa, (u,v) € C}

C is a segment of a line or circle in the complex plane, parameterized by

wen [1]'af2 ][22
\ 4 \ 4 \ 4 \ 4

<0

e X is positive semidefinite and satisfies the matrix equation and inequality

O FXFH + ©y FXG" + ®,GXFH + ®»,GXG" =0
W FXF? + ¥, FXG? + Y,GXFH + ¥,GXGH <0

H

r
decomposition X = >, apa;

k=1

with a; € A from efficient matrix algorithms
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Other interesting choices of FF, G

F=|J Bepr |, G=| 1L 0]

e J is a tridiagonal (Jacobi) matrix

e J and B define 3-term recurrence for system of orthogonal polynomials

po(d), pa(d), ..., pu_1(d)

e SDP description of convex hull of {aa’ | a € A} where A contains vectors

a = C(p()(/l)a pl(/l)? ) pn—l(/l))’ 1eC

where C is an interval of the real axis
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Other interesting choices of FF, G

F=|A B|, G=|1 0] (size ng X (ng + m))
e AG — F is controllability pencil of linear system

AG-F=|AI-A B |

e SDP description of convex hull of {aa® | a € A} where A contains the vectors

L l (Al — A)"'Bu

], uecCm" leC

and C is (a segment of) the unit circle or imaginary axis
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Summary

e optimal experiment design via second-order cone/semidefinite programming
e SDP relaxations of multivariate polynomial moment cones

e exact SDP description of class of univariate moment cones
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