Restriction of characters to Sylow *p*-subgroups

Eugenio Giannelli

Trinity Hall, University of Cambridge

New Perspectives in Representation Theory of Finite Groups
Banff, October 2017

Introduction

We let Irr(G) be the set of irreducible characters of G, and

We let $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and we write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \mid p \text{ does not divide } \chi(1)\}.$

We let $\mathrm{Irr}(G)$ be the set of irreducible characters of G, and

we write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \, | \, p \text{ does not divide } \chi(1)\}.$

Notice that $\operatorname{Irr}_{\rho'}(P) = \{\lambda \in \operatorname{Irr}(P) \mid \lambda(1) = 1\} =: \operatorname{Lin}(P)$.

We let $\mathrm{Irr}(G)$ be the set of irreducible characters of G, and

we write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \, | \, p \text{ does not divide } \chi(1)\}.$

Notice that $\operatorname{Irr}_{\rho'}(P) = \{\lambda \in \operatorname{Irr}(P) \mid \lambda(1) = 1\} =: \operatorname{Lin}(P)$.

Conjecture (McKay; 1972)

Let G be a finite group, p prime. Then $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|$.

Let G be a finite group, and p = 2. Then $|\operatorname{Irr}_{2'}(G)| = |\operatorname{Irr}_{2'}(\mathbf{N}_G(P))|$.

Let G be a finite group, and p=2. Then $|\operatorname{Irr}_{2'}(G)|=|\operatorname{Irr}_{2'}(N_G(P))|$.

And what about me?

Let G be a finite group, and p=2. Then $|\operatorname{Irr}_{2'}(G)|=|\operatorname{Irr}_{2'}(N_G(P))|$.

And what about me?

Let S_n be the symmetric group and let $P_n \in Syl_2(S_n)$.

Goal (2016)

Find a canonical bijection $\Phi: \operatorname{Irr}_{2'}(S_n) \longrightarrow \operatorname{Irr}_{2'}(\mathbf{N}_{S_n}(P_n))$

Let G be a finite group, and p=2. Then $|\operatorname{Irr}_{2'}(G)|=|\operatorname{Irr}_{2'}(N_G(P))|$.

And what about me?

Let S_n be the symmetric group and let $P_n \in Syl_2(S_n)$.

Goal (2016)

Find a canonical bijection $\Phi: \operatorname{Irr}_{2'}(S_n) \longrightarrow \operatorname{Irr}_{2'}(\mathbf{N}_{S_n}(P_n))$

Fact: $\mathbf{N}_{S_n}(P_n) = P_n$. Hence $\operatorname{Irr}_{2'}(\mathbf{N}_{S_n}(P_n)) = \operatorname{Lin}(P_n)$.

Theorem A (G, 2016)

Let $\chi \in \operatorname{Irr}_{2^{\prime}}(S_{2^k})$ then:

- (i) There exists a unique $\chi^* \in \operatorname{Lin}(P_{2^k})$ such that $\chi \downarrow_{P_{2^k}} = \chi^* + \Delta$. (Here Δ is a sum of irreducible characters of even degree).
- (ii) Moreover, $\star : \operatorname{Irr}_{2'}(S_{2^k}) \longrightarrow \operatorname{Irr}_{2'}(\mathbf{N}_{S_{2^k}}(P_{2^k}))$ is a bijection.

Theorem A (G, 2016)

Let $\chi \in \operatorname{Irr}_{2^{i}}(S_{2^{k}})$ then:

- (i) There exists a unique $\chi^* \in \text{Lin}(P_{2^k})$ such that $\chi \downarrow_{P_{2^k}} = \chi^* + \Delta$. (Here Δ is a sum of irreducible characters of even degree).
- (ii) Moreover, $\star : \operatorname{Irr}_{2'}(S_{2^k}) \longrightarrow \operatorname{Irr}_{2'}(\mathbf{N}_{S_{2^k}}(P_{2^k}))$ is a bijection.

Are there other cases where we can find such a nice correspondence?

Theorem A (G, 2016)

Let $\chi \in \operatorname{Irr}_{2^{\prime}}(S_{2^k})$ then:

- (i) There exists a unique $\chi^* \in \text{Lin}(P_{2^k})$ such that $\chi \downarrow_{P_{2^k}} = \chi^* + \Delta$. (Here Δ is a sum of irreducible characters of even degree).
- (ii) Moreover, $\star: \operatorname{Irr}_{2'}(S_{2^k}) \longrightarrow \operatorname{Irr}_{2'}(\mathbf{N}_{S_{2^k}}(P_{2^k}))$ is a bijection.

Are there other cases where we can find such a *nice* correspondence?

Theorem B (G, 2016)

Let $n \in \mathbb{N}$ and $\chi \in \operatorname{Irr}(S_n)$, then:

- (i) There always exists a $\lambda \in \operatorname{Lin}(P_n)$ such that $\lambda \mid \chi \downarrow_{P_n}$.
- (ii) λ is unique if and only if $n = 2^k$ and $\chi \in Irr_{2'}(S_{2^k})$.

Theorem C (G, Kleshchev, Navarro, Tiep 2016)

There exists a combinatorially defined canonical bijection

$$\Phi: \operatorname{Irr}_{2'}(S_n) \longrightarrow \operatorname{Irr}_{2'}(\mathbf{N}_{S_n}(P_n)).$$
 Moreover $\Phi(\chi) \mid \chi \downarrow_{P_n}$, for all

 $\chi \in \operatorname{Irr}(S_n)$.

Restriction to Sylow *p*-subgroups

Restriction to Sylow p-subgroups

This is joint work with Gabriel Navarro.

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{\lambda \in \text{Lin}(P) : \lambda \mid \chi \downarrow_P \}.$$

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{\lambda \in \operatorname{Lin}(P) : \lambda \mid \chi \downarrow_{P} \}.$$

 $|L_{\chi}|$ =number of distinct linear constituents of $\chi \downarrow_{P}$.

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{ \lambda \in \text{Lin}(P) : \lambda \mid \chi \downarrow_{P} \}.$$

 $|L_{\chi}|$ =number of distinct linear constituents of $\chi \downarrow_{P}$.

Facts

• If $\chi \in \operatorname{Irr}_{p'}(G)$ then $|L_{\chi}| \neq 0$.

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{ \lambda \in \text{Lin}(P) : \lambda \mid \chi \downarrow_{P} \}.$$

 $|L_{\gamma}|$ = number of distinct linear constituents of $\chi \downarrow_P$.

Facts

- If $\chi \in \operatorname{Irr}_{p'}(G)$ then $|L_{\chi}| \neq 0$.
- If $p \mid \chi(1)$ then $|L_{\chi}|$ could in principle take any value $\{0, 1, 2, \ldots\}$.

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{ \lambda \in \text{Lin}(P) : \lambda \mid \chi \downarrow_{P} \}.$$

 $|L_{\chi}|$ =number of distinct linear constituents of $\chi \downarrow_{P}$.

Facts

- If $\chi \in \operatorname{Irr}_{p'}(G)$ then $|L_{\chi}| \neq 0$.
- If $p \mid \chi(1)$ then $|L_{\chi}|$ could in principle take any value $\{0, 1, 2, \ldots\}$.
- If $G = S_n$ and p = 2 then $|L_{\chi}| \neq 0$ for all χ .

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Let p be any prime and let $\chi \in \operatorname{Irr}(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

Let p be any prime and let $\chi \in \operatorname{Irr}(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

• It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \operatorname{Syl}(S_{p^k})$.

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

- It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \operatorname{Syl}(S_{p^k})$.
- $\bullet \ P_{p^k} \cong \ C_p \wr \cdots \wr C_p \wr C_p = P_{p^{k-1}} \wr C_p = B \rtimes C_p,$
- where $B = P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Let p be any prime and let $\chi \in \operatorname{Irr}(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

- It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \operatorname{Syl}(S_{p^k})$.
- $P_{p^k} \cong (C_p \wr \cdots \wr C_p) \wr C_p = P_{p^{k-1}} \wr C_p = B \rtimes C_p$
- where $B = P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

- It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \text{Syl}(S_{p^k})$.
- $P_{p^k} \cong (C_p \wr \cdots \wr C_p) \wr C_p = P_{p^{k-1}} \wr C_p = B \rtimes C_p$
- where $B = P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Remark

Let
$$\lambda \in \operatorname{Irr}(P_{p^k})$$
. Then $\lambda(1) = 1$ if and only if there exists $\varphi \in \operatorname{Lin}(P_{p^{k-1}})$ such that $\varphi \times \varphi \times \cdots \times \varphi \mid \lambda \downarrow_B$.

...blackboard...

.....more generally, let n=qm for some $q,m\in\mathbb{N}$ and let $D=S_m\times S_m\times \cdots \times S_m < S_{am}.$

.....more generally, let n=qm for some $q,m\in\mathbb{N}$ and let

$$D = S_m \times S_m \times \cdots \times S_m \leq S_{qm}.$$

Theorem B (The q-section of a character/partition)

Let $\chi \in \operatorname{Irr}(S_n)$. Then, there exists $\Delta(\chi) \in \operatorname{Irr}(S_m)$ such that

$$\Delta(\chi) \times \Delta(\chi) \times \cdots \times \Delta(\chi) \mid \chi \downarrow_D$$
.

.....more generally, let n=qm for some $q,m\in\mathbb{N}$ and let

$$D = S_m \times S_m \times \cdots \times S_m \leq S_{qm}.$$

Theorem B (The q-section of a character/partition)

Let $\chi \in \operatorname{Irr}(S_n)$. Then, there exists $\Delta(\chi) \in \operatorname{Irr}(S_m)$ such that

$$\Delta(\chi) \times \Delta(\chi) \times \cdots \times \Delta(\chi) \mid \chi \downarrow_D$$
.

What about arbitrary groups?

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then $|L_{\chi}| \geq p$.

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then $|L_{\chi}| \geq p$.

Theorem D

Conjecture C holds for the following classes of groups:

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then $|L_{\chi}| \geq p$.

Theorem D

Conjecture C holds for the following classes of groups:

- Solvable groups.
- Groups with abelian Sylow p-subgroup. (Strong form).
- Symmetric and Alternating groups. (Strong form).
- All the sporadic simple groups.

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. (If $|L_{\chi}| \neq 0$) then $|L_{\chi}| \geq p$.

Theorem D

Conjecture C holds for the following classes of groups:

- Solvable groups.
- Groups with abelian Sylow p-subgroup. (Strong form).
- Symmetric and Alternating groups. (Strong form).
- All the sporadic simple groups.

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_P$ has a linear constituent λ then there exists a subgroup $D \leq P$ of index p such that $(\lambda \downarrow_D) \uparrow^P$ is a constituent of $\chi \downarrow_P$.

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_P$ has a linear constituent λ then there exists a subgroup $D \leq P$ of index p such that $(\lambda \downarrow_D) \uparrow^P$ is a constituent of $\chi \downarrow_P$.

Groups with abelian Sylow *p*-subgroups

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_P$ has a linear constituent λ then there exists a subgroup $D \leq P$ of index p such that $(\lambda \downarrow_D) \uparrow^P$ is a constituent of $\chi \downarrow_P$.

Groups with abelian Sylow *p*-subgroups

Roughly speaking, the same as above holds. More precisely, if B is the p-block of χ and D is a defect group of B contained in P then $\lambda \uparrow^P$ is a constituent of $\chi \downarrow_P$, for some $\lambda \in \operatorname{Lin}(D)$.

Future work: Prove Conjecture C, for all finite groups.....

Future work: Prove Conjecture C, for all finite groups.....

Suspect

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then then there exists a subgroup $D \subsetneq P$ and $\lambda \in \operatorname{Lin}(D)$ such that $(\lambda) \uparrow^{P}$ is a constituent of $\chi \downarrow_{P}$.

Permutation characters and Sylow *p*-subgroups

(A question of Alex Zalesski)

Question

What can we say about $(1_{P_n}) \uparrow^{S_n}$?

Can we determine its irreducible constituents?

Question

What can we say about $(1_{P_n}) \uparrow^{S_n}$?

Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda = (\lambda_1, \dots, \lambda_k)$, such that $\sum \lambda_i = n$.

Question

What can we say about $(1_{P_n}) \uparrow^{S_n}$?

Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda = (\lambda_1, \dots, \lambda_k)$, such that $\sum \lambda_i = n$.

$$\operatorname{Irr}(S_n) = \{\chi^{\lambda} \mid \lambda \vdash n\}$$

Question

What can we say about $(1_{P_n}) \uparrow^{S_n}$?

Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda = (\lambda_1, \dots, \lambda_k)$, such that $\sum \lambda_i = n$.

$$\operatorname{Irr}(S_n) = \{\chi^{\lambda} \mid \lambda \vdash n\}$$

Equivalent Question

Given $\lambda \vdash n$, is 1_{P_n} an irreducible constituent of $(\chi^{\lambda}) \downarrow_{P_n}$?

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}$.

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}.$

Some applications and remarks

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}$.

Some applications and remarks

• We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}(S_n, P_n, 1_{P_n})$.

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}$.

Some applications and remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}(S_n, P_n, 1_{P_n})$.
- We obtain a similar characterization for Alternating groups.

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}$.

Some applications and remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}(S_n, P_n, 1_{P_n})$.
- We obtain a similar characterization for Alternating groups.
- The situation is completely different, and more chaotic when p=2.

Thank you very much!!

Thank you very much!!

(Thanks to ABC for technical support)