Perfect Isometries and Basic Sets

Jean-Baptiste Gramain

BIRS, October 2017

Basic Sets: Motivation, Definition

Let G be a finite group and $\operatorname{Irr}(G)$ be the set of irreducible complex characters of G.
Let p be a prime (dividing $|G|$), and let \mathcal{C} be the set of p-regular elements of G.

One of the main problems in modular representation theory is to find the (p-modular) decomposition matrix D of G.
For example, the decomposition matrices are not known for the symmetric group \mathfrak{S}_{n} or the alternating group \mathfrak{A}_{n}.

Basic sets can sometimes help solving this problem, or at least reducing it.

For each $\chi \in \mathbb{C} \operatorname{lrr}(G)$, we define a class function $\chi^{\mathcal{C}}$ of G by letting

$$
\chi^{\mathcal{C}}(g)= \begin{cases}\chi(g) & \text { if } g \in \mathcal{C} \\ 0 & \text { otherwise }\end{cases}
$$

We call p-basic set for G any subset $\mathcal{B} \subset \operatorname{lrr}(G)$ such that the family $\mathcal{B}^{\mathcal{C}}=\left\{\chi^{\mathcal{C}}, \chi \in \mathcal{B}\right\}$ is a \mathbb{Z}-basis for the \mathbb{Z}-module generated by $\operatorname{IrC}^{\mathcal{C}}(G)=\left\{\chi^{\mathcal{C}}, \chi \in \operatorname{lrr}(G)\right\}$.

In particular, $|\mathcal{B}|$ is the number of p-regular conjugacy classes of G. If \mathcal{B} is a p-basic set for G, and if we write $\chi^{\mathcal{C}}=\sum_{\psi \in \mathcal{B}} n_{\chi \psi} \psi^{C}$ $\left(\chi \in \operatorname{lrr}(G), n_{\chi \psi} \in \mathbb{Z}\right)$ and $N_{\mathcal{B}}=\left(\left(n_{\chi \psi}\right)\right)_{\chi \in \operatorname{lr}(G), \psi \in \mathcal{B}}$, and $D_{\mathcal{B}}$ for the (square) sub-matrix of D whose rows correspond to \mathcal{B}, then we have

$$
D=N_{\mathcal{B}} D_{\mathcal{B}} .
$$

One can define the notion of p-basic set for a p-block of G, and one shows easily that, if each p-block b of G has a p-basic set \mathcal{B}_{b}, then the union of the \mathcal{B}_{b} 's is a p-basic set for G.

State of the Art

Hiss Conjecture (HC, 19??): If G is a finite group and p is any prime, then G has a p-basic set.

HC is true if $G=G_{2}(q)$ (Hiss) or $G=S U_{3}\left(q^{2}\right)$ (Geck) and $p \nmid q$ (and this led to constructing the decomposition matrices).

HC is true if $G=\mathfrak{S}_{n}$ (James-Kerber), if $G=G L_{2}(q), G L_{3}(q)$ or $G L_{4}(q)$ and $p \mid q$ (Brunat), if G is of Lie type, p is non-defining, and G satisfies certain additional properties (Geck, Geck-Hiss), or if G is p-solvable (Fong-Swan).

HC is true if $G=\widetilde{\mathfrak{S}}_{n}$, a double Schur cover of \mathfrak{S}_{n}, and $p=2$
(Bessenrodt-Olsson).
HC is also true if $G=\mathfrak{A}_{n}$ (any p), and if $G=\widetilde{\mathfrak{S}}_{n}$ or $G=\tilde{\mathfrak{A}}_{n}$ and p is odd (Brunat-Gramain).

Semi-Direct Products

The first step to show the existence of p-basic sets for p-solvable groups is the case of semi-direct products.

If $G=P \rtimes Q$, where P is a p-group and Q is a p^{\prime}-group, then the set \mathcal{B} of irreducible characters of G with P in their kernel is a p-basic set for G.

We have $\mathcal{B}=\{\psi \circ \pi \mid \psi \in \operatorname{lrr}(Q))\}$, where $\pi: G \longrightarrow Q$ is the canonical surjection.
Also, all elements of Q are p-regular, and the conjugacy classes of p-regular elements of G are in bijection with the conjugacy classes of Q.

In this case, the matrix $N_{\mathcal{B}}=\left(\left(n_{\chi \psi}\right)\right)_{\chi \in \operatorname{lrr}(G), \psi \in \operatorname{lr}(Q)}$ is known in theory. We simply have

$$
n_{\chi \psi}=\left\langle\operatorname{Res}_{Q}^{G}(\chi), \psi\right\rangle_{Q}
$$

Perfect Isometries

If G and G^{\prime} are finite groups, \mathcal{C} and C^{\prime} are the sets of p-regular elements of G and G^{\prime} respectively, and if b and b^{\prime} are unions of p-blocks of G and G^{\prime} respectively, then a perfect isometry between b and b^{\prime} is an isometry $\mathcal{I}: \mathbb{C} \operatorname{lrr}(b) \longrightarrow \mathbb{C} \operatorname{lrr}\left(b^{\prime}\right)$ such that
(1) $\mathcal{I}(\mathbb{Z} \operatorname{Irr}(b))=\mathbb{Z} \operatorname{Irr}\left(b^{\prime}\right)$ and
(2) for all $\chi \in \operatorname{lrr}(b)$, we have $\mathcal{I}\left(\chi^{c}\right)=(\mathcal{I}(\chi))^{c^{\prime}}$.

Note that Broué's perfect isometries are also perfect isometries in this sense.

Whenever $\chi \in \operatorname{Irr}(b)$, we let $\mathrm{I}(\chi)=\mathcal{I}(\chi)$ if $\mathcal{I}(\chi) \in \operatorname{Irr}\left(b^{\prime}\right)$, and $\mathrm{I}(\chi)=-\mathcal{I}(\chi)$ otherwise. In this way, I gives a bijection between $\operatorname{lrr}(b)$ and $\operatorname{Irr}\left(b^{\prime}\right)$.

Proposition: If \mathcal{I} is a perfect isometry between b and b^{\prime}, and \mathcal{B} is a p-basic set for b, then $\mathrm{I}(\mathcal{B})=\{\mathrm{I}(\chi), \chi \in \mathcal{B}\}$ is a p-basic set for b^{\prime}.

Symmetric Group

The irreducible complex characters of the symmetric group \mathfrak{S}_{n} are canonically labeled by the partitions of n.

We have $\operatorname{lrr}\left(\mathfrak{S}_{n}\right)=\left\{\chi_{\lambda} \mid \lambda \vdash n\right\}$, and two characters χ_{λ} and χ_{μ} of \mathfrak{S}_{n} belong to the same p-block if and only if λ and μ have the same p-core (Nakayama Conjecture).

In particular, if a block b of \mathfrak{S}_{n} corresponds to the p-core $\gamma \vdash r$, then $n=p w+r$, where w is the p-weight of b.

Theorem [Enguehard, 1990]: If b and b^{\prime} are p-blocks of the symmetric groups \mathfrak{S}_{m} and \mathfrak{S}_{n} of the same p-weight, then b and b^{\prime} are perfectly isometric.

It is therefore enough to consider the principal p-block of $\mathfrak{S}_{p w}$.

Abelian Defect

The principal p-block b of $\mathfrak{S}_{p w}$ has Abelian defect if and only if $w<p$.

If so, b has defect group \mathbb{Z}_{p}^{w}, and there is a perfect isometry between b and its Brauer correspondent b_{0} in $N=N_{\mathfrak{S}_{p w}}\left(\mathbb{Z}_{p}^{w}\right)$ (Rouquier, 1994).

Now $N \cong N_{\mathfrak{S}_{p}}\left(\mathbb{Z}_{p}\right)\left\langle\mathfrak{S}_{w}\right.$, and, as $N_{\mathfrak{S}_{p}}\left(\mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{p-1}$, we get

$$
N \cong\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p-1}\right)\left\langle\mathfrak{S}_{w} \cong \mathbb{Z}_{p}^{w} \rtimes\left(\mathbb{Z}_{p-1} \backslash \mathfrak{S}_{w}\right)\right.
$$

and $\mathbb{Z}_{p-1} \backslash \mathfrak{S}_{w}$ is a p^{\prime}-group since $w<p$.
In fact, we have $\operatorname{Irr}\left(b_{0}\right)=\operatorname{Irr}(N)$, and so b_{0} and b have a p-basic set.

Non-Abelian Defect

In order to force the previous argument to work when $w \geq p$, we generalize things a bit:

If G is a finite group and C is a union of conjugacy classes of G, and if $b \subset \operatorname{lrr}(G)$, then we call C-basic set for b any subset $\mathcal{B} \subset b$ such that the family $\mathcal{B}^{\mathcal{C}}=\left\{\chi^{\mathcal{C}}, \chi \in \mathcal{B}\right\}$ is a \mathbb{Z}-basis for the \mathbb{Z}-module generated by $b^{C}=\left\{\chi^{C}, \chi \in b\right\}$.

If now \mathcal{C}^{\prime} is a union of conjugacy classes of G^{\prime}, and if $b^{\prime} \subset \operatorname{lrr}\left(G^{\prime}\right)$, then a $\left(C, C^{\prime}\right)$-perfect isometry between b and b^{\prime} is an isometry $\mathcal{I}: \mathbb{C b} \longrightarrow \mathbb{C} b^{\prime}$ such that
(1) $\mathcal{I}(\mathbb{Z} b)=\mathbb{Z} b^{\prime}$ and
(2) for all $\chi \in b$, we have $\mathcal{I}\left(\chi^{\mathcal{C}}\right)=(\mathcal{I}(\chi))^{\mathcal{C}^{\prime}}$.

In analogy with the p-regular case, the image of a \mathcal{C}-basic set for b via a $\left(C, C^{\prime}\right)$-perfect isometry gives a \mathcal{C}^{\prime}-basic set for b^{\prime}.

Non-Abelian Defect

Now let b be the principal p-block of $\mathfrak{S}_{p w}$, and consider again $N \cong \mathbb{Z}_{p}^{w} \rtimes\left(\mathbb{Z}_{p-1} \backslash \mathfrak{S}_{w}\right)$ inside $\mathfrak{S}_{p w}$.
Let \mathcal{C} be the set of p-regular elements of $\mathfrak{S}_{p w}$, and let \mathcal{C}^{\prime} consist of those elements of N whose (p)-cycles only come from $\mathbb{Z}_{p-1} \backslash \mathfrak{S}_{w}$. Thus, if $w<p, \mathcal{C}^{\prime}$ is just the set of p-regular elements of N.

> Theorem [Brunat-G, 2010]: There is a $\left(C, C^{\prime}\right)$-perfect isometry between $\operatorname{Irr}(b)$ and $\operatorname{Irr}(N)$, and the irreducible characters of N with \mathbb{Z}_{p}^{w} in their kernel form a C^{\prime}-basic set for $\operatorname{lrr}(N)$. In particular, b has a p-basic set.

Putting blockwise results back together, this gives a p-basic for \mathfrak{S}_{n}, which, unlike that of James and Kerber, can be used to produce a p-basic set for \mathfrak{A}_{n} (easily if p is odd).

Covering Groups of \mathfrak{S}_{n} and \mathfrak{A}_{n}

There is a nonsplit exact sequence

$$
1 \longrightarrow\langle z\rangle \longrightarrow \widetilde{\mathfrak{S}}_{n} \xrightarrow{\pi} \mathfrak{S}_{n} \longrightarrow 1
$$

where $\langle z\rangle=Z\left(\widetilde{\mathfrak{S}}_{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
$\pi^{-1}\left(\mathfrak{A}_{n}\right)=\tilde{\mathfrak{A}}_{n}$ is the 2 -fold covering group of \mathfrak{A}_{n}.
Irreducible complex characters of $\widetilde{\mathfrak{S}}_{n}$ (resp. $\widetilde{\mathfrak{A}}_{n}$) are either directly lifted from $\mathfrak{S}_{n}\left(\right.$ resp. $\left.\mathfrak{A}_{n}\right)$, or are faithful, and then called spin characters.

If p is an odd prime, then each p-block of $\tilde{\mathfrak{S}}_{n}$ or $\tilde{\mathfrak{A}}_{n}$ contains

- either no spin character, whence is a p-block of \mathfrak{S}_{n} or \mathfrak{A}_{n},
- or only spin characters, and is called a spin block.

For any $G \leq \widetilde{S}_{n}$, we write $\operatorname{SI}(G)$ for the set of irreducible spin characters of G.

Perfect Isometries Between Blocks of Covering Groups

Spin characters of $\tilde{\mathfrak{S}}_{n}$ and $\tilde{\mathfrak{A}}_{n}$ are labelled by the bar-partitions of n, i.e. the partitions of n in distinct parts.

If p is odd, then two spin characters of $\widetilde{\mathfrak{S}}_{n}$ or $\tilde{\mathfrak{A}}_{n}$ belong to the same p-block if and only if the bar-partitions labelling them have the same \bar{p}-core (Morris Conjecture).

In particular, each spin p-block b of $\widetilde{\mathfrak{S}}_{n}$ or $\tilde{\mathfrak{A}}_{n}$ has a \bar{p}-weight w and a sign $\sigma(b)$.

Theorem [Brunat-G, 2017]: Suppose p is odd, and b and b^{\prime} are spin p-blocks of $\widetilde{\mathfrak{S}}_{n}$ and $\widetilde{\mathfrak{S}}_{m}$ with the same \bar{p}-weight. Then

- If $\sigma(b)=\sigma\left(b^{\prime}\right)$, then b and b^{\prime} are perfectly isometric.
- If $\sigma(b) \neq \sigma\left(b^{\prime}\right)$, then b covers a unique spin block b^{*} of $\tilde{\mathfrak{A}}_{n}$, and b^{*} and b^{\prime} are perfectly isometric.

Broué's Perfect Isometry Conjecture

For $w>0$, let b be the principal spin p-blocks of $\widetilde{\mathfrak{S}}_{p w}$ (p odd), and consider again $N=P \rtimes L$ inside $\mathfrak{S}_{p w}$, where $P \cong \mathbb{Z}_{p}^{w}$ and $L \cong \mathbb{Z}_{p-1} \backslash \mathfrak{S}_{w}$.

Now $\widetilde{N}=\pi^{-1}(N) \leq \widetilde{\mathfrak{S}}_{p w}$ can be written as $\widetilde{N}=Q \rtimes \widetilde{L}$, where $\tilde{L}=\pi^{-1}(L)$ and $Q \cong P$. (In fact, $\pi^{-1}(P)=\langle z\rangle \times Q$.)

If $w<p$, then \widetilde{N} is the normalizer of Sylow p-subgroups of $\widetilde{\mathfrak{S}}_{p w}$, and it has a single spin p-block.

Theorem [Livesey, 2016]: If $w<p$, then there is a perfect isometry between b and $\operatorname{SI}(\tilde{N})$,

Generalizing Livesey's Result

We have $\tilde{N}=Q \rtimes \tilde{L} \leq \widetilde{\mathfrak{S}}_{p w}$.
Let \mathcal{C} be the sets of p-regular elements of $\tilde{\mathcal{S}}_{p w}$ and \mathcal{C}^{\prime} be the union of conjugacy classes of \tilde{N} which have a representative in \tilde{L}.

Theorem [Brunat-G, 201?]: If p is odd and $w>0$, then

- The set of irreducible spin characters of \tilde{N} with Q in their kernel is a C^{\prime}-basic set for $\mathrm{SI}(\widetilde{N})$. It is parametrized by $\frac{p-1}{2}$-quotients of w.
- There is a $\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$-perfect isometry between b and $\mathrm{SI}(\widetilde{N})$. In particular, b has a p-basic set.

A similar argument shows the the principal spin p-block of $\tilde{\mathfrak{A}}_{n}$ has a p-basic set.
From this, we deduce that $\widetilde{\mathfrak{S}}_{n}$ and $\widetilde{\mathfrak{A}}_{n}$ have p-basic sets for any n.

Consequences

We can now recover easily some results of Olsson (1992).
Denote by ε the unique non-trivial linear character of $\tilde{\mathfrak{S}}_{n}$ with $\tilde{\mathfrak{A}}_{n}$ in its kernel (so that $\varepsilon=\operatorname{sgn} \circ \pi$, and $\widetilde{\mathfrak{A}}_{n}=\operatorname{ker}(\varepsilon)$).
A spin character χ of $\widetilde{\mathfrak{S}}_{n}$ is self-associate if $\varepsilon \otimes \chi=\chi$.
Now let b be a spin p-block of $\widetilde{\mathfrak{S}}_{n}$ of weight w, and let \mathcal{B} be the p-basic set for b obtained above.

The characters in \mathcal{B} are labelled by the $(p-1) / 2$-quotients of w, and each such quotient labels 2 spin characters in b, or each labels 1 spin character in b. This only depends on w.

In particular, all the characters in \mathcal{B} are self-associate or none is, and this gives a formula for the number of irreducible Brauer characters in b (and for those in b^{*}).

Because \mathcal{B} is ε-stable, we also obtain that all irreducible Brauer characters in b are self-associate, or none is.

Thank you!

(Banff, 18 March 2014)

