Perfect Isometries and Basic Sets

Jean-Baptiste Gramain

BIRS, October 2017

Let G be a finite group and Irr(G) be the set of irreducible complex characters of G. Let p be a prime (dividing |G|), and let C be the set of p-regular elements of G.

One of the main problems in modular representation theory is to find the (*p*-modular) decomposition matrix D of G. For example, the decomposition matrices are not known for the symmetric group \mathfrak{S}_n or the alternating group \mathfrak{A}_n .

Basic sets can sometimes help solving this problem, or at least reducing it.

For each $\chi \in \mathbb{C} \operatorname{Irr}(G)$, we define a class function $\chi^{\mathcal{C}}$ of G by letting

$$\chi^{\mathcal{C}}(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in \mathcal{C}, \ 0 & ext{otherwise}. \end{array}
ight.$$

We call *p*-basic set for *G* any subset $\mathcal{B} \subset Irr(G)$ such that the family $\mathcal{B}^{\mathcal{C}} = \{\chi^{\mathcal{C}}, \chi \in \mathcal{B}\}$ is a \mathbb{Z} -basis for the \mathbb{Z} -module generated by $Irr^{\mathcal{C}}(G) = \{\chi^{\mathcal{C}}, \chi \in Irr(G)\}$.

In particular, $|\mathcal{B}|$ is the number of *p*-regular conjugacy classes of *G*.

If \mathcal{B} is a *p*-basic set for *G*, and if we write $\chi^{\mathcal{C}} = \sum_{\psi \in \mathcal{B}} n_{\chi\psi} \psi^{\mathcal{C}}$ $(\chi \in \operatorname{Irr}(G), n_{\chi\psi} \in \mathbb{Z})$ and $N_{\mathcal{B}} = ((n_{\chi\psi}))_{\chi \in \operatorname{Irr}(G), \psi \in \mathcal{B}}$, and $D_{\mathcal{B}}$ for the (square) sub-matrix of *D* whose rows correspond to \mathcal{B} , then we have

$$D = N_{\mathcal{B}}D_{\mathcal{B}}.$$

One can define the notion of *p*-basic set for a *p*-block of *G*, and one shows easily that, if each *p*-block *b* of *G* has a *p*-basic set \mathcal{B}_b , then the union of the \mathcal{B}_b 's is a *p*-basic set for *G*.

State of the Art

Hiss Conjecture (HC, 19??): If G is a finite group and p is any prime, then G has a p-basic set.

HC is true if $G = G_2(q)$ (Hiss) or $G = SU_3(q^2)$ (Geck) and $p \not| q$ (and this led to constructing the decomposition matrices).

HC is true if $G = \mathfrak{S}_n$ (James-Kerber), if $G = GL_2(q)$, $GL_3(q)$ or $GL_4(q)$ and p|q (Brunat), if G is of Lie type, p is non-defining, and G satisfies certain additional properties (Geck, Geck-Hiss), or if G is p-solvable (Fong-Swan).

HC is true if $G = \widetilde{\mathfrak{S}}_n$, a double Schur cover of \mathfrak{S}_n , and p = 2 (Bessenrodt-Olsson).

HC is also true if $G = \mathfrak{A}_n$ (any p), and if $G = \tilde{\mathfrak{S}}_n$ or $G = \tilde{\mathfrak{A}}_n$ and p is odd (Brunat-Gramain).

Semi-Direct Products

The first step to show the existence of p-basic sets for p-solvable groups is the case of semi-direct products.

If $G = P \rtimes Q$, where P is a p-group and Q is a p'-group, then the set \mathcal{B} of irreducible characters of G with P in their kernel is a p-basic set for G.

We have $\mathcal{B} = \{ \psi \circ \pi \mid \psi \in Irr(Q) \}$, where $\pi \colon G \longrightarrow Q$ is the canonical surjection.

Also, all elements of Q are p-regular, and the conjugacy classes of p-regular elements of G are in bijection with the conjugacy classes of Q.

In this case, the matrix $N_{\mathcal{B}} = ((n_{\chi\psi}))_{\chi\in Irr(G),\psi\in Irr(Q)}$ is known in theory. We simply have

$$n_{\chi\psi} = \langle {\sf Res}^G_Q(\chi)\,,\,\psi
angle_Q$$

Perfect Isometries

If G and G' are finite groups, C and C' are the sets of p-regular elements of G and G' respectively, and if b and b' are unions of p-blocks of G and G' respectively, then a perfect isometry between b and b' is an isometry $\mathcal{I}: \mathbb{C} \operatorname{Irr}(b) \longrightarrow \mathbb{C} \operatorname{Irr}(b')$ such that

(1)
$$\mathcal{I}(\mathbb{Z} \operatorname{Irr}(b)) = \mathbb{Z} \operatorname{Irr}(b')$$
 and
(2) for all $\chi \in \operatorname{Irr}(b)$, we have $\mathcal{I}(\chi^{\mathcal{C}}) = (\mathcal{I}(\chi))^{\mathcal{C}'}$.

Note that Broué's perfect isometries are also perfect isometries in this sense.

Whenever $\chi \in Irr(b)$, we let $I(\chi) = \mathcal{I}(\chi)$ if $\mathcal{I}(\chi) \in Irr(b')$, and $I(\chi) = -\mathcal{I}(\chi)$ otherwise. In this way, I gives a bijection between Irr(b) and Irr(b').

Proposition: If \mathcal{I} is a perfect isometry between b and b', and \mathcal{B} is a p-basic set for b, then $I(\mathcal{B}) = \{I(\chi), \chi \in \mathcal{B}\}$ is a p-basic set for b'.

Symmetric Group

The irreducible complex characters of the symmetric group \mathfrak{S}_n are canonically labeled by the partitions of n.

We have $\operatorname{Irr}(\mathfrak{S}_n) = \{\chi_{\lambda} \mid \lambda \vdash n\}$, and two characters χ_{λ} and χ_{μ} of \mathfrak{S}_n belong to the same *p*-block if and only if λ and μ have the same *p*-core (Nakayama Conjecture).

In particular, if a block b of \mathfrak{S}_n corresponds to the p-core $\gamma \vdash r$, then n = pw + r, where w is the p-weight of b.

Theorem [Enguehard, 1990]: If *b* and *b'* are *p*-blocks of the symmetric groups \mathfrak{S}_m and \mathfrak{S}_n of the same *p*-weight, then *b* and *b'* are perfectly isometric.

It is therefore enough to consider the principal *p*-block of \mathfrak{S}_{pw} .

The principal *p*-block *b* of \mathfrak{S}_{pw} has Abelian defect if and only if w < p.

If so, *b* has defect group \mathbb{Z}_p^w , and there is a perfect isometry between *b* and its Brauer correspondent b_0 in $N = N_{\mathfrak{S}_{pw}}(\mathbb{Z}_p^w)$ (Rouquier, 1994).

Now
$$N \cong N_{\mathfrak{S}_p}(\mathbb{Z}_p) \wr \mathfrak{S}_w$$
, and, as $N_{\mathfrak{S}_p}(\mathbb{Z}_p) \cong \mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$, we get
 $N \cong (\mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}) \wr \mathfrak{S}_w \cong \mathbb{Z}_p^w \rtimes (\mathbb{Z}_{p-1} \wr \mathfrak{S}_w)$,

and $\mathbb{Z}_{p-1} \wr \mathfrak{S}_w$ is a p'-group since w < p.

In fact, we have $Irr(b_0) = Irr(N)$, and so b_0 and b have a p-basic set.

In order to force the previous argument to work when $w \ge p$, we generalize things a bit:

If G is a finite group and C is a union of conjugacy classes of G, and if $b \subset Irr(G)$, then we call C-basic set for b any subset $\mathcal{B} \subset b$ such that the family $\mathcal{B}^{\mathcal{C}} = \{\chi^{\mathcal{C}}, \chi \in \mathcal{B}\}$ is a Z-basis for the Z-module generated by $b^{\mathcal{C}} = \{\chi^{\mathcal{C}}, \chi \in b\}$.

If now C' is a union of conjugacy classes of G', and if $b' \subset Irr(G')$, then a (C, C')-perfect isometry between b and b' is an isometry $\mathcal{I}: \mathbb{C}b \longrightarrow \mathbb{C}b'$ such that

(1)
$$\mathcal{I}(\mathbb{Z}b) = \mathbb{Z}b'$$
 and
(2) for all $\chi \in b$, we have $\mathcal{I}(\chi^{\mathcal{C}}) = (\mathcal{I}(\chi))^{\mathcal{C}'}$.

In analogy with the *p*-regular case, the image of a *C*-basic set for *b* via a (C, C')-perfect isometry gives a *C'*-basic set for *b'*.

Non-Abelian Defect

Now let *b* be the principal *p*-block of \mathfrak{S}_{pw} , and consider again $N \cong \mathbb{Z}_p^w \rtimes (\mathbb{Z}_{p-1} \wr \mathfrak{S}_w)$ inside \mathfrak{S}_{pw} .

Let C be the set of p-regular elements of \mathfrak{S}_{pw} , and let C' consist of those elements of N whose (p)-cycles only come from $\mathbb{Z}_{p-1} \wr \mathfrak{S}_w$. Thus, if w < p, C' is just the set of p-regular elements of N.

Theorem [Brunat-G, 2010]: There is a (C, C')-perfect isometry between Irr(b) and Irr(N), and the irreducible characters of N with \mathbb{Z}_p^w in their kernel form a C'-basic set for Irr(N). In particular, b has a p-basic set.

Putting blockwise results back together, this gives a *p*-basic for \mathfrak{S}_n , which, unlike that of James and Kerber, can be used to produce a *p*-basic set for \mathfrak{A}_n (easily if *p* is odd).

Covering Groups of \mathfrak{S}_n and \mathfrak{A}_n

There is a nonsplit exact sequence

$$1 \longrightarrow \langle z \rangle \longrightarrow \widetilde{\mathfrak{S}}_n \xrightarrow{\pi} \mathfrak{S}_n \longrightarrow 1,$$

where $\langle z \rangle = Z(\widetilde{\mathfrak{S}}_n) \cong \mathbb{Z}/2\mathbb{Z}$.

 $\pi^{-1}(\mathfrak{A}_n) = \widetilde{\mathfrak{A}}_n$ is the 2-fold covering group of \mathfrak{A}_n .

Irreducible complex characters of $\widetilde{\mathfrak{S}}_n$ (resp. $\widetilde{\mathfrak{A}}_n$) are either directly lifted from \mathfrak{S}_n (resp. \mathfrak{A}_n), or are faithful, and then called spin characters.

If p is an odd prime, then each p-block of \mathfrak{S}_n or \mathfrak{A}_n contains

- either **no** spin character, whence is a *p*-block of \mathfrak{S}_n or \mathfrak{A}_n ,
- or only spin characters, and is called a spin block.

For any $G \leq \widetilde{\mathfrak{S}}_n$, we write SI(G) for the set of irreducible spin characters of G.

Perfect Isometries Between Blocks of Covering Groups

Spin characters of $\widetilde{\mathfrak{S}}_n$ and $\widetilde{\mathfrak{A}}_n$ are labelled by the bar-partitions of n, i.e. the partitions of n in distinct parts.

If p is odd, then two spin characters of \mathfrak{S}_n or \mathfrak{A}_n belong to the same p-block if and only if the bar-partitions labelling them have the same \bar{p} -core (Morris Conjecture).

In particular, each spin *p*-block *b* of $\widetilde{\mathfrak{S}}_n$ or $\widetilde{\mathfrak{A}}_n$ has a \overline{p} -weight *w* and a sign $\sigma(b)$.

Theorem [Brunat-G, 2017]: Suppose p is odd, and b and b' are spin p-blocks of $\widetilde{\mathfrak{S}}_n$ and $\widetilde{\mathfrak{S}}_m$ with the same \overline{p} -weight. Then

- If $\sigma(b) = \sigma(b')$, then b and b' are perfectly isometric.
- If $\sigma(b) \neq \sigma(b')$, then b covers a unique spin block b^* of \mathfrak{A}_n , and b^* and b' are perfectly isometric.

For w > 0, let b be the principal spin p-blocks of $\widetilde{\mathfrak{S}}_{pw}$ (p odd), and consider again $N = P \rtimes L$ inside \mathfrak{S}_{pw} , where $P \cong \mathbb{Z}_p^w$ and $L \cong \mathbb{Z}_{p-1} \wr \mathfrak{S}_w$.

Now $\widetilde{N} = \pi^{-1}(N) \leq \widetilde{\mathfrak{S}}_{pw}$ can be written as $\widetilde{N} = Q \rtimes \widetilde{L}$, where $\widetilde{L} = \pi^{-1}(L)$ and $Q \cong P$. (In fact, $\pi^{-1}(P) = \langle z \rangle \times Q$.)

If w < p, then \tilde{N} is the normalizer of Sylow *p*-subgroups of $\mathfrak{\tilde{S}}_{pw}$, and it has a single spin *p*-block.

Theorem [Livesey, 2016]: If w < p, then there is a perfect isometry between *b* and SI(\tilde{N}),

Generalizing Livesey's Result

We have $\widetilde{N} = Q \rtimes \widetilde{L} \leq \widetilde{\mathfrak{S}}_{pw}$.

Let C be the sets of p-regular elements of $\widetilde{\mathfrak{S}}_{pw}$ and C' be the union of conjugacy classes of \widetilde{N} which have a representative in \widetilde{L} .

Theorem [Brunat-G, 201?]: If p is odd and w > 0, then

- The set of irreducible spin characters of N
 with Q in their kernel is a C'-basic set for SI(N). It is parametrized by
 p-1/2-quotients of w.
- There is a (C, C')-perfect isometry between b and SI(N).
 In particular, b has a p-basic set.

A similar argument shows the the principal spin *p*-block of $\tilde{\mathfrak{A}}_n$ has a *p*-basic set.

From this, we deduce that $\widetilde{\mathfrak{S}}_n$ and $\widetilde{\mathfrak{A}}_n$ have *p*-basic sets for any *n*.

Consequences

We can now recover easily some results of Olsson (1992).

Denote by ε the unique non-trivial linear character of $\widetilde{\mathfrak{S}}_n$ with $\widetilde{\mathfrak{A}}_n$ in its kernel (so that $\varepsilon = \operatorname{sgn} \circ \pi$, and $\widetilde{\mathfrak{A}}_n = \ker(\varepsilon)$). A spin character χ of $\widetilde{\mathfrak{S}}_n$ is self-associate if $\varepsilon \otimes \chi = \chi$.

Now let *b* be a spin *p*-block of $\widetilde{\mathfrak{S}}_n$ of weight *w*, and let \mathcal{B} be the *p*-basic set for *b* obtained above.

The characters in \mathcal{B} are labelled by the (p-1)/2-quotients of w, and each such quotient labels 2 spin characters in b, or each labels 1 spin character in b. This only depends on w.

In particular, all the characters in \mathcal{B} are self-associate or none is, and this gives a formula for the number of irreducible Brauer characters in b (and for those in b^*).

Because \mathcal{B} is ε -stable, we also obtain that all irreducible Brauer characters in b are self-associate, or none is.

Thank you!

(Banff, 18 March 2014)