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Five Interesting Quartics in P3

Family Equation

F4 (Fermat/Dwork) x40 + x41 + x42 + x43
F2L2 x40 + x41 + x32x3 + x33x2

F1L3 (Klein-Mukai) x40 + x31x2 + x32x3 + x33x1
L2L2 x30x1 + x31x0 + x32x3 + x33x2

L4 x30x1 + x31x2 + x32x3 + x33x0

Warnings

I These quartics are not isomorphic.

I These quartics are not Fourier-Mukai partners.

I These quartics are not derived equivalent.
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Counting Points

Prime F4 F2L2 F1L3 L2L2 L4

5 0 20 30 80 40

7 64 50 64 64 78
11 144 122 144 144 254
13 128 180 206 336 232
17 600 328 294 600 328
19 400 362 400 400 438
23 576 530 576 576 622
29 768 884 1116 1232 1000
31 1024 962 1024 1024 1334
37 1152 1300 1374 1744 1448

Equality holds (mod p) for all p in this table.
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Counting Points on Pencils

I We can add the deforming monomial −4ψxyzw to each of our
quartics to obtain pencils of quartics X�,ψ.

I We can count the number of points on X�,ψ over Fp for
0 ≤ ψ < p.

I For each ψ, the point counts on X�,ψ agree (mod p).
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The Zeta Function

We can organize point-count information in a generating function.
Let X/Fq be an algebraic variety over the finite field of q = ps

elements.

Definition
The zeta function of X is

Z (X/Fq,T ) := exp

( ∞∑
s=1

#X (Fqs )
T s

s

)
∈ Q[[T ]].



Dwork and the Weil Conjectures

I Z (X/Fq,T ) is rational

I We can factor Z (X/Fq,T ) using polynomials with integer
coefficients:

Z (X/Fq,T ) =

∏n
j=1 P2j−1(T )∏n
j=0 P2j(T )

,

I dimX = n

I P0(t) = 1− T and P2n(T ) = 1− pnT

I For 1 ≤ j ≤ 2n − 1, degPj(T ) = bj , where bj = dimH j
dR(X ).



Projective Hypersurfaces

For a smooth projective hypersurface X in Pn, we have

Z (X ,T ) =
PX (T )(−1)

n

(1− T )(1− qT ) · · · (1− qn−1T )
,

with PX (T ) ∈ Q[T ].



Calabi-Yau Manifolds

We can define an n-dimensional Calabi-Yau manifold as a simply
connected, smooth . . .

I Variety with trivial canonical bundle

I Ricci-flat Kähler-Einstein manifold

I Kähler manifold with a unique (up to scaling) nonvanishing
holomorphic n-form

Calabi-Yau 2-folds are also known as K3 surfaces.



A Pair of K3 Surface Examples

Let p = 41. Using Costa’s code, we find:

X : x40 + x41 + x42 + x43
PX = (1− 41T )18(1− 41T )(1− 18T + 412T 2)

X : x40 + x31x2 + x32x3 + x33x1
PX = (1−41T )3(1+41T )3(1−41T )(1−18T+412T 2)(1+414T 4)3

This factor is also preserved for our other families.



The Unit Root

If X is a Calabi-Yau hypersurface in Pn, PX has at most one root
that is a p-adic unit, termed the unit root. The value of this root
determines #X (Fq) (mod q).



Why?

The arithmetic patterns we observe are a consequence of mirror
symmetry.



Mirror Symmetry

Physicists say . . .

I Calabi-Yau manifolds appear in pairs (V ,V ◦).

I The universes described by M3,1 × V and M3,1 × V ◦ have the
same observable physics.

Mathematicians say . . .

I Calabi-Yau manifolds appear in paired families (Vα,V
◦
α).

I Mirror symmetry interchanges deformations of complex and
Kähler structures.



Greene-Plesser Mirror Symmetry

I We want to know the mirror of smooth quintics in P4

I Consider the Fermat quintic pencil Xψ given by

x50 + x51 + x52 + x53 + x54 − 5ψx0x1x2x3x4 = 0

I The pencil admits a group action by (Z/5Z)3

I Taking the quotient by the group action and resolving
singularities yields the mirror family Yψ
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Counting Deformation Parameters

I Smooth quintics in P4 have many complex deformation
parameters

I The mirror family Yψ is a one-parameter family



The Hodge Diamond
Calabi-Yau Threefolds

1
0 0

0 h1,1(V ) 0
1 h2,1(V ) h2,1(V ) 1

0 h1,1(V ) 0
0 0

1



Hodge diamond for the quintic and its mirror

Smooth quintics

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

Yψ

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1



Arithmetic Mirror Symmetry?

Figure: Philip Candelas

Figure: Xenia de la Ossa

Figure: Fernando
Rodriguez Villegas



Arithmetic Mirror Symmetry for Threefolds

I If X and Y are mirror Calabi-Yau threefolds, we can expect a
relationship between Z (X/Fq,T ) and Z (Y /Fq,T ) due to the
interchange of Hodge numbers.

I Candelas, de la Ossa, and Rodriguez Villegas showed that for
the Fermat quintic pencil Xψ and the Greene-Plesser mirror
Yψ, PXψ and PYψ share a common factor of degree 4.
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Greene-Plesser Mirror for Quartics in P3

I Start with all smooth quartics in P3

I Consider the Fermat pencil Xψ : x4 + y4 + z4 + w4 − 4ψxyzw

I The pencil admits an action of G = (Z/(4))2 (multiply
coordinates by 4th roots of unity)

I Resolve singularities in the quotient Xψ/G to obtain Yψ
I Yψ is the mirror family to smooth quartics in P3

I Smooth quartics in P3 have many complex deformation
parameters; Yψ has 1



The Fermat quartic pencil

Let Xψ be the Fermat quartic pencil. Xenia de la Ossa and
Shabnam Kadir (building on results of Dwork) showed:

PXψ(T ) = Rψ(T )Q3(T )S6(T )

where (with choices of ± depending on p and ψ)

I Rψ(T ) = (1± pT )(1− aψT + p2T )

I Q(T ) = (1± pT )(1± pT )

I S(T ) = (1− pT )(1 + pT ) when p ≡ 3 mod 4
(1± pT )2 otherwise
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Mirror Quartics

Let Yψ be the mirror family to quartics in P3 (constructed using
Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir
showed:

Z (Yψ/Fp,T ) =
1

(1− T )(1− pT )19(1− p2T )Rψ(T )
.

The factor Rψ(T ) corresponds to periods of the holomorphic form
and its derivatives, and is invariant under mirror symmetry.
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How to Generalize?

How can one generalize this arithmetic mirror phenomenon?



Fermat Pencils

I Daqinq Wan: For the Fermat pencil Xψ in any dimension and
its Greene-Plesser mirror Yψ, the unit roots match, so

#Xψ(Fq) ≡ #Yψ(Fq) (mod q).



Berglund-Hübsch-Krawitz Duality

Does Berglund-Hübsch-Krawitz (BHK) mirror symmetry have
arithmetic implications?



A matrix polynomial

Consider a polynomial FA that is the sum of n + 1 monomials in
n + 1 variables

FA :=
n∑

i=0

n∏
j=0

x
aij
j .

We view FA as determined by an integer matrix A = (aij) (with
rows corresponding to monomials).



Invertible polynomials

We say FA is invertible if:

I The matrix A is invertible

I There exist positive integers called weights pj so that
d :=

∑n
j=0 pjaij is the same constant for all i

I The polynomial FA has exactly one critical point, namely at
the origin.

Calabi-Yau Condition
We say an invertible polynomial FA satisfies the Calabi-Yau
condition if d =

∑n
j=0 pj .



Consequences

If a polynomial is invertible and the Calabi-Yau condition is
satisfied:

I The weights determine a weighted projective space
WPn(p0, . . . , pn)

I FA determines a Calabi-Yau hypersurface XA in this weighted
projective space.



Classifying Invertible Polynomials

Kreuzer and Skarke proved that any invertible polynomial FA can
be written as a sum of invertible potentials, each of which must be
of one of the three atomic types:

WFermat := xa,

Wloop := xa11 x2 + xa22 x3 + . . .+ x
am−1

m−1 xm + xamm x1, and

Wchain := xa11 x2 + xa22 x3 + . . . x
am−1

m−1 xm + xamm .



A Group Action

I Let SL(FA) ⊂ (C∗)n+1 be the diagonal symmetries of FA of
determinant 1.

I SL(FA) is a finite abelian group, and the coordinates of each
element of SL(FA) are roots of unity.

I Let J(FA) be the trivial diagonal symmetries.

I SL(FA)/J(FA) acts nontrivially and symplectically on XA

(fixes the holomorphic n − 1-form).
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The BHK Mirror

We start with a manifold XA, corresponding to a matrix A.

I Take the transpose matrix AT .

I Consider the polynomial FAT .

I Let G̃T = SL(FAT )/J(FAT ).

I We obtain a dual orbifold XAT /G̃T .

I In general, for any subgroup H of SL(FA)/J(FA), one may
define the Berglund-Hübsch-Krawitz mirror of the orbifold
XA/H.
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Motivating Question

If AT and BT have common properties, do XA and XB share
arithmetic properties?



Pencils

BHK duality for a polynomial FA extends naturally to the pencil of
hypersurfaces described by

FA − (dT )ψx0 . . . xn,

where dT =
∑

qi is the sum of the dual weights.



A common factor

Theorem (DKSSVW)

Let XA,ψ and XB,ψ be invertible pencils of Calabi-Yau (n− 1)-folds
in Pn. Suppose A and B have the same dual weights (q0, . . . , qn).
Then for each ψ ∈ Fq such that gcd(q, (n + 1)dT ) = 1 and the
fibers XA,ψ and XB,ψ are nondegenerate and smooth, the
polynomials PXA,ψ

(T ) and PXB,ψ
(T ) have a common factor

Rψ(T ) ∈ Q[T ] with

degRψ(T ) ≥ D(q0, . . . , qn).

Furthermore, degRψ(T ) ≤ dimCHn−1
prim(XA,ψ,C)SL(FA).
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Example
� family

For the following quartic pencils in P3, the dual weights are
(1, 1, 1, 1) and degRψ(T ) = 3.

Family Equation SL(FA)/J(FA)

F4 x40 + x41 + x42 + x43 − 4ψx0x1x2x3 (Z/4Z)2

F2L2 x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3 Z/8Z
F1L3 x40 + x31x2 + x32x3 + x33x1 − 4ψx0x1x2x3 Z/7Z
L2L2 x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3 Z/4Z× Z/2Z

L4 x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3 Z/5Z



Changing fields

For Fq containing sufficiently many roots of unity, we have that

Z (X�,ψ/Fq,T ) =
1

(1− T )(1− qT )19(1− q2T )Rψ(T )
.

We may say our zeta functions are potentially equal.



Comparing to the mirror

Let Yψ be the family of mirror quartics we constructed earlier.
Then Z (X�,ψ) and Z (Yψ) are potentially equal for any �.



Example
♣ family

For the following quartic pencils in P3, the dual weights are
(4, 2, 3, 3) and degRψ(T ) = 6.

Family Equation SL(FA)/J(FA)

C2F2 x30x1 + x41 + x42 + x43 − 12ψx0x1x2x3 Z/4Z
C2L2 x30x1 + x41 + x32x3 + x33x2 − 12ψx0x1x2x3 Z/2Z



Classifying Invertible Pencils

Other invertible K3 pencils in P3 have unique dual weights, so the
study of � and ♣ completely describes the implications of our
theorem for K3 surfaces.



Example
Dual weights (1, . . . , 1)

In Pn, if the common dual weights are (q0, . . . , qn) = (1, . . . , 1),
then the common factor Rψ(T ) ∈ Q[T ] has degRψ = n.



Why does this work?

I The Picard-Fuchs equation satisfied by the holomorphic form
depends only on the dual weights, by a result of Gährs.

I The Picard-Fuchs equation determines a subspace of p-adic
(Dwork) cohomology stable under the action of Frobenius . . .

I And fixed by the action of SL(FA) on cohomology.
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Hypergeometric equations

Gährs showed that the Picard-Fuchs equation is a hypergeometric
differential equation. To explain her result (and define
D(q0, . . . , qn)), we need notation for the parameters.

Rational numbers
Define

αj :=
j

dT
, for j = 0, . . . , dT − 1;

βij :=
j

qi
, for i = 0, . . . , n and j = 0, . . . , qi − 1.

(1)



Multisets

Multisets

ααα :=
{
αj : j = 0, . . . , dT − 1

}
;

βββi := {βij : j = 0, . . . , qi − 1} , βββ =
n⋃

i=0

βββi .
(2)

Intersection
Take the intersection I = S(ααα) ∩ S(βββ).
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Gährs’ Theorem

Let δ = ψ
d

dψ
.

Theorem (Gährs)

Let XA,ψ be an invertible pencil of Calabi-Yau (n − 1)-folds
determined by the integer matrix A. Suppose A has dual weights
(q0, . . . , qn). Then:

I the order of the Picard–Fuchs equation satisfied by the
holomorphic period is

D(q0, . . . , qn) := dT −#I .
I the Picard–Fuchs equation is given by the differential equation(

n∏
i=0

qqii

)
ψdT

 ∏
βij∈βββ\I

(δ + βijd
T )

− ∏
αj∈ααα\I

(δ − αjd
T ).
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Generalized hypergeometric functions

Let A,B ∈ N. Recall that a hypergeometric function is a
function on C of the form:

AFB(α;β|z) = AFB(α1, . . . , αA;β1, . . . , βB |z)

=
∞∑
k=0

(α1)k · · · (αA)k
(β1)k · · · (βB)kk!

zk ,

where α ∈ QA are numerator parameters, β ∈ QB are denominator
parameters, and the Pochhammer notation is defined by:

(x)k = x(x + 1) · · · (x + k − 1) =
Γ(x + k)

Γ(x)
.



A hypergeometric Picard-Fuchs equation

One solution to Gährs’ Picard-Fuchs equation is the following
hypergeometric function:

DFD−1

(
αi ∈ αααr I

βij ∈ βββ r (I ∪∪∪ {0}) ; (
∏

iq
−qi
i )ψ−d

T

)



Hypergeometric functions and unit roots

The unit root is determined by a formal power series depending on

DFD−1

(
αi ∈ αααr I

βij ∈ βββ r (I ∪∪∪ {0}) ; (
∏

iq
−qi
i )ψ−d

T

)

This follows from results of Miyatani (when XA,ψ is smooth,
ψ 6= 0) or Adolphson-Sperber (in general).
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Unit root

Proposition (DKSSVW)

Let FA(x) and FB(x) be invertible polynomials in n + 1 variables
satisfying the Calabi–Yau condition. Suppose AT and BT have the
same weights. Then for all ψ ∈ Fq and in all characteristics
(including when p | dT ), either:

I the unit root of XA,ψ is the same as the unit root of XB,ψ, or

I neither variety has a nontrivial unit root.

Thus, the supersingular locus is the same for both pencils.



Counting (mod q)

Corollary

Let FA(x) and FB(x) be invertible polynomials in n + 1 variables
satisfying the Calabi–Yau condition. Suppose AT and BT have the
same weights. Then for any fixed ψ ∈ Fq and in all characteristics
(including p | dT ) the Fq-rational point counts for fibers XA,ψ and
XB,ψ are congruent as follows:

#XA,ψ ≡ #XB,ψ (mod q).


