# Zeta functions of alternate mirror Calabi-Yau pencils 

Ursula Whitcher<br>uaw@umich.edu<br>Mathematical Reviews

March 2017

## Collaborators



Tyler Kelly, Charles Doran, Steven Sperber, Ursula Whitcher, John Voight, Adriana Salerno

## Five Interesting Quartics in $\mathbb{P}^{3}$

## Family Equation

| $\mathrm{F}_{4}$ (Fermat/Dwork) | $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ |
| :---: | :---: |
| $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $x_{0}^{4}+x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}$ |
| $\mathrm{~F}_{1} \mathrm{~L}_{3}($ Klein-Mukai) | $x_{0}^{4}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}$ |
| $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{0}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}$ |
| $\mathrm{~L}_{4}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{0}$ |

## Five Interesting Quartics in $\mathbb{P}^{3}$

| Family | Equation |
| :---: | :---: |
| $\mathrm{F}_{4}$ (Fermat/Dwork) | $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ |
| $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $x_{0}^{4}+x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}$ |
| $\mathrm{~F}_{1} \mathrm{~L}_{3}($ Klein-Mukai) | $x_{0}^{4}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}$ |
| $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{0}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}$ |
| $\mathrm{~L}_{4}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{0}$ |

Warnings

- These quartics are not isomorphic.


## Five Interesting Quartics in $\mathbb{P}^{3}$

| Family | Equation |
| :---: | :---: |
| $\mathrm{F}_{4}$ (Fermat/Dwork) | $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ |
| $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $x_{0}^{4}+x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}$ |
| $\mathrm{~F}_{1} \mathrm{~L}_{3}($ Klein-Mukai) | $x_{0}^{4}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}$ |
| $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{0}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}$ |
| $\mathrm{~L}_{4}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{0}$ |

Warnings

- These quartics are not isomorphic.
- These quartics are not Fourier-Mukai partners.
- These quartics are not derived equivalent.


## Counting Points

| Prime | $\mathrm{F}_{4}$ | $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $\mathrm{~F}_{1} \mathrm{~L}_{3}$ | $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $\mathrm{~L}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 0 | 20 | 30 | 80 | 40 |

## Counting Points

| Prime | $\mathrm{F}_{4}$ | $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $\mathrm{~F}_{1} \mathrm{~L}_{3}$ | $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $\mathrm{~L}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 0 | 20 | 30 | 80 | 40 |
| 7 | 64 | 50 | 64 | 64 | 78 |

## Counting Points

| Prime | $\mathrm{F}_{4}$ | $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $\mathrm{~F}_{1} \mathrm{~L}_{3}$ | $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $\mathrm{~L}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 0 | 20 | 30 | 80 | 40 |
| 7 | 64 | 50 | 64 | 64 | 78 |
| 11 | 144 | 122 | 144 | 144 | 254 |
| 13 | 128 | 180 | 206 | 336 | 232 |
| 17 | 600 | 328 | 294 | 600 | 328 |
| 19 | 400 | 362 | 400 | 400 | 438 |
| 23 | 576 | 530 | 576 | 576 | 622 |
| 29 | 768 | 884 | 1116 | 1232 | 1000 |
| 31 | 1024 | 962 | 1024 | 1024 | 1334 |
| 37 | 1152 | 1300 | 1374 | 1744 | 1448 |

Equality holds $(\bmod p)$ for all $p$ in this table.

## Counting Points on Pencils

- We can add the deforming monomial $-4 \psi x y z w$ to each of our quartics to obtain pencils of quartics $X_{\diamond, \psi}$.


## Counting Points on Pencils

- We can add the deforming monomial $-4 \psi x y z w$ to each of our quartics to obtain pencils of quartics $X_{\diamond, \psi}$.
- We can count the number of points on $X_{\diamond, \psi}$ over $\mathbb{F}_{p}$ for $0 \leq \psi<p$.


## Counting Points on Pencils

- We can add the deforming monomial $-4 \psi x y z w$ to each of our quartics to obtain pencils of quartics $X_{\diamond, \psi}$.
- We can count the number of points on $X_{\diamond, \psi}$ over $\mathbb{F}_{p}$ for $0 \leq \psi<p$.
- For each $\psi$, the point counts on $X_{\diamond, \psi}$ agree $(\bmod p)$.


## The Zeta Function

We can organize point-count information in a generating function. Let $X / \mathbb{F}_{q}$ be an algebraic variety over the finite field of $q=p^{s}$ elements.

Definition
The zeta function of $X$ is

$$
Z\left(X / \mathbb{F}_{q}, T\right):=\exp \left(\sum_{s=1}^{\infty} \# X\left(\mathbb{F}_{q^{s}}\right) \frac{T^{s}}{s}\right) \in \mathbb{Q}[[T]]
$$

## Dwork and the Weil Conjectures

- $Z\left(X / \mathbb{F}_{q}, T\right)$ is rational
- We can factor $Z\left(X / \mathbb{F}_{q}, T\right)$ using polynomials with integer coefficients:

$$
Z\left(X / \mathbb{F}_{q}, T\right)=\frac{\prod_{j=1}^{n} P_{2 j-1}(T)}{\prod_{j=0}^{n} P_{2 j}(T)}
$$

- $\operatorname{dim} X=n$
- $P_{0}(t)=1-T$ and $P_{2 n}(T)=1-p^{n} T$
- For $1 \leq j \leq 2 n-1, \operatorname{deg} P_{j}(T)=b_{j}$, where $b_{j}=\operatorname{dim} H_{d R}^{j}(X)$.


## Projective Hypersurfaces

For a smooth projective hypersurface $X$ in $\mathbb{P}^{n}$, we have

$$
Z(X, T)=\frac{P_{X}(T)^{(-1)^{n}}}{(1-T)(1-q T) \cdots\left(1-q^{n-1} T\right)}
$$

with $P_{X}(T) \in \mathbb{Q}[T]$.

## Calabi-Yau Manifolds

We can define an n-dimensional Calabi-Yau manifold as a simply connected, smooth ...

- Variety with trivial canonical bundle
- Ricci-flat Kähler-Einstein manifold
- Kähler manifold with a unique (up to scaling) nonvanishing holomorphic $n$-form

Calabi-Yau 2-folds are also known as K3 surfaces.

## A Pair of K3 Surface Examples

Let $p=41$. Using Costa's code, we find:
$X: x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$
$P_{X}=(1-41 T)^{18}(1-41 T)\left(1-18 T+41^{2} T^{2}\right)$
$X: x_{0}^{4}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}$
$P_{X}=(1-41 T)^{3}(1+41 T)^{3}(1-41 T)\left(1-18 T+41^{2} T^{2}\right)\left(1+41^{4} T^{4}\right)^{3}$
This factor is also preserved for our other families.

## The Unit Root

If $X$ is a Calabi-Yau hypersurface in $\mathbb{P}^{n}, P_{X}$ has at most one root that is a $p$-adic unit, termed the unit root. The value of this root determines $\# X\left(\mathbb{F}_{q}\right)(\bmod q)$.

## Why?

The arithmetic patterns we observe are a consequence of mirror symmetry.

## Mirror Symmetry

Physicists say

- Calabi-Yau manifolds appear in pairs $\left(V, V^{\circ}\right)$.
- The universes described by $M_{3,1} \times V$ and $M_{3,1} \times V^{\circ}$ have the same observable physics.

Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $\left(V_{\alpha}, V_{\alpha}^{\circ}\right)$.
- Mirror symmetry interchanges deformations of complex and Kähler structures.


## Greene-Plesser Mirror Symmetry

- We want to know the mirror of smooth quintics in $\mathbb{P}^{4}$


## Greene-Plesser Mirror Symmetry

- We want to know the mirror of smooth quintics in $\mathbb{P}^{4}$
- Consider the Fermat quintic pencil $X_{\psi}$ given by

$$
x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0
$$

## Greene-Plesser Mirror Symmetry

- We want to know the mirror of smooth quintics in $\mathbb{P}^{4}$
- Consider the Fermat quintic pencil $X_{\psi}$ given by

$$
x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0
$$

- The pencil admits a group action by $(\mathbb{Z} / 5 \mathbb{Z})^{3}$


## Greene-Plesser Mirror Symmetry

- We want to know the mirror of smooth quintics in $\mathbb{P}^{4}$
- Consider the Fermat quintic pencil $X_{\psi}$ given by

$$
x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0
$$

- The pencil admits a group action by $(\mathbb{Z} / 5 \mathbb{Z})^{3}$
- Taking the quotient by the group action and resolving singularities yields the mirror family $Y_{\psi}$


## Counting Deformation Parameters

- Smooth quintics in $\mathbb{P}^{4}$ have many complex deformation parameters
- The mirror family $Y_{\psi}$ is a one-parameter family


## The Hodge Diamond

Calabi-Yau Threefolds


## Hodge diamond for the quintic and its mirror



## Arithmetic Mirror Symmetry?



Figure: Philip Candelas


Figure: Xenia de la Ossa
Figure: Fernando Rodriguez Villegas

## Arithmetic Mirror Symmetry for Threefolds

- If $X$ and $Y$ are mirror Calabi-Yau threefolds, we can expect a relationship between $Z\left(X / \mathbb{F}_{q}, T\right)$ and $Z\left(Y / \mathbb{F}_{q}, T\right)$ due to the interchange of Hodge numbers.


## Arithmetic Mirror Symmetry for Threefolds

- If $X$ and $Y$ are mirror Calabi-Yau threefolds, we can expect a relationship between $Z\left(X / \mathbb{F}_{q}, T\right)$ and $Z\left(Y / \mathbb{F}_{q}, T\right)$ due to the interchange of Hodge numbers.
- Candelas, de la Ossa, and Rodriguez Villegas showed that for the Fermat quintic pencil $X_{\psi}$ and the Greene-Plesser mirror $Y_{\psi}, P_{X_{\psi}}$ and $P_{Y_{\psi}}$ share a common factor of degree 4.


## Greene-Plesser Mirror for Quartics in $\mathbb{P}^{3}$

- Start with all smooth quartics in $\mathbb{P}^{3}$
- Consider the Fermat pencil $X_{\psi}: x^{4}+y^{4}+z^{4}+w^{4}-4 \psi x y z w$
- The pencil admits an action of $G=(\mathbb{Z} /(4))^{2}$ (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient $X_{\psi} / G$ to obtain $Y_{\psi}$
- $Y_{\psi}$ is the mirror family to smooth quartics in $\mathbb{P}^{3}$
- Smooth quartics in $\mathbb{P}^{3}$ have many complex deformation parameters; $Y_{\psi}$ has 1


## The Fermat quartic pencil

Let $X_{\psi}$ be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$
P_{X_{\psi}}(T)=R_{\psi}(T) Q^{3}(T) S^{6}(T)
$$

## The Fermat quartic pencil

Let $X_{\psi}$ be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$
P_{X_{\psi}}(T)=R_{\psi}(T) Q^{3}(T) S^{6}(T)
$$

where (with choices of $\pm$ depending on $p$ and $\psi$ )

- $R_{\psi}(T)=(1 \pm p T)\left(1-a_{\psi} T+p^{2} T\right)$
- $Q(T)=(1 \pm p T)(1 \pm p T)$
- $S(T)=(1-p T)(1+p T)$ when $p \equiv 3 \bmod 4$ $(1 \pm p T)^{2}$ otherwise


## Mirror Quartics

Let $Y_{\psi}$ be the mirror family to quartics in $\mathbb{P}^{3}$ (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$
Z\left(Y_{\psi} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)^{19}\left(1-p^{2} T\right) R_{\psi}(T)}
$$

## Mirror Quartics

Let $Y_{\psi}$ be the mirror family to quartics in $\mathbb{P}^{3}$ (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$
Z\left(Y_{\psi} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)^{19}\left(1-p^{2} T\right) R_{\psi}(T)}
$$

The factor $R_{\psi}(T)$ corresponds to periods of the holomorphic form and its derivatives, and is invariant under mirror symmetry.

## How to Generalize?

How can one generalize this arithmetic mirror phenomenon?

## Fermat Pencils

- Daqinq Wan: For the Fermat pencil $X_{\psi}$ in any dimension and its Greene-Plesser mirror $Y_{\psi}$, the unit roots match, so

$$
\# X_{\psi}\left(\mathbb{F}_{q}\right) \equiv \# Y_{\psi}\left(\mathbb{F}_{q}\right) \quad(\bmod q)
$$

## Berglund-Hübsch-Krawitz Duality

Does Berglund-Hübsch-Krawitz (BHK) mirror symmetry have arithmetic implications?

## A matrix polynomial

Consider a polynomial $F_{A}$ that is the sum of $n+1$ monomials in $n+1$ variables

$$
F_{A}:=\sum_{i=0}^{n} \prod_{j=0}^{n} x_{j}^{a_{i j}}
$$

We view $F_{A}$ as determined by an integer matrix $A=\left(a_{i j}\right)$ (with rows corresponding to monomials).

## Invertible polynomials

We say $F_{A}$ is invertible if:

- The matrix $A$ is invertible
- There exist positive integers called weights $p_{j}$ so that $d:=\sum_{j=0}^{n} p_{j} a_{i j}$ is the same constant for all $i$
- The polynomial $F_{A}$ has exactly one critical point, namely at the origin.


## Calabi-Yau Condition

We say an invertible polynomial $F_{A}$ satisfies the Calabi-Yau condition if $d=\sum_{j=0}^{n} p_{j}$.

## Consequences

If a polynomial is invertible and the Calabi-Yau condition is satisfied:

- The weights determine a weighted projective space $\mathbb{W P}^{n}\left(p_{0}, \ldots, p_{n}\right)$
- $F_{A}$ determines a Calabi-Yau hypersurface $X_{A}$ in this weighted projective space.


## Classifying Invertible Polynomials

Kreuzer and Skarke proved that any invertible polynomial $F_{A}$ can be written as a sum of invertible potentials, each of which must be of one of the three atomic types:

$$
\begin{aligned}
W_{\text {Fermat }} & :=x^{a}, \\
W_{\text {loop }} & :=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}} x_{1}, \text { and } \\
W_{\text {chain }} & :=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots x_{m-1}^{a_{m}-1} x_{m}+x_{m}^{a_{m}} .
\end{aligned}
$$

## A Group Action

- Let $S L\left(F_{A}\right) \subset\left(\mathbb{C}^{*}\right)^{n+1}$ be the diagonal symmetries of $F_{A}$ of determinant 1.
- $S L\left(F_{A}\right)$ is a finite abelian group, and the coordinates of each element of $S L\left(F_{A}\right)$ are roots of unity.
- Let $J\left(F_{A}\right)$ be the trivial diagonal symmetries.
- $S L\left(F_{A}\right) / J\left(F_{A}\right)$ acts nontrivially and symplectically on $X_{A}$ (fixes the holomorphic $n$ - 1 -form).


## A Group Action

- Let $S L\left(F_{A}\right) \subset\left(\mathbb{C}^{*}\right)^{n+1}$ be the diagonal symmetries of $F_{A}$ of determinant 1.
- $S L\left(F_{A}\right)$ is a finite abelian group, and the coordinates of each element of $S L\left(F_{A}\right)$ are roots of unity.
- Let $J\left(F_{A}\right)$ be the trivial diagonal symmetries.
- $S L\left(F_{A}\right) / J\left(F_{A}\right)$ acts nontrivially and symplectically on $X_{A}$ (fixes the holomorphic $n$ - 1 -form).


## The BHK Mirror

We start with a manifold $X_{A}$, corresponding to a matrix $A$.

- Take the transpose matrix $A^{T}$.
- Consider the polynomial $F_{A^{T}}$.
- Let $\widetilde{G^{T}}=S L\left(F_{A^{T}}\right) / J\left(F_{A^{T}}\right)$.
- We obtain a dual orbifold $X_{A^{T}} \widetilde{G^{T}}$.


## The BHK Mirror

We start with a manifold $X_{A}$, corresponding to a matrix $A$.

- Take the transpose matrix $A^{T}$.
- Consider the polynomial $F_{A^{T}}$.
- Let $\widetilde{G^{T}}=S L\left(F_{A^{T}}\right) / J\left(F_{A^{T}}\right)$.
- We obtain a dual orbifold $X_{A^{T}} / \widetilde{G^{T}}$.
- In general, for any subgroup $H$ of $S L\left(F_{A}\right) / J\left(F_{A}\right)$, one may define the Berglund-Hübsch-Krawitz mirror of the orbifold $X_{A} / H$.


## Motivating Question

If $A^{T}$ and $B^{T}$ have common properties, do $X_{A}$ and $X_{B}$ share arithmetic properties?

## Pencils

BHK duality for a polynomial $F_{A}$ extends naturally to the pencil of hypersurfaces described by

$$
F_{A}-\left(d^{T}\right) \psi x_{0} \ldots x_{n}
$$

where $d^{T}=\sum q_{i}$ is the sum of the dual weights.

## A common factor

## Theorem (DKSSVW)

Let $X_{A, \psi}$ and $X_{B, \psi}$ be invertible pencils of Calabi-Yau $(n-1)$-folds in $\mathbb{P}^{n}$. Suppose $A$ and $B$ have the same dual weights $\left(q_{0}, \ldots, q_{n}\right)$.
Then for each $\psi \in \mathbb{F}_{q}$ such that $\operatorname{gcd}\left(q,(n+1) d^{T}\right)=1$ and the fibers $X_{A, \psi}$ and $X_{B, \psi}$ are nondegenerate and smooth, the polynomials $P_{X_{A, \psi}}(T)$ and $P_{X_{B, \psi}}(T)$ have a common factor $R_{\psi}(T) \in \mathbb{Q}[T]$ with

$$
\operatorname{deg} R_{\psi}(T) \geq D\left(q_{0}, \ldots, q_{n}\right)
$$

## A common factor

## Theorem (DKSSVW)

Let $X_{A, \psi}$ and $X_{B, \psi}$ be invertible pencils of Calabi-Yau $(n-1)$-folds in $\mathbb{P}^{n}$. Suppose $A$ and $B$ have the same dual weights $\left(q_{0}, \ldots, q_{n}\right)$.
Then for each $\psi \in \mathbb{F}_{q}$ such that $\operatorname{gcd}\left(q,(n+1) d^{T}\right)=1$ and the fibers $X_{A, \psi}$ and $X_{B, \psi}$ are nondegenerate and smooth, the polynomials $P_{X_{A, \psi}}(T)$ and $P_{X_{B, \psi}}(T)$ have a common factor $R_{\psi}(T) \in \mathbb{Q}[T]$ with

$$
\operatorname{deg} R_{\psi}(T) \geq D\left(q_{0}, \ldots, q_{n}\right)
$$

Furthermore, $\operatorname{deg} R_{\psi}(T) \leq \operatorname{dim}_{\mathbb{C}} H_{\text {prim }}^{n-1}\left(X_{A, \psi}, \mathbb{C}\right)^{S L\left(F_{A}\right)}$.

## Example

For the following quartic pencils in $\mathbb{P}^{3}$, the dual weights are $(1,1,1,1)$ and $\operatorname{deg} R_{\psi}(T)=3$.

| Family | Equation | $S L\left(F_{A}\right) / J\left(F_{A}\right)$ |
| :---: | :---: | :---: |
| $\mathrm{F}_{4}$ | $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-4 \psi x_{0} x_{1} x_{2} x_{3}$ | $(\mathbb{Z} / 4 \mathbb{Z})^{2}$ |
| $\mathrm{~F}_{2} \mathrm{~L}_{2}$ | $x_{0}^{4}+x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}-4 \psi x_{0} x_{1} x_{2} x_{3}$ | $\mathbb{Z} / 8 \mathbb{Z}$ |
| $\mathrm{~F}_{1} \mathrm{~L}_{3}$ | $x_{0}^{4}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}-4 \psi x_{0} x_{1} x_{2} x_{3}$ | $\mathbb{Z} / 7 \mathbb{Z}$ |
| $\mathrm{~L}_{2} \mathrm{~L}_{2}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{0}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}-4 \psi x_{0} x_{1} x_{2} x_{3}$ | $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ |
| $\mathrm{~L}_{4}$ | $x_{0}^{3} x_{1}+x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{0}-4 \psi x_{0} x_{1} x_{2} x_{3}$ | $\mathbb{Z} / 5 \mathbb{Z}$ |

## Changing fields

For $\mathbb{F}_{q}$ containing sufficiently many roots of unity, we have that

$$
Z\left(X_{\diamond, \psi} / \mathbb{F}_{q}, T\right)=\frac{1}{(1-T)(1-q T)^{19}\left(1-q^{2} T\right) R_{\psi}(T)}
$$

We may say our zeta functions are potentially equal.

## Comparing to the mirror

Let $Y_{\psi}$ be the family of mirror quartics we constructed earlier. Then $Z\left(X_{\diamond, \psi}\right)$ and $Z\left(Y_{\psi}\right)$ are potentially equal for any $\diamond$.

## Example

## \& family

For the following quartic pencils in $\mathbb{P}^{3}$, the dual weights are $(4,2,3,3)$ and $\operatorname{deg} R_{\psi}(T)=6$.

| Family | Equation | $S L\left(F_{A}\right) / J\left(F_{A}\right)$ |
| :---: | :---: | :---: |
| $\mathrm{C}_{2} \mathrm{~F}_{2}$ | $x_{0}^{3} x_{1}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-12 \psi x_{0} x_{1} x_{2} x_{3}$ | $\mathbb{Z} / 4 \mathbb{Z}$ |
| $\mathrm{C}_{2} \mathrm{~L}_{2}$ | $x_{0}^{3} x_{1}+x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}-12 \psi x_{0} x_{1} x_{2} x_{3}$ | $\mathbb{Z} / 2 \mathbb{Z}$ |

## Classifying Invertible Pencils

Other invertible K 3 pencils in $\mathbb{P}^{3}$ have unique dual weights, so the study of $\diamond$ and $\&$ completely describes the implications of our theorem for K3 surfaces.

## Example

Dual weights $(1, \ldots, 1)$

In $\mathbb{P}^{n}$, if the common dual weights are $\left(q_{0}, \ldots, q_{n}\right)=(1, \ldots, 1)$, then the common factor $R_{\psi}(T) \in \mathbb{Q}[T]$ has $\operatorname{deg} R_{\psi}=n$.

## Why does this work?

- The Picard-Fuchs equation satisfied by the holomorphic form depends only on the dual weights, by a result of Gährs.


## Why does this work?

- The Picard-Fuchs equation satisfied by the holomorphic form depends only on the dual weights, by a result of Gährs.
- The Picard-Fuchs equation determines a subspace of $p$-adic (Dwork) cohomology stable under the action of Frobenius ...


## Why does this work?

- The Picard-Fuchs equation satisfied by the holomorphic form depends only on the dual weights, by a result of Gährs.
- The Picard-Fuchs equation determines a subspace of $p$-adic (Dwork) cohomology stable under the action of Frobenius ...
- And fixed by the action of $S L\left(F_{A}\right)$ on cohomology.


## Hypergeometric equations

Gährs showed that the Picard-Fuchs equation is a hypergeometric differential equation. To explain her result (and define $\left.D\left(q_{0}, \ldots, q_{n}\right)\right)$, we need notation for the parameters.

## Rational numbers

Define

$$
\begin{align*}
& \alpha_{j}:=\frac{j}{d^{T}}, \quad \text { for } j=0, \ldots, d^{T}-1 \\
& \beta_{i j}:=\frac{j}{q_{i}}, \quad \text { for } i=0, \ldots, n \text { and } j=0, \ldots, q_{i}-1 \tag{1}
\end{align*}
$$

## Multisets

Multisets

$$
\begin{align*}
\boldsymbol{\alpha} & :=\left\{\alpha_{j}: j=0, \ldots, d^{T}-1\right\} \\
\boldsymbol{\beta}_{i} & :=\left\{\beta_{i j}: j=0, \ldots, q_{i}-1\right\}, \quad \beta=\bigcup_{i=0}^{n} \beta_{i} \tag{2}
\end{align*}
$$

## Multisets

Multisets

$$
\begin{align*}
\boldsymbol{\alpha} & :=\left\{\alpha_{j}: j=0, \ldots, d^{T}-1\right\} \\
\boldsymbol{\beta}_{i} & :=\left\{\beta_{i j}: j=0, \ldots, q_{i}-1\right\}, \quad \beta=\bigcup_{i=0}^{n} \beta_{i} \tag{2}
\end{align*}
$$

Intersection
Take the intersection $I=S(\boldsymbol{\alpha}) \cap S(\beta)$.

## Gährs' Theorem

Let $\delta=\psi \frac{d}{d \psi}$.
Theorem (Gährs)
Let $X_{A, \psi}$ be an invertible pencil of Calabi-Yau $(n-1)$-folds determined by the integer matrix $A$. Suppose $A$ has dual weights $\left(q_{0}, \ldots, q_{n}\right)$. Then:

## Gährs' Theorem

Let $\delta=\psi \frac{d}{d \psi}$.
Theorem (Gährs)
Let $X_{A, \psi}$ be an invertible pencil of Calabi-Yau $(n-1)$-folds determined by the integer matrix $A$. Suppose $A$ has dual weights $\left(q_{0}, \ldots, q_{n}\right)$. Then:

- the order of the Picard-Fuchs equation satisfied by the holomorphic period is

$$
D\left(q_{0}, \ldots, q_{n}\right):=d^{T}-\# I
$$

## Gährs' Theorem

Let $\delta=\psi \frac{d}{d \psi}$.
Theorem (Gährs)
Let $X_{A, \psi}$ be an invertible pencil of Calabi-Yau $(n-1)$-folds determined by the integer matrix $A$. Suppose $A$ has dual weights $\left(q_{0}, \ldots, q_{n}\right)$. Then:

- the order of the Picard-Fuchs equation satisfied by the holomorphic period is

$$
D\left(q_{0}, \ldots, q_{n}\right):=d^{T}-\# I
$$

- the Picard-Fuchs equation is given by the differential equation

$$
\left(\prod_{i=0}^{n} q_{i}^{q_{i}}\right) \psi^{d^{T}}\left(\prod_{\beta_{i j} \in \boldsymbol{\beta} \backslash I}\left(\delta+\beta_{i j} d^{T}\right)\right)-\prod_{\alpha_{j} \in \boldsymbol{\alpha} \backslash I}\left(\delta-\alpha_{j} d^{T}\right) .
$$

## Generalized hypergeometric functions

Let $A, B \in \mathbb{N}$. Recall that a hypergeometric function is a function on $\mathbb{C}$ of the form:

$$
\begin{aligned}
{ }_{A} F_{B}(\alpha ; \beta \mid z) & ={ }_{A} F_{B}\left(\alpha_{1}, \ldots, \alpha_{A} ; \beta_{1}, \ldots, \beta_{B} \mid z\right) \\
& =\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{A}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{B}\right)_{k} k!} z^{k}
\end{aligned}
$$

where $\alpha \in \mathbb{Q}^{A}$ are numerator parameters, $\beta \in \mathbb{Q}^{B}$ are denominator parameters, and the Pochhammer notation is defined by:

$$
(x)_{k}=x(x+1) \cdots(x+k-1)=\frac{\Gamma(x+k)}{\Gamma(x)}
$$

## A hypergeometric Picard-Fuchs equation

One solution to Gährs' Picard-Fuchs equation is the following hypergeometric function:

$$
{ }_{D} F_{D-1}\left(\begin{array}{c}
\alpha_{i} \in \boldsymbol{\alpha} \backslash I \\
\beta_{i j} \in \beta \backslash(I \cup\{0\})
\end{array} ;\left(\prod_{i} q_{i}^{-q_{i}}\right) \psi^{-d^{T}}\right)
$$

## Hypergeometric functions and unit roots

The unit root is determined by a formal power series depending on

$$
{ }_{D} F_{D-1}\left(\begin{array}{c}
\alpha_{i} \in \alpha \backslash I \\
\beta_{i j} \in \beta \backslash(I \cup\{0\})
\end{array} ;\left(\prod_{i} q_{i}^{-q_{i}}\right) \psi^{-d^{T}}\right)
$$

## Hypergeometric functions and unit roots

The unit root is determined by a formal power series depending on

$$
{ }_{D} F_{D-1}\left(\begin{array}{c}
\alpha_{i} \in \boldsymbol{\alpha} \backslash I \\
\beta_{i j} \in \beta \backslash(I \cup\{0\})
\end{array} ;\left(\prod_{i} q_{i}^{-q_{i}}\right) \psi^{-d^{T}}\right)
$$

This follows from results of Miyatani (when $X_{A, \psi}$ is smooth, $\psi \neq 0$ ) or Adolphson-Sperber (in general).

## Unit root

## Proposition (DKSSVW)

Let $F_{A}(x)$ and $F_{B}(x)$ be invertible polynomials in $n+1$ variables satisfying the Calabi-Yau condition. Suppose $A^{T}$ and $B^{T}$ have the same weights. Then for all $\psi \in \mathbb{F}_{q}$ and in all characteristics (including when $p \mid d^{T}$ ), either:

- the unit root of $X_{A, \psi}$ is the same as the unit root of $X_{B, \psi}$, or
- neither variety has a nontrivial unit root.

Thus, the supersingular locus is the same for both pencils.

## Counting $(\bmod q)$

## Corollary

Let $F_{A}(x)$ and $F_{B}(x)$ be invertible polynomials in $n+1$ variables satisfying the Calabi-Yau condition. Suppose $A^{T}$ and $B^{T}$ have the same weights. Then for any fixed $\psi \in \mathbb{F}_{q}$ and in all characteristics (including $p \mid d^{T}$ ) the $\mathbb{F}_{q}$-rational point counts for fibers $X_{A, \psi}$ and $X_{B, \psi}$ are congruent as follows:

$$
\# X_{A, \psi} \equiv \# X_{B, \psi} \quad(\bmod q) .
$$

