Zeta functions of alternate mirror Calabi-Yau pencils

Ursula Whitcher uaw@umich.edu

Mathematical Reviews

March 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Collaborators

Tyler Kelly, Charles Doran, Steven Sperber, Ursula Whitcher, John Voight, Adriana Salerno

・ロト ・四ト ・ヨト ・ヨト

Five Interesting Quartics in \mathbb{P}^3

Family	Equation		
F ₄ (Fermat/Dwork)	$x_0^4 + x_1^4 + x_2^4 + x_3^4$		
F_2L_2	$x_0^4 + x_1^4 + x_2^3 x_3 + x_3^3 x_2$		
F ₁ L ₃ (Klein-Mukai)	$x_0^4 + x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_1$		
L_2L_2	$x_0^3 x_1 + x_1^3 x_0 + x_2^3 x_3 + x_3^3 x_2$		
L_4	$x_0^3 x_1 + x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_0$		

<□ > < @ > < E > < E > E のQ @

Five Interesting Quartics in \mathbb{P}^3

Family	Equation		
F ₄ (Fermat/Dwork)	$x_0^4 + x_1^4 + x_2^4 + x_3^4$		
F_2L_2	$x_0^4 + x_1^4 + x_2^3 x_3 + x_3^3 x_2$		
F ₁ L ₃ (Klein-Mukai)	$x_0^4 + x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_1$		
L_2L_2	$x_0^3x_1 + x_1^3x_0 + x_2^3x_3 + x_3^3x_2$		
L ₄	$x_0^{\bar{3}}x_1 + x_1^{\bar{3}}x_2 + x_2^{\bar{3}}x_3 + x_3^{\bar{3}}x_0$		

(ロ)、(型)、(E)、(E)、 E) の(の)

Warnings

These quartics are not isomorphic.

Five Interesting Quartics in \mathbb{P}^3

Family	Equation		
F ₄ (Fermat/Dwork)	$x_0^4 + x_1^4 + x_2^4 + x_3^4$		
F_2L_2	$x_0^4 + x_1^4 + x_2^3 x_3 + x_3^3 x_2$		
F ₁ L ₃ (Klein-Mukai)	$x_0^4 + x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_1$		
L_2L_2	$x_0^3 x_1 + x_1^3 x_0 + x_2^3 x_3 + x_3^3 x_2$		
L_4	$x_0^3 x_1 + x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_0$		

Warnings

- These quartics are not isomorphic.
- These quartics are not Fourier-Mukai partners.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

These quartics are not derived equivalent.

Counting Points

Prime	F ₄	F_2L_2	F_1L_3	L_2L_2	L ₄
5	0	20	30	80	40

Counting Points

Prime	F ₄	F_2L_2	F_1L_3	L_2L_2	L_4
5	0	20	30	80	40
7	64	50	64	64	78

Counting Points

Prime	F ₄	F_2L_2	F_1L_3	L_2L_2	L ₄
5	0	20	30	80	40
7	64	50	64	64	78
11	144	122	144	144	254
13	128	180	206	336	232
17	600	328	294	600	328
19	400	362	400	400	438
23	576	530	576	576	622
29	768	884	1116	1232	1000
31	1024	962	1024	1024	1334
37	1152	1300	1374	1744	1448

Equality holds (mod p) for all p in this table.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Counting Points on Pencils

We can add the deforming monomial −4ψxyzw to each of our quartics to obtain pencils of quartics X_{◊,ψ}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Counting Points on Pencils

We can add the deforming monomial −4ψxyzw to each of our quartics to obtain pencils of quartics X_{◊,ψ}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ We can count the number of points on $X_{\diamond,\psi}$ over \mathbb{F}_p for $0 \le \psi < p$.

Counting Points on Pencils

We can add the deforming monomial −4ψxyzw to each of our quartics to obtain pencils of quartics X_{◊,ψ}.

- We can count the number of points on X_{◊,ψ} over 𝔽_p for 0 ≤ ψ < p.</p>
- ▶ For each ψ , the point counts on $X_{\diamond,\psi}$ agree (mod p).

We can organize point-count information in a generating function. Let X/\mathbb{F}_q be an algebraic variety over the finite field of $q = p^s$ elements.

Definition The zeta function of X is

$$Z(X/\mathbb{F}_q, T) := \exp\left(\sum_{s=1}^{\infty} \#X(\mathbb{F}_{q^s}) \frac{T^s}{s}\right) \in \mathbb{Q}[[T]].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dwork and the Weil Conjectures

• $Z(X/\mathbb{F}_q, T)$ is rational

► We can factor Z(X/F_q, T) using polynomials with integer coefficients:

$$Z(X/\mathbb{F}_q, T) = \frac{\prod_{j=1}^n P_{2j-1}(T)}{\prod_{j=0}^n P_{2j}(T)},$$

▶ dim X = n

- $P_0(t) = 1 T$ and $P_{2n}(T) = 1 p^n T$
- ► For $1 \le j \le 2n 1$, $\deg P_j(T) = b_j$, where $b_j = \dim H^j_{dR}(X)$.

Projective Hypersurfaces

For a smooth projective hypersurface X in \mathbb{P}^n , we have

$$Z(X,T) = \frac{P_X(T)^{(-1)^n}}{(1-T)(1-qT)\cdots(1-q^{n-1}T)},$$

with $P_X(T) \in \mathbb{Q}[T].$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can define an *n*-dimensional Calabi-Yau manifold as a simply connected, smooth . . .

- Variety with trivial canonical bundle
- Ricci-flat Kähler-Einstein manifold
- Kähler manifold with a unique (up to scaling) nonvanishing holomorphic *n*-form

Calabi-Yau 2-folds are also known as K3 surfaces.

A Pair of K3 Surface Examples

Let p = 41. Using Costa's code, we find: $X : x_0^4 + x_1^4 + x_2^4 + x_3^4$ $P_X = (1 - 41T)^{18}(1 - 41T)(1 - 18T + 41^2T^2)$ $X : x_0^4 + x_1^3x_2 + x_2^3x_3 + x_3^3x_1$ $P_X = (1 - 41T)^3(1 + 41T)^3(1 - 41T)(1 - 18T + 41^2T^2)(1 + 41^4T^4)^3$ This factor is also preserved for our other families.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Unit Root

If X is a Calabi-Yau hypersurface in \mathbb{P}^n , P_X has at most one root that is a *p*-adic unit, termed the unit root. The value of this root determines $\#X(\mathbb{F}_q) \pmod{q}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The arithmetic patterns we observe are a consequence of mirror symmetry.

<□ > < @ > < E > < E > E のQ @

Mirror Symmetry

Physicists say . . .

- Calabi-Yau manifolds appear in pairs (V, V°) .
- ► The universes described by M_{3,1} × V and M_{3,1} × V° have the same observable physics.

Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $(V_{\alpha}, V_{\alpha}^{\circ})$.
- Mirror symmetry interchanges deformations of complex and Kähler structures.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We want to know the mirror of smooth quintics in \mathbb{P}^4

- We want to know the mirror of smooth quintics in \mathbb{P}^4
- Consider the Fermat quintic pencil X_{ψ} given by

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5\psi x_0 x_1 x_2 x_3 x_4 = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We want to know the mirror of smooth quintics in \mathbb{P}^4
- Consider the Fermat quintic pencil X_{ψ} given by

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5\psi x_0 x_1 x_2 x_3 x_4 = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The pencil admits a group action by $(\mathbb{Z}/5\mathbb{Z})^3$

- We want to know the mirror of smooth quintics in \mathbb{P}^4
- Consider the Fermat quintic pencil X_{ψ} given by

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5\psi x_0 x_1 x_2 x_3 x_4 = 0$$

- The pencil admits a group action by $(\mathbb{Z}/5\mathbb{Z})^3$
- Taking the quotient by the group action and resolving singularities yields the mirror family Y_{\u03c0}

Counting Deformation Parameters

Smooth quintics in \mathbb{P}^4 have many complex deformation parameters

• The mirror family Y_{ψ} is a one-parameter family

The Hodge Diamond

Calabi-Yau Threefolds

Hodge diamond for the quintic and its mirror

(日)、(四)、(E)、(E)、(E)

Arithmetic Mirror Symmetry?

Figure: Xenia de la Ossa


```
Figure: Fernando
Rodriguez Villegas
```

・ロト ・聞ト ・ヨト ・ヨト

э

Figure: Philip Candelas

Arithmetic Mirror Symmetry for Threefolds

If X and Y are mirror Calabi-Yau threefolds, we can expect a relationship between Z(X/𝔽_q, T) and Z(Y/𝔽_q, T) due to the interchange of Hodge numbers.

Arithmetic Mirror Symmetry for Threefolds

- If X and Y are mirror Calabi-Yau threefolds, we can expect a relationship between Z(X/𝔽_q, T) and Z(Y/𝔽_q, T) due to the interchange of Hodge numbers.
- Candelas, de la Ossa, and Rodriguez Villegas showed that for the Fermat quintic pencil X_{\u03c0} and the Greene-Plesser mirror Y_{\u03c0}, P_{X_{\u03c0} and P_{Y_{\u03c0} share a common factor of degree 4.}}

Greene-Plesser Mirror for Quartics in \mathbb{P}^3

- Start with all smooth quartics in P³
- Consider the Fermat pencil $X_{\psi}: x^4 + y^4 + z^4 + w^4 4\psi xyzw$
- ► The pencil admits an action of G = (Z/(4))² (multiply coordinates by 4th roots of unity)
- ▶ Resolve singularities in the quotient X_{ψ}/G to obtain Y_{ψ}
- Y_{ψ} is the mirror family to smooth quartics in \mathbb{P}^3
- Smooth quartics in \mathbb{P}^3 have many complex deformation parameters; Y_ψ has 1

The Fermat quartic pencil

Let X_{ψ} be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$P_{X_{\psi}}(T) = R_{\psi}(T)Q^3(T)S^6(T)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Fermat quartic pencil

Let X_{ψ} be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$P_{X_{\psi}}(T) = R_{\psi}(T)Q^3(T)S^6(T)$$

where (with choices of \pm depending on p and ψ)

•
$$R_{\psi}(T) = (1 \pm pT)(1 - a_{\psi}T + p^2T)$$

$$\blacktriangleright Q(T) = (1 \pm pT)(1 \pm pT)$$

•
$$S(T) = (1 - pT)(1 + pT)$$
 when $p \equiv 3 \mod 4$
 $(1 \pm pT)^2$ otherwise

Mirror Quartics

Let Y_{ψ} be the mirror family to quartics in \mathbb{P}^3 (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$Z(Y_{\psi}/\mathbb{F}_p, T) = rac{1}{(1-T)(1-pT)^{19}(1-p^2T)R_{\psi}(T)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mirror Quartics

Let Y_{ψ} be the mirror family to quartics in \mathbb{P}^3 (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$Z(Y_{\psi}/\mathbb{F}_p, T) = rac{1}{(1-T)(1-pT)^{19}(1-p^2T)R_{\psi}(T)}.$$

The factor $R_{\psi}(T)$ corresponds to periods of the holomorphic form and its derivatives, and is invariant under mirror symmetry.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to Generalize?

How can one generalize this arithmetic mirror phenomenon?

Fermat Pencils

▶ Daqinq Wan: For the Fermat pencil X_ψ in any dimension and its Greene-Plesser mirror Y_ψ, the unit roots match, so

$$\#X_{\psi}(\mathbb{F}_q) \equiv \#Y_{\psi}(\mathbb{F}_q) \pmod{q}.$$

・ロト・日本・モト・モート ヨー うへで

Berglund-Hübsch-Krawitz Duality

Does Berglund-Hübsch-Krawitz (BHK) mirror symmetry have arithmetic implications?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider a polynomial F_A that is the sum of n + 1 monomials in n + 1 variables

$$F_A := \sum_{i=0}^n \prod_{j=0}^n x_j^{a_{ij}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We view F_A as determined by an integer matrix $A = (a_{ij})$ (with rows corresponding to monomials).

Invertible polynomials

We say F_A is invertible if:

- The matrix A is invertible
- ► There exist positive integers called weights p_j so that d := ∑ⁿ_{j=0} p_ja_{ij} is the same constant for all i
- ► The polynomial *F_A* has exactly one critical point, namely at the origin.

Calabi-Yau Condition

We say an invertible polynomial F_A satisfies the Calabi-Yau condition if $d = \sum_{j=0}^{n} p_j$.

If a polynomial is invertible and the Calabi-Yau condition is satisfied:

- ► The weights determine a weighted projective space WPⁿ(p₀,..., p_n)
- ► *F_A* determines a Calabi-Yau hypersurface *X_A* in this weighted projective space.

Kreuzer and Skarke proved that any invertible polynomial F_A can be written as a sum of invertible potentials, each of which must be of one of the three *atomic types*:

$$\begin{split} & \mathcal{W}_{\mathsf{Fermat}} := x^{a}, \\ & \mathcal{W}_{\mathsf{loop}} := x_{1}^{a_{1}} x_{2} + x_{2}^{a_{2}} x_{3} + \ldots + x_{m-1}^{a_{m-1}} x_{m} + x_{m}^{a_{m}} x_{1}, \text{ and} \\ & \mathcal{W}_{\mathsf{chain}} := x_{1}^{a_{1}} x_{2} + x_{2}^{a_{2}} x_{3} + \ldots x_{m-1}^{a_{m-1}} x_{m} + x_{m}^{a_{m}}. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Group Action

- Let SL(F_A) ⊂ (ℂ*)ⁿ⁺¹ be the diagonal symmetries of F_A of determinant 1.
- ► SL(F_A) is a finite abelian group, and the coordinates of each element of SL(F_A) are roots of unity.
- Let $J(F_A)$ be the trivial diagonal symmetries.
- SL(F_A)/J(F_A) acts nontrivially and symplectically on X_A (fixes the holomorphic n − 1-form).

A Group Action

- Let SL(F_A) ⊂ (ℂ*)ⁿ⁺¹ be the diagonal symmetries of F_A of determinant 1.
- ► SL(F_A) is a finite abelian group, and the coordinates of each element of SL(F_A) are roots of unity.
- Let $J(F_A)$ be the trivial diagonal symmetries.
- SL(F_A)/J(F_A) acts nontrivially and symplectically on X_A (fixes the holomorphic n − 1-form).

The BHK Mirror

We start with a manifold X_A , corresponding to a matrix A.

- Take the transpose matrix A^T .
- Consider the polynomial F_{A^T} .

• Let
$$\widetilde{G^{T}} = SL(F_{A^{T}})/J(F_{A^{T}}).$$

• We obtain a dual orbifold X_{A^T}/G^T .

The BHK Mirror

We start with a manifold X_A , corresponding to a matrix A.

- Take the transpose matrix A^T .
- Consider the polynomial F_{A^T} .

• Let
$$\widetilde{G^{T}} = SL(F_{A^{T}})/J(F_{A^{T}}).$$

- We obtain a dual orbifold X_{A^T}/G^T .
- ► In general, for any subgroup H of SL(F_A)/J(F_A), one may define the Berglund-Hübsch-Krawitz mirror of the orbifold X_A/H.

Motivating Question

If A^T and B^T have common properties, do X_A and X_B share arithmetic properties?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

BHK duality for a polynomial F_A extends naturally to the pencil of hypersurfaces described by

$$F_A - (d^T)\psi x_0 \dots x_n,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $d^T = \sum q_i$ is the sum of the dual weights.

A common factor

Theorem (DKSSVW)

Let $X_{A,\psi}$ and $X_{B,\psi}$ be invertible pencils of Calabi-Yau (n-1)-folds in \mathbb{P}^n . Suppose A and B have the same dual weights (q_0, \ldots, q_n) . Then for each $\psi \in \mathbb{F}_q$ such that $gcd(q, (n+1)d^T) = 1$ and the fibers $X_{A,\psi}$ and $X_{B,\psi}$ are nondegenerate and smooth, the polynomials $P_{X_{A,\psi}}(T)$ and $P_{X_{B,\psi}}(T)$ have a common factor $R_{\psi}(T) \in \mathbb{Q}[T]$ with

$$\deg R_{\psi}(T) \geq D(q_0,\ldots,q_n).$$

A common factor

Theorem (DKSSVW)

Let $X_{A,\psi}$ and $X_{B,\psi}$ be invertible pencils of Calabi-Yau (n-1)-folds in \mathbb{P}^n . Suppose A and B have the same dual weights (q_0, \ldots, q_n) . Then for each $\psi \in \mathbb{F}_q$ such that $gcd(q, (n+1)d^T) = 1$ and the fibers $X_{A,\psi}$ and $X_{B,\psi}$ are nondegenerate and smooth, the polynomials $P_{X_{A,\psi}}(T)$ and $P_{X_{B,\psi}}(T)$ have a common factor $R_{\psi}(T) \in \mathbb{Q}[T]$ with

$$\deg R_{\psi}(T) \geq D(q_0,\ldots,q_n).$$

Furthermore, deg $R_{\psi}(T) \leq \dim_{\mathbb{C}} H^{n-1}_{\text{prim}}(X_{A,\psi},\mathbb{C})^{SL(F_A)}$.

For the following quartic pencils in \mathbb{P}^3 , the dual weights are (1, 1, 1, 1) and deg $R_{\psi}(T) = 3$.

For \mathbb{F}_q containing sufficiently many roots of unity, we have that

$$Z(X_{\diamond,\psi}/\mathbb{F}_q,T) = rac{1}{(1-T)(1-qT)^{19}(1-q^2T)R_{\psi}(T)}.$$

We may say our zeta functions are potentially equal.

Comparing to the mirror

Let Y_{ψ} be the family of mirror quartics we constructed earlier. Then $Z(X_{\diamond,\psi})$ and $Z(Y_{\psi})$ are potentially equal for any \diamond .

For the following quartic pencils in \mathbb{P}^3 , the dual weights are (4, 2, 3, 3) and deg $R_{\psi}(T) = 6$.

Classifying Invertible Pencils

Other invertible K3 pencils in \mathbb{P}^3 have unique dual weights, so the study of \diamond and \clubsuit completely describes the implications of our theorem for K3 surfaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example
Dual weights (1,...,1)

In \mathbb{P}^n , if the common dual weights are $(q_0, \ldots, q_n) = (1, \ldots, 1)$, then the common factor $R_{\psi}(T) \in \mathbb{Q}[T]$ has deg $R_{\psi} = n$.

Why does this work?

The Picard-Fuchs equation satisfied by the holomorphic form depends only on the dual weights, by a result of Gährs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Why does this work?

- The Picard-Fuchs equation satisfied by the holomorphic form depends only on the dual weights, by a result of Gährs.
- The Picard-Fuchs equation determines a subspace of p-adic (Dwork) cohomology stable under the action of Frobenius

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why does this work?

- The Picard-Fuchs equation satisfied by the holomorphic form depends only on the dual weights, by a result of Gährs.
- The Picard-Fuchs equation determines a subspace of *p*-adic (Dwork) cohomology stable under the action of Frobenius

▶ And fixed by the action of SL(F_A) on cohomology.

Hypergeometric equations

Gährs showed that the Picard-Fuchs equation is a hypergeometric differential equation. To explain her result (and define $D(q_0, \ldots, q_n)$), we need notation for the parameters.

Rational numbers Define

$$\alpha_j := \frac{J}{d^T}, \quad \text{for } j = 0, \dots, d^T - 1;$$

$$\beta_{ij} := \frac{j}{q_i}, \quad \text{for } i = 0, \dots, n \text{ and } j = 0, \dots, q_i - 1.$$
(1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multisets

Multisets

$$\boldsymbol{\alpha} := \left\{ \alpha_j : j = 0, \dots, d^T - 1 \right\};$$

$$\boldsymbol{\beta}_i := \left\{ \beta_{ij} : j = 0, \dots, q_i - 1 \right\}, \quad \boldsymbol{\beta} = \bigcup_{i=0}^n \boldsymbol{\beta}_i.$$
 (2)

Multisets

Multisets

$$\boldsymbol{\alpha} := \left\{ \alpha_j : j = 0, \dots, d^T - 1 \right\};$$

$$\boldsymbol{\beta}_i := \left\{ \beta_{ij} : j = 0, \dots, q_i - 1 \right\}, \quad \boldsymbol{\beta} = \bigcup_{i=0}^n \boldsymbol{\beta}_i.$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intersection

Take the intersection $I = S(\alpha) \cap S(\beta)$.

Gährs' Theorem

Let
$$\delta = \psi \frac{d}{d\psi}$$
.

Theorem (Gährs)

Let $X_{A,\psi}$ be an invertible pencil of Calabi-Yau (n-1)-folds determined by the integer matrix A. Suppose A has dual weights (q_0, \ldots, q_n) . Then:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gährs' Theorem

Let
$$\delta = \psi \frac{d}{d\psi}$$
.

Theorem (Gährs)

Let $X_{A,\psi}$ be an invertible pencil of Calabi-Yau (n-1)-folds determined by the integer matrix A. Suppose A has dual weights (q_0, \ldots, q_n) . Then:

the order of the Picard–Fuchs equation satisfied by the holomorphic period is

$$D(q_0,\ldots,q_n):=d^T-\#I.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gährs' Theorem

Let
$$\delta = \psi \frac{d}{d\psi}$$
.

Theorem (Gährs)

Let $X_{A,\psi}$ be an invertible pencil of Calabi-Yau (n-1)-folds determined by the integer matrix A. Suppose A has dual weights (q_0, \ldots, q_n) . Then:

 the order of the Picard–Fuchs equation satisfied by the holomorphic period is

$$D(q_0,\ldots,q_n):=d^T-\#I.$$

the Picard–Fuchs equation is given by the differential equation

$$\left(\prod_{i=0}^{n} q_{i}^{q_{i}}\right) \psi^{d^{T}} \left(\prod_{\beta_{ij} \in \boldsymbol{\beta} \setminus I} (\delta + \beta_{ij} d^{T})\right) - \prod_{\alpha_{j} \in \boldsymbol{\alpha} \setminus I} (\delta - \alpha_{j} d^{T}).$$

Generalized hypergeometric functions

Let $A, B \in \mathbb{N}$. Recall that a hypergeometric function is a function on \mathbb{C} of the form:

$${}_{A}F_{B}(\alpha;\beta|z) = {}_{A}F_{B}(\alpha_{1},\ldots,\alpha_{A};\beta_{1},\ldots,\beta_{B}|z)$$
$$= \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}\cdots(\alpha_{A})_{k}}{(\beta_{1})_{k}\cdots(\beta_{B})_{k}k!}z^{k},$$

where $\alpha \in \mathbb{Q}^A$ are numerator parameters, $\beta \in \mathbb{Q}^B$ are denominator parameters, and the Pochhammer notation is defined by:

$$(x)_k = x(x+1)\cdots(x+k-1) = \frac{\Gamma(x+k)}{\Gamma(x)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

One solution to Gährs' Picard-Fuchs equation is the following hypergeometric function:

$${}_{D}F_{D-1}\left(\begin{array}{c}\alpha_{i} \in \boldsymbol{\alpha} \smallsetminus \boldsymbol{I}\\\beta_{ij} \in \boldsymbol{\beta} \smallsetminus (\boldsymbol{I} \cup \{\boldsymbol{0}\})\end{array}; (\prod_{i} q_{i}^{-q_{i}})\psi^{-d^{T}}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hypergeometric functions and unit roots

The unit root is determined by a formal power series depending on

$${}_{D}F_{D-1}\left(\begin{array}{c}\alpha_{i} \in \boldsymbol{\alpha} \smallsetminus \boldsymbol{I}\\\beta_{ij} \in \boldsymbol{\beta} \smallsetminus (\boldsymbol{I} \cup \{0\})\end{array}; (\prod_{i} q_{i}^{-q_{i}})\psi^{-d^{T}}\right)$$

・ロト・日本・モト・モート ヨー うへで

Hypergeometric functions and unit roots

The unit root is determined by a formal power series depending on

$${}_{D}F_{D-1}\left(\begin{array}{c}\alpha_{i} \in \boldsymbol{\alpha} \smallsetminus \boldsymbol{I}\\\beta_{ij} \in \boldsymbol{\beta} \smallsetminus (\boldsymbol{I} \cup \{0\})\end{array}; (\prod_{i} q_{i}^{-q_{i}})\psi^{-d^{T}}\right)$$

This follows from results of Miyatani (when $X_{A,\psi}$ is smooth, $\psi \neq 0$) or Adolphson-Sperber (in general).

Unit root

Proposition (DKSSVW)

Let $F_A(x)$ and $F_B(x)$ be invertible polynomials in n + 1 variables satisfying the Calabi–Yau condition. Suppose A^T and B^T have the same weights. Then for all $\psi \in \mathbb{F}_q$ and in all characteristics (including when $p \mid d^T$), either:

▶ the unit root of $X_{A,\psi}$ is the same as the unit root of $X_{B,\psi}$, or

neither variety has a nontrivial unit root.

Thus, the supersingular locus is the same for both pencils.

Counting (mod q)

Corollary

Let $F_A(x)$ and $F_B(x)$ be invertible polynomials in n + 1 variables satisfying the Calabi–Yau condition. Suppose A^T and B^T have the same weights. Then for any fixed $\psi \in \mathbb{F}_q$ and in all characteristics (including $p \mid d^T$) the \mathbb{F}_q -rational point counts for fibers $X_{A,\psi}$ and $X_{B,\psi}$ are congruent as follows:

$$\#X_{A,\psi} \equiv \#X_{B,\psi} \pmod{q}.$$