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Let K be a number field with ring of integers ZK .

Every nonzero, nonunit α ∈ ZK is equal to a product of irreducible
elements of ZK .

Question: Is this factorization unique?

Example

I Let K = Q. Every n ∈ Z is equal to a unique product of
prime numbers.

I Let K = Q(
√
−5), with ring of integers ZK . In ZK ,

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Answer: No, not necessarily.

More questions: When is it unique? What can we say about it
when it isn’t unique?



Let K be a number field with ring of integers ZK .

Every nonzero, nonunit α ∈ ZK is equal to a product of irreducible
elements of ZK .

Question: Is this factorization unique?

Example

I Let K = Q. Every n ∈ Z is equal to a unique product of
prime numbers.

I Let K = Q(
√
−5), with ring of integers ZK . In ZK ,

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Answer: No, not necessarily.

More questions: When is it unique? What can we say about it
when it isn’t unique?



Let K be a number field with ring of integers ZK .

Every nonzero, nonunit α ∈ ZK is equal to a product of irreducible
elements of ZK .

Question: Is this factorization unique?

Example

I Let K = Q. Every n ∈ Z is equal to a unique product of
prime numbers.

I Let K = Q(
√
−5), with ring of integers ZK . In ZK ,

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Answer: No, not necessarily.

More questions: When is it unique? What can we say about it
when it isn’t unique?



Measuring the failure of unique factorization

Let

I I(K ) = {fractional ideals of K}
I Prin(K ) = {principal fractional ideals of K}.

H(K ) := I(K )/Prin(K ) is called the class group of K .

Let hK := #H(K ) denote the class number of K .

Note: hK is finite, for any number field K .

Theorem

hK = 1 ⇐⇒ ZK is a PID ⇐⇒ ZK is a UFD.
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Measuring the failure of unique factorization

Theorem (Carlitz 1960)

ZK is not a UFD, and every factorization of α ∈ ZK into
irreducibles has the same length ⇐⇒ hK = 2.



Measuring the failure of unique factorization

For an principal ideal I ⊂ ZK , define

L(I ) := {n ∈ N :
I has a length n factorization into

irreducible principal ideals
}.

L(I ) is called the length spectrum of I .

Also, define

ρK := sup
I∈Prin(ZK )
m,n∈L(I )

m

n
.

ρK is called the elasticity of ZK .
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Measuring the failure of unique factorization

The Davenport constant D(G ) of a finite abelian group G is
smallest number such that every length D(G ) sequence of
elements of G has a nonempty subsequence that sums to 0.

Example: G = Z/pZ. Then D(G ) = p. (In general, D(G ) ≤ #G .)

Fact: D(G )→∞ as #G →∞.

Theorem (Valenza 1980; Steffan 1986)

ρK = 1
2D(H(K )).
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Counting irreducible divisors

Let ν(α) denote the number of pairwise nonassociate irreducible
divisors of α ∈ ZK .

For example, let K = Q(
√
−5). Then ν(6) = 4, since

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Theorem (Pollack)

The quantity ν(α) has a normal distribution with mean

A(log log |N(α)|)D and standard deviation B(log log |N(α)|)D−
1
2 ,

where A and B are positive constants depending on K and D is
the Davenport constant of H(K ).
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Maximal order of ν(α)

Theorem (Pollack, T)

We have

max{ν(α) : |N(α)| ≤ x} = (MK + o(1))
( log x

hK log log x

)D
,

where MK is a positive constant depending only on K and D is the
Davenport constant of the class group H(K ).



Counting irreducibles

Theorem (Rémond 1966)

Let F (x) denote the number of pairwise nonassociate irreducible
elements of ZK with norm up to x in absolute value. Then

F (x) ∼ CK
D

hDK

x

log x
(log log x)D−1,

where D is the Davenport constant of H(K ), and CK is a constant
depending only on K .

There is a formula for the constant CK , in terms of the structure
of the class groups of K . When K = Q, we have CK = 1, and we
recover the prime number theorem:

π(x) ∼ x

log x
.
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Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let m be a nonzero ideal of ZK , and let α ∈ ZK be a nonzero
element such that (α) and m have no prime ideal factors in
common. Then the number of irreducibles π ≡ α (mod m), with
π/α� 0, of norm at most x in absolute value is asymptotic to

1

Φ(m)
CK

D

hDK

x

log x
(log log x)D−1,

where D is the Davenport constant of H(K ), Φ(m) is the analogue
of Euler’s totient function in this setting, and CK is the same as in
Rémond’s theorem.

Remark:

I Suppose G := ((α),m) is a product of prime ideals with no
principal subproduct. Then there are still infinitely many
irreducibles π ≡ α (mod m), and we can count them!
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Rémond’s theorem.

Remark:

I Suppose G := ((α),m) is a product of prime ideals with no
principal subproduct. Then there are still infinitely many
irreducibles π ≡ α (mod m), and we can count them!



Types of ideals and elements

Write H(K ) = {C1, . . . ,Ch} (so h = hK ).

Let A ⊂ ZK a nonzero ideal. We say A is of type τ = (t1, . . . , th)
if the (unique) prime factorization of A into prime ideals has ti
factors from the ideal class Ci .

So a type is just an h-tuple of nonnegative integers.

An element α ∈ ZK is of type τ when (α) is of type τ .

The length of τ = (t1, . . . , th) is t1 + · · ·+ th, denoted `(τ).
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Irreducible types

Let π ∈ ZK be irreducible. Write

(π) = p1 · · · p`.

π irreducible =⇒ no subproduct of the pi is principal.

We say a type τ = (t1, . . . , th) is irreducible if, in the class group,
C t1
1 · · ·C

th
h is trivial, while no proper subproduct of the Ci s is trivial.

Every irreducible π ∈ ZK has an irreducible type. Conversely, every
irreducible type is represented by an irreducible element, since
(Landau) every ideal class contains a prime ideal.

Finally: A type τ is maximal if τ is irreducible and
`(τ) = D(H(K )).
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Proof: What is MK?

Define a polynomial

P(x1, . . . , xh) =
∑

τ maximal

h∏
i=1

x ti

ti !
.

Let MK denote the maximum value achieved by this polynomial on
the simplex

S = {(x1, . . . , xh) : xi ≥ 0,
h∑

i=1

xi ≤ h}.

Let (γ1, . . . , γh) ∈ S be a point at which P achieves the value MK .

Example: If H(K ) ' Z/3Z, the maximal types are (0, 3, 0) and
(0, 0, 3). So P(x1, x2, x3) = 1

3!(x
3
2 + x33 ), a choice of

(γ1, γ2, γ3) = (0, 3, 0), and MK = 1
3!3

3.



Proof: What is MK?

Define a polynomial

P(x1, . . . , xh) =
∑

τ maximal

h∏
i=1

x ti

ti !
.

Let MK denote the maximum value achieved by this polynomial on
the simplex

S = {(x1, . . . , xh) : xi ≥ 0,
h∑

i=1

xi ≤ h}.

Let (γ1, . . . , γh) ∈ S be a point at which P achieves the value MK .

Example: If H(K ) ' Z/3Z, the maximal types are (0, 3, 0) and
(0, 0, 3). So P(x1, x2, x3) = 1

3!(x
3
2 + x33 ), a choice of

(γ1, γ2, γ3) = (0, 3, 0), and MK = 1
3!3

3.



Proof: What is MK?

Define a polynomial

P(x1, . . . , xh) =
∑

τ maximal

h∏
i=1

x ti

ti !
.

Let MK denote the maximum value achieved by this polynomial on
the simplex

S = {(x1, . . . , xh) : xi ≥ 0,
h∑

i=1

xi ≤ h}.

Let (γ1, . . . , γh) ∈ S be a point at which P achieves the value MK .

Example: If H(K ) ' Z/3Z, the maximal types are (0, 3, 0) and
(0, 0, 3). So P(x1, x2, x3) = 1

3!(x
3
2 + x33 ), a choice of

(γ1, γ2, γ3) = (0, 3, 0), and MK = 1
3!3

3.



Proof: What is MK?

Define a polynomial

P(x1, . . . , xh) =
∑

τ maximal

h∏
i=1

x ti

ti !
.

Let MK denote the maximum value achieved by this polynomial on
the simplex

S = {(x1, . . . , xh) : xi ≥ 0,
h∑

i=1

xi ≤ h}.

Let (γ1, . . . , γh) ∈ S be a point at which P achieves the value MK .

Example: If H(K ) ' Z/3Z, the maximal types are (0, 3, 0) and
(0, 0, 3). So P(x1, x2, x3) = 1

3!(x
3
2 + x33 ), a choice of

(γ1, γ2, γ3) = (0, 3, 0), and MK = 1
3!3

3.



Proof sketch

Key input:

Theorem (Landau 1907)

Let Ci ∈ H(K ), and let πi (x) denote the count of prime ideals
p ∈ Ci with N(p) ≤ x . Then

πi (x) =
(1

h
+ o(1)

) x

log x
.

Strategy: Mimic maximal order proof for ω(n).

(Let n = p1 · · · pm. Then log(n) =
∑m

i=1 log(pm) = ψ(pm) ∼ pm
and

ω(n) = π(pm) ∼ pm
log pm

∼ log n

log log n
,

as n→∞ through primorials.)
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Proof sketch

I Let A =
h∏

i=1

∏
p∈Ci

N(p)≤γi log x

p, with γi as before

I N(A) ≈ x

I The number of type τ = (t1, . . . , th) principal divisors of A is

h∏
i=1

(
ωi (A)

ti

)
≈

h∏
i=1

ωi (A)ti

ti !
,

where ωi (A) is the number of prime ideal divisors of A from
the ideal class Ci .

I ωi (A) ≈ γi
log x

hK log log x
; inserting this into the display above

and summing over all maximal types τ , we see that the
number of principal divisors of A of irreducible type is

1

hDK

∑
τ maximal

γtii
ti !

( log x

log log x

)D
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Counting irreducibles

Theorem (Rémond 1966)

Let F (x) denote the number of pairwise nonassociate irreducible
elements of ZK with norm up to x in absolute value. Then

F (x) ∼ D
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∑
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1
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,

where D is the Davenport constant of H(K ).

When K = Q, we recover the prime number theorem:

π(x) ∼ x

log x
.
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Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let m be a nonzero ideal of ZK , and let α ∈ ZK be a nonzero
element such that (α) and m have no prime ideal factors in
common. Then there are infinitely many irreducible elements π of
ZK with π ≡ α (mod m), and π/α� 0.

More precisely: The number of principal ideals of norm at most x
admitting a generator π ≡ α (mod m) is asymptotic to

1

Φ(m)

D

hD

∑
τ maximal

1

t1! · · · th!

x

log x
(log log x)D−1,

where we have written each τ = (t1, . . . , th).



Proof sketch: Upper Bound

Suppose π is of type τ = (t1, . . . , th). Write (π) = p1 · · · pD , and
assume NpD > x1−1/ log log x : This discards a negligible number of
ideals (π).

Since π ≡ α (mod m), (π) and (α) are equivalent modulo
Prin+

m(K ), and so represent the same element in H+
m (K ), the strict

ray class group modulo m.

Given p1 · · · pD−1, the ray class of pD is that of (α) times the
inverse of the class of p1 · · · pD−1.
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Proof sketch: Upper Bound

Theorem (Landau 1918)

The number of prime ideals of ZK of norm up to x belonging to a
particular strict ray class modulo m is asymptotic to

1

h+m(K )

x

log x
.

The number of possibilities for pD is

∼ 1

h+m(K )

x/Np1 · · · pD−1
log(x/Np1 · · · pD−1)

∼ 1

h+m(K )

x/Np1 · · · pD−1
log(x)

.

I Sum on p1, . . . , pD−1
I Estimate this sum with a Mertens-type theorem for strict ray

classes, which follows from Landau’s theorem and partial
summation



Proof sketch: Upper Bound

Theorem (Landau 1918)

The number of prime ideals of ZK of norm up to x belonging to a
particular strict ray class modulo m is asymptotic to

1

h+m(K )

x

log x
.

The number of possibilities for pD is

∼ 1

h+m(K )

x/Np1 · · · pD−1
log(x/Np1 · · · pD−1)

∼ 1

h+m(K )

x/Np1 · · · pD−1
log(x)

.

I Sum on p1, . . . , pD−1
I Estimate this sum with a Mertens-type theorem for strict ray

classes, which follows from Landau’s theorem and partial
summation



But wait, there’s more

We say a type τ is maximal with respect to τ ′ if τ ′ ≤ τ , τ is
irreducible and τ has maximal length among the irreducible types
which have τ ′ as a subtype.

Theorem (Pollack, T)

Let α ∈ ZK such that (α) and m have no common principal ideal
factor. Let G = ((α),m), and let τ ′ be the type of G. Then the
number of principal ideals of norm at most x admitting a generator
π ≡ α (mod m) is asymptotic to

1

N(G )Φ(mG−1)

L

hL

∑
τ ′≤τ
τ irred.

τmax’l w.r.t.τ ′

1

n1! · · · nh!

x

log x
(log log x)L−1,

where we have written each τ − τ ′ = (n1, . . . , nh), and where L is
the length of these types τ − τ ′.



Thanks!


