Counting irreducible divisors and irreducibles in progressions

Lee Troupe ${ }^{1}$
joint w/ Paul Pollack ${ }^{2}$
${ }^{1}$ University of British Columbia
${ }^{2}$ University of Georgia

Alberta Number Theory Days 2017

Let K be a number field with ring of integers \mathbb{Z}_{K}.
Every nonzero, nonunit $\alpha \in \mathbb{Z}_{K}$ is equal to a product of irreducible elements of \mathbb{Z}_{K}.
Question: Is this factorization unique?

Let K be a number field with ring of integers \mathbb{Z}_{K}.
Every nonzero, nonunit $\alpha \in \mathbb{Z}_{K}$ is equal to a product of irreducible elements of \mathbb{Z}_{k}.

Question: Is this factorization unique?

Example

- Let $K=\mathbb{Q}$. Every $n \in \mathbb{Z}$ is equal to a unique product of prime numbers.

Let K be a number field with ring of integers \mathbb{Z}_{K}.
Every nonzero, nonunit $\alpha \in \mathbb{Z}_{K}$ is equal to a product of irreducible elements of \mathbb{Z}_{K}.
Question: Is this factorization unique?

Example

- Let $K=\mathbb{Q}$. Every $n \in \mathbb{Z}$ is equal to a unique product of prime numbers.
- Let $K=\mathbb{Q}(\sqrt{-5})$, with ring of integers \mathbb{Z}_{K}. In \mathbb{Z}_{K},

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

Answer: No, not necessarily.
More questions: When is it unique? What can we say about it when it isn't unique?

Measuring the failure of unique factorization

Let

- $\mathcal{I}(K)=\{$ fractional ideals of $K\}$
- $\operatorname{Prin}(K)=\{$ principal fractional ideals of $K\}$.
$H(K):=\mathcal{I}(K) / \operatorname{Prin}(K)$ is called the class group of K.
Let $h_{K}:=\# H(K)$ denote the class number of K.
Note: h_{K} is finite, for any number field K.

Measuring the failure of unique factorization

Let

- $\mathcal{I}(K)=\{$ fractional ideals of $K\}$
- $\operatorname{Prin}(K)=\{$ principal fractional ideals of $K\}$.
$H(K):=\mathcal{I}(K) / \operatorname{Prin}(K)$ is called the class group of K.
Let $h_{K}:=\# H(K)$ denote the class number of K.
Note: h_{K} is finite, for any number field K.
Theorem
$h_{K}=1 \Longleftrightarrow \mathbb{Z}_{K}$ is a PID $\Longleftrightarrow \mathbb{Z}_{K}$ is a UFD.

Measuring the failure of unique factorization

Theorem (Carlitz 1960)
\mathbb{Z}_{K} is not a UFD, and every factorization of $\alpha \in \mathbb{Z}_{K}$ into irreducibles has the same length $\Longleftrightarrow h_{K}=2$.

Measuring the failure of unique factorization

For an principal ideal $I \subset \mathbb{Z}_{K}$, define

$$
\mathcal{L}(I):=\left\{n \in \mathbb{N}: \begin{array}{c}
I \text { has a length } n \text { factorization into } \\
\text { irreducible principal ideals }
\end{array}\right\} .
$$

$\mathcal{L}(I)$ is called the length spectrum of I.

Measuring the failure of unique factorization

For an principal ideal $I \subset \mathbb{Z}_{K}$, define

$$
\mathcal{L}(I):=\left\{n \in \mathbb{N}: \begin{array}{c}
I \text { has a length } n \text { factorization into } \\
\text { irreducible principal ideals }
\end{array}\right\} .
$$

$\mathcal{L}(I)$ is called the length spectrum of I.
Also, define

$$
\rho_{K}:=\sup _{\substack{I \in \operatorname{Prin}\left(\mathbb{Z}_{K}\right) \\ m, n \in \mathcal{L}(I)}} \frac{m}{n} .
$$

ρ_{K} is called the elasticity of \mathbb{Z}_{K}.

Measuring the failure of unique factorization

The Davenport constant $D(G)$ of a finite abelian group G is smallest number such that every length $D(G)$ sequence of elements of G has a nonempty subsequence that sums to 0 .
Example: $G=\mathbb{Z} / p \mathbb{Z}$. Then $D(G)=p$. (In general, $D(G) \leq \# G$.)
Fact: $D(G) \rightarrow \infty$ as $\# G \rightarrow \infty$.

Measuring the failure of unique factorization

The Davenport constant $D(G)$ of a finite abelian group G is smallest number such that every length $D(G)$ sequence of elements of G has a nonempty subsequence that sums to 0 .
Example: $G=\mathbb{Z} / p \mathbb{Z}$. Then $D(G)=p$. (In general, $D(G) \leq \# G$.)
Fact: $D(G) \rightarrow \infty$ as $\# G \rightarrow \infty$.
Theorem (Valenza 1980; Steffan 1986) $\rho_{K}=\frac{1}{2} D(H(K))$.

Counting irreducible divisors

Let $\nu(\alpha)$ denote the number of pairwise nonassociate irreducible divisors of $\alpha \in \mathbb{Z}_{K}$.
For example, let $K=\mathbb{Q}(\sqrt{-5})$. Then $\nu(6)=4$, since $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.

Counting irreducible divisors

Let $\nu(\alpha)$ denote the number of pairwise nonassociate irreducible divisors of $\alpha \in \mathbb{Z}_{K}$.
For example, let $K=\mathbb{Q}(\sqrt{-5})$. Then $\nu(6)=4$, since $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.

Theorem (Pollack)

The quantity $\nu(\alpha)$ has a normal distribution with mean $A(\log \log |N(\alpha)|)^{D}$ and standard deviation $B(\log \log |N(\alpha)|)^{D-\frac{1}{2}}$, where A and B are positive constants depending on K and D is the Davenport constant of $H(K)$.

Maximal order of $\nu(\alpha)$

Theorem (Pollack, T)
We have

$$
\max \{\nu(\alpha):|N(\alpha)| \leq x\}=\left(M_{K}+o(1)\right)\left(\frac{\log x}{h_{K} \log \log x}\right)^{D}
$$

where M_{K} is a positive constant depending only on K and D is the Davenport constant of the class group $H(K)$.

Counting irreducibles

Theorem (Rémond 1966)
Let $F(x)$ denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_{k} with norm up to x in absolute value. Then

$$
F(x) \sim C_{K} \frac{D}{h_{K}^{D}} \frac{x}{\log x}(\log \log x)^{D-1}
$$

where D is the Davenport constant of $H(K)$, and C_{K} is a constant depending only on K.

Counting irreducibles

Theorem (Rémond 1966)
Let $F(x)$ denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_{K} with norm up to x in absolute value. Then

$$
F(x) \sim C_{K} \frac{D}{h_{K}^{D}} \frac{x}{\log x}(\log \log x)^{D-1}
$$

where D is the Davenport constant of $H(K)$, and C_{K} is a constant depending only on K.

There is a formula for the constant C_{K}, in terms of the structure of the class groups of K. When $K=\mathbb{Q}$, we have $C_{K}=1$, and we recover the prime number theorem:

$$
\pi(x) \sim \frac{x}{\log x}
$$

Irreducibles in arithmetic progressions

Theorem (Pollack, T)
Let \mathfrak{m} be a nonzero ideal of \mathbb{Z}_{K}, and let $\alpha \in \mathbb{Z}_{K}$ be a nonzero element such that (α) and \mathfrak{m} have no prime ideal factors in common. Then the number of irreducibles $\pi \equiv \alpha(\bmod \mathfrak{m})$, with $\pi / \alpha \gg 0$, of norm at most x in absolute value is asymptotic to

$$
\frac{1}{\Phi(\mathfrak{m})} C_{K} \frac{D}{h_{K}^{D}} \frac{x}{\log x}(\log \log x)^{D-1}
$$

where D is the Davenport constant of $H(K), \Phi(\mathfrak{m})$ is the analogue of Euler's totient function in this setting, and C_{K} is the same as in Rémond's theorem.

Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let \mathfrak{m} be a nonzero ideal of \mathbb{Z}_{K}, and let $\alpha \in \mathbb{Z}_{K}$ be a nonzero element such that (α) and \mathfrak{m} have no prime ideal factors in common. Then the number of irreducibles $\pi \equiv \alpha(\bmod \mathfrak{m})$, with $\pi / \alpha \gg 0$, of norm at most x in absolute value is asymptotic to

$$
\frac{1}{\Phi(\mathfrak{m})} C_{K} \frac{D}{h_{K}^{D}} \frac{x}{\log x}(\log \log x)^{D-1}
$$

where D is the Davenport constant of $H(K), \Phi(\mathfrak{m})$ is the analogue of Euler's totient function in this setting, and C_{K} is the same as in Rémond's theorem.

Remark:

- Suppose $G:=((\alpha), \mathfrak{m})$ is a product of prime ideals with no principal subproduct. Then there are still infinitely many irreducibles $\pi \equiv \alpha(\bmod \mathfrak{m})$, and we can count them!

Types of ideals and elements

Write $H(K)=\left\{C_{1}, \ldots, C_{h}\right\}$ (so $h=h_{K}$).
Let $A \subset \mathbb{Z}_{K}$ a nonzero ideal. We say A is of type $\tau=\left(t_{1}, \ldots, t_{h}\right)$ if the (unique) prime factorization of A into prime ideals has t_{i} factors from the ideal class C_{i}.

So a type is just an h-tuple of nonnegative integers.

Types of ideals and elements

Write $H(K)=\left\{C_{1}, \ldots, C_{h}\right\}$ (so $h=h_{K}$).
Let $A \subset \mathbb{Z}_{K}$ a nonzero ideal. We say A is of type $\tau=\left(t_{1}, \ldots, t_{h}\right)$ if the (unique) prime factorization of A into prime ideals has t_{i} factors from the ideal class C_{i}.
So a type is just an h-tuple of nonnegative integers.
An element $\alpha \in \mathbb{Z}_{K}$ is of type τ when (α) is of type τ.
The length of $\tau=\left(t_{1}, \ldots, t_{h}\right)$ is $t_{1}+\cdots+t_{h}$, denoted $\ell(\tau)$.

Irreducible types

Let $\pi \in \mathbb{Z}_{K}$ be irreducible. Write

$$
(\pi)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{\ell}
$$

π irreducible \Longrightarrow no subproduct of the \mathfrak{p}_{i} is principal.
We say a type $\tau=\left(t_{1}, \ldots, t_{h}\right)$ is irreducible if, in the class group, $C_{1}^{t_{1}} \cdots C_{h}^{t_{h}}$ is trivial, while no proper subproduct of the C_{i} s is trivial.

Irreducible types

Let $\pi \in \mathbb{Z}_{K}$ be irreducible. Write

$$
(\pi)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{\ell}
$$

π irreducible \Longrightarrow no subproduct of the \mathfrak{p}_{i} is principal.
We say a type $\tau=\left(t_{1}, \ldots, t_{h}\right)$ is irreducible if, in the class group, $C_{1}^{t_{1}} \cdots C_{h}^{t_{h}}$ is trivial, while no proper subproduct of the C_{i} s is trivial.
Every irreducible $\pi \in \mathbb{Z}_{K}$ has an irreducible type. Conversely, every irreducible type is represented by an irreducible element, since
(Landau) every ideal class contains a prime ideal.
Finally: A type τ is maximal if τ is irreducible and $\ell(\tau)=D(H(K))$.

Maximal order of $\nu(\alpha)$

Theorem (Pollack, T)
We have

$$
\max \{\nu(\alpha):|N(\alpha)| \leq x\}=\left(M_{K}+o(1)\right)\left(\frac{\log x}{h_{K} \log \log x}\right)^{D}
$$

where M_{K} is a positive constant depending only on K and D is the Davenport constant of the class group $H(K)$.

Proof: What is M_{K} ?

Define a polynomial

$$
P\left(x_{1}, \ldots, x_{h}\right)=\sum_{\tau \text { maximal }} \prod_{i=1}^{h} \frac{x^{t_{i}}}{t_{i}!}
$$

Proof: What is M_{K} ?

Define a polynomial

$$
P\left(x_{1}, \ldots, x_{h}\right)=\sum_{\tau \text { maximal }} \prod_{i=1}^{h} \frac{x^{t_{i}}}{t_{i}!}
$$

Let M_{K} denote the maximum value achieved by this polynomial on the simplex

$$
S=\left\{\left(x_{1}, \ldots, x_{h}\right): x_{i} \geq 0, \sum_{i=1}^{h} x_{i} \leq h\right\}
$$

Proof: What is M_{K} ?

Define a polynomial

$$
P\left(x_{1}, \ldots, x_{h}\right)=\sum_{\tau \text { maximal }} \prod_{i=1}^{h} \frac{x^{t_{i}}}{t_{i}!}
$$

Let M_{K} denote the maximum value achieved by this polynomial on the simplex

$$
S=\left\{\left(x_{1}, \ldots, x_{h}\right): x_{i} \geq 0, \sum_{i=1}^{h} x_{i} \leq h\right\}
$$

Let $\left(\gamma_{1}, \ldots, \gamma_{h}\right) \in S$ be a point at which P achieves the value M_{K}.

Proof: What is M_{K} ?

Define a polynomial

$$
P\left(x_{1}, \ldots, x_{h}\right)=\sum_{\tau \text { maximal }} \prod_{i=1}^{h} \frac{x^{t_{i}}}{t_{i}!}
$$

Let M_{K} denote the maximum value achieved by this polynomial on the simplex

$$
S=\left\{\left(x_{1}, \ldots, x_{h}\right): x_{i} \geq 0, \sum_{i=1}^{h} x_{i} \leq h\right\}
$$

Let $\left(\gamma_{1}, \ldots, \gamma_{h}\right) \in S$ be a point at which P achieves the value M_{K}.
Example: If $H(K) \simeq \mathbb{Z} / 3 \mathbb{Z}$, the maximal types are $(0,3,0)$ and $(0,0,3)$. So $P\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{3!}\left(x_{2}^{3}+x_{3}^{3}\right)$, a choice of $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=(0,3,0)$, and $M_{K}=\frac{1}{3!} 3^{3}$.

Proof sketch

Key input:
Theorem (Landau 1907)
Let $C_{i} \in H(K)$, and let $\pi_{i}(x)$ denote the count of prime ideals $\mathfrak{p} \in C_{i}$ with $N(\mathfrak{p}) \leq x$. Then

$$
\pi_{i}(x)=\left(\frac{1}{h}+o(1)\right) \frac{x}{\log x}
$$

Proof sketch

Key input:
Theorem (Landau 1907)
Let $C_{i} \in H(K)$, and let $\pi_{i}(x)$ denote the count of prime ideals $\mathfrak{p} \in C_{i}$ with $N(\mathfrak{p}) \leq x$. Then

$$
\pi_{i}(x)=\left(\frac{1}{h}+o(1)\right) \frac{x}{\log x}
$$

Strategy: Mimic maximal order proof for $\omega(n)$.
(Let $n=p_{1} \cdots p_{m}$. Then $\log (n)=\sum_{i=1}^{m} \log \left(p_{m}\right)=\psi\left(p_{m}\right) \sim p_{m}$ and

$$
\omega(n)=\pi\left(p_{m}\right) \sim \frac{p_{m}}{\log p_{m}} \sim \frac{\log n}{\log \log n},
$$

as $n \rightarrow \infty$ through primorials.)

Proof sketch

- Let $A=\prod_{i=1}^{h} \prod_{\substack{\mathfrak{p} \in C_{i} \\ N(\mathfrak{p}) \leq \gamma_{i} \log x}} \mathfrak{p}$, with γ_{i} as before
- $N(A) \approx x$

Proof sketch

- Let $A=\prod_{i=1}^{h} \prod_{\substack{\mathfrak{p} \in C_{i} \\ N(\mathfrak{p}) \leq \gamma_{i} \log x}} \mathfrak{p}$, with γ_{i} as before
- $N(A) \approx x$
- The number of type $\tau=\left(t_{1}, \ldots, t_{h}\right)$ principal divisors of A is

$$
\prod_{i=1}^{h}\binom{\omega_{i}(A)}{t_{i}} \approx \prod_{i=1}^{h} \frac{\omega_{i}(A)^{t_{i}}}{t_{i}!}
$$

where $\omega_{i}(A)$ is the number of prime ideal divisors of A from the ideal class C_{i}.

Proof sketch

- Let $A=\prod_{i=1}^{h} \prod_{\substack{\mathfrak{p} \in C_{i} \\ N(\mathfrak{p}) \leq \gamma_{i} \log x}} \mathfrak{p}$, with γ_{i} as before
- $N(A) \approx x$
- The number of type $\tau=\left(t_{1}, \ldots, t_{h}\right)$ principal divisors of A is

$$
\prod_{i=1}^{h}\binom{\omega_{i}(A)}{t_{i}} \approx \prod_{i=1}^{h} \frac{\omega_{i}(A)^{t_{i}}}{t_{i}!}
$$

where $\omega_{i}(A)$ is the number of prime ideal divisors of A from the ideal class C_{i}.

- $\omega_{i}(A) \approx \gamma_{i} \frac{\log x}{h_{K} \log \log x}$; inserting this into the display above and summing over all maximal types τ, we see that the number of principal divisors of A of irreducible type is

$$
\frac{1}{h_{K}^{D}} \sum_{\tau \text { maximal }} \frac{\gamma_{i}^{t_{i}}}{t_{i}!}\left(\frac{\log x}{\log \log x}\right)^{D}
$$

Counting irreducibles

Theorem (Rémond 1966)
Let $F(x)$ denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_{K} with norm up to x in absolute value. Then

$$
F(x) \sim \frac{D}{h_{K}^{D}} \sum_{\tau \text { maximal }} \frac{1}{t_{1}!\cdots t_{h}!} \frac{x(\log \log x)^{D-1}}{\log x}
$$

where D is the Davenport constant of $H(K)$.

Counting irreducibles

Theorem (Rémond 1966)
Let $F(x)$ denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_{K} with norm up to x in absolute value. Then

$$
F(x) \sim \frac{D}{h_{K}^{D}} \sum_{\tau \text { maximal }} \frac{1}{t_{1}!\cdots t_{h}!} \frac{x(\log \log x)^{D-1}}{\log x}
$$

where D is the Davenport constant of $H(K)$.
When $K=\mathbb{Q}$, we recover the prime number theorem:

$$
\pi(x) \sim \frac{x}{\log x}
$$

Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let \mathfrak{m} be a nonzero ideal of \mathbb{Z}_{K}, and let $\alpha \in \mathbb{Z}_{K}$ be a nonzero element such that (α) and \mathfrak{m} have no prime ideal factors in common. Then there are infinitely many irreducible elements π of \mathbb{Z}_{K} with $\pi \equiv \alpha(\bmod \mathfrak{m})$, and $\pi / \alpha \gg 0$.
More precisely: The number of principal ideals of norm at most x admitting a generator $\pi \equiv \alpha(\bmod \mathfrak{m})$ is asymptotic to

$$
\frac{1}{\Phi(\mathfrak{m})} \frac{D}{h^{D}} \sum_{\tau \text { maximal }} \frac{1}{t_{1}!\cdots t_{h}!} \frac{x}{\log x}(\log \log x)^{D-1}
$$

where we have written each $\tau=\left(t_{1}, \ldots, t_{h}\right)$.

Proof sketch: Upper Bound

Suppose π is of type $\tau=\left(t_{1}, \ldots, t_{h}\right)$. Write $(\pi)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{D}$, and assume $N \mathfrak{p}_{D}>x^{1-1 / \log \log x}$: This discards a negligible number of ideals (π).

Proof sketch: Upper Bound

Suppose π is of type $\tau=\left(t_{1}, \ldots, t_{h}\right)$. Write $(\pi)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{D}$, and assume $N \mathfrak{p}_{D}>x^{1-1 / \log \log x}$: This discards a negligible number of ideals (π).
Since $\pi \equiv \alpha(\bmod \mathfrak{m}),(\pi)$ and (α) are equivalent modulo $\operatorname{Prin}_{\mathfrak{m}}^{+}(K)$, and so represent the same element in $H_{\mathfrak{m}}^{+}(K)$, the strict ray class group modulo \mathfrak{m}.
Given $\mathfrak{p}_{1} \cdots \mathfrak{p}_{D-1}$, the ray class of \mathfrak{p}_{D} is that of (α) times the inverse of the class of $\mathfrak{p}_{1} \cdots \mathfrak{p}_{D-1}$.

Proof sketch: Upper Bound

Theorem (Landau 1918)

The number of prime ideals of \mathbb{Z}_{K} of norm up to x belonging to a particular strict ray class modulo \mathfrak{m} is asymptotic to

$$
\frac{1}{h_{\mathfrak{m}}^{+}(K)} \frac{x}{\log x}
$$

Proof sketch: Upper Bound

Theorem (Landau 1918)

The number of prime ideals of \mathbb{Z}_{K} of norm up to x belonging to a particular strict ray class modulo \mathfrak{m} is asymptotic to

$$
\frac{1}{h_{\mathfrak{m}}^{+}(K)} \frac{x}{\log x} .
$$

The number of possibilities for \mathfrak{p}_{D} is

$$
\sim \frac{1}{h_{\mathfrak{m}}^{+}(K)} \frac{x / N \mathfrak{p}_{1} \cdots \mathfrak{p}_{D-1}}{\log \left(x / N \mathfrak{p}_{1} \cdots \mathfrak{p}_{D-1}\right)} \sim \frac{1}{h_{\mathfrak{m}}^{+}(K)} \frac{x / N \mathfrak{p}_{1} \cdots \mathfrak{p}_{D-1}}{\log (x)}
$$

- Sum on $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{D-1}$
- Estimate this sum with a Mertens-type theorem for strict ray classes, which follows from Landau's theorem and partial summation

But wait, there's more

We say a type τ is maximal with respect to τ^{\prime} if $\tau^{\prime} \leq \tau, \tau$ is irreducible and τ has maximal length among the irreducible types which have τ^{\prime} as a subtype.

Theorem (Pollack, T)

Let $\alpha \in \mathbb{Z}_{K}$ such that (α) and \mathfrak{m} have no common principal ideal factor. Let $G=((\alpha), \mathfrak{m})$, and let τ^{\prime} be the type of G. Then the number of principal ideals of norm at most x admitting a generator $\pi \equiv \alpha(\bmod \mathfrak{m})$ is asymptotic to

$$
\frac{1}{N(G) \Phi\left(\mathfrak{m} G^{-1}\right)} \frac{L}{h^{L}} \sum_{\substack{\tau^{\prime} \leq \tau \\ \text { テirred. } \\ \tau \text { max } \mid \text { w.r.t. } \tau^{\prime}}} \frac{1}{n_{1}!\cdots n_{h}!} \frac{x}{\log x}(\log \log x)^{L-1},
$$

where we have written each $\tau-\tau^{\prime}=\left(n_{1}, \ldots, n_{h}\right)$, and where L is the length of these types $\tau-\tau^{\prime}$.

Thanks！

