Counting irreducible divisors and irreducibles in progressions

Lee Troupe¹ joint w/ Paul Pollack²

¹University of British Columbia

²University of Georgia

Alberta Number Theory Days 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let K be a number field with ring of integers \mathbb{Z}_{K} .

Every nonzero, nonunit $\alpha \in \mathbb{Z}_{K}$ is equal to a product of irreducible elements of \mathbb{Z}_{K} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Question: Is this factorization unique?

Let K be a number field with ring of integers \mathbb{Z}_{K} .

Every nonzero, nonunit $\alpha \in \mathbb{Z}_{K}$ is equal to a product of irreducible elements of \mathbb{Z}_{K} .

Question: Is this factorization unique?

Example

Let K = Q. Every n ∈ Z is equal to a unique product of prime numbers.

Let K be a number field with ring of integers \mathbb{Z}_{K} .

Every nonzero, nonunit $\alpha \in \mathbb{Z}_{K}$ is equal to a product of irreducible elements of \mathbb{Z}_{K} .

Question: Is this factorization unique?

Example

- Let K = Q. Every n ∈ Z is equal to a unique product of prime numbers.
- Let $K = \mathbb{Q}(\sqrt{-5})$, with ring of integers \mathbb{Z}_K . In \mathbb{Z}_K ,

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Answer: No, not necessarily.

More questions: When is it unique? What can we say about it when it isn't unique?

Let

- $\mathcal{I}(K) = \{ \text{fractional ideals of } K \}$
- $Prin(K) = \{ principal fractional ideals of K \}.$

 $H(K) := \mathcal{I}(K) / \operatorname{Prin}(K) \text{ is called the$ *class group* $of } K.$ Let $h_K := \#H(K)$ denote the class number of K. Note: h_K is finite, for any number field K.

Let

- $\mathcal{I}(K) = \{ \text{fractional ideals of } K \}$
- $Prin(K) = \{ principal fractional ideals of K \}.$

 $H(K) := \mathcal{I}(K) / \operatorname{Prin}(K) \text{ is called the$ *class group* $of } K.$ Let $h_K := \#H(K)$ denote the class number of K. Note: h_K is finite, for any number field K.

Theorem

 $h_{\mathcal{K}} = 1 \iff \mathbb{Z}_{\mathcal{K}} \text{ is a PID } \iff \mathbb{Z}_{\mathcal{K}} \text{ is a UFD.}$

Theorem (Carlitz 1960)

 \mathbb{Z}_{K} is not a UFD, and every factorization of $\alpha \in \mathbb{Z}_{K}$ into irreducibles has the same length $\iff h_{K} = 2$.

For an principal ideal $I \subset \mathbb{Z}_K$, define

 $\mathcal{L}(I) := \{n \in \mathbb{N} : \begin{array}{l} I \text{ has a length } n \text{ factorization into} \\ \text{irreducible principal ideals} \}. \end{array}$

 $\mathcal{L}(I)$ is called the *length spectrum* of *I*.

For an principal ideal $I \subset \mathbb{Z}_K$, define

 $\mathcal{L}(I) := \{n \in \mathbb{N} : \begin{array}{l} I \text{ has a length } n \text{ factorization into} \\ \text{irreducible principal ideals} \}. \end{array}$

 $\mathcal{L}(I)$ is called the *length spectrum* of *I*. Also, define

1

$$o_{\mathcal{K}} := \sup_{\substack{I \in \mathsf{Prin}(\mathbb{Z}_{\mathcal{K}}) \\ m, n \in \mathcal{L}(I)}} \frac{m}{n}$$

 $\rho_{\mathcal{K}}$ is called the *elasticity* of $\mathbb{Z}_{\mathcal{K}}$.

The Davenport constant D(G) of a finite abelian group G is smallest number such that every length D(G) sequence of elements of G has a nonempty subsequence that sums to 0. Example: $G = \mathbb{Z}/p\mathbb{Z}$. Then D(G) = p. (In general, $D(G) \le \#G$.) Fact: $D(G) \to \infty$ as $\#G \to \infty$.

The Davenport constant D(G) of a finite abelian group G is smallest number such that every length D(G) sequence of elements of G has a nonempty subsequence that sums to 0. Example: $G = \mathbb{Z}/p\mathbb{Z}$. Then D(G) = p. (In general, $D(G) \le \#G$.) Fact: $D(G) \to \infty$ as $\#G \to \infty$.

Theorem (Valenza 1980; Steffan 1986)

 $\rho_K = \frac{1}{2} D(H(K)).$

Counting irreducible divisors

Let $\nu(\alpha)$ denote the number of pairwise nonassociate irreducible divisors of $\alpha \in \mathbb{Z}_{K}$.

For example, let $K = \mathbb{Q}(\sqrt{-5})$. Then $\nu(6) = 4$, since $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

Counting irreducible divisors

Let $\nu(\alpha)$ denote the number of pairwise nonassociate irreducible divisors of $\alpha \in \mathbb{Z}_{K}$.

For example, let $K = \mathbb{Q}(\sqrt{-5})$. Then $\nu(6) = 4$, since $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

Theorem (Pollack)

The quantity $\nu(\alpha)$ has a normal distribution with mean $A(\log \log |N(\alpha)|)^D$ and standard deviation $B(\log \log |N(\alpha)|)^{D-\frac{1}{2}}$, where A and B are positive constants depending on K and D is the Davenport constant of H(K).

Maximal order of $\nu(\alpha)$

Theorem (Pollack, T)

We have

$$\max\{\nu(\alpha): |\mathsf{N}(\alpha)| \le x\} = (\mathsf{M}_{\mathsf{K}} + o(1)) \Big(\frac{\log x}{h_{\mathsf{K}} \log \log x}\Big)^D,$$

where M_K is a positive constant depending only on K and D is the Davenport constant of the class group H(K).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Counting irreducibles

Theorem (Rémond 1966)

Let F(x) denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_K with norm up to x in absolute value. Then

$$F(x) \sim C_K \frac{D}{h_K^D} \frac{x}{\log x} (\log \log x)^{D-1},$$

where D is the Davenport constant of H(K), and C_K is a constant depending only on K.

Counting irreducibles

Theorem (Rémond 1966)

Let F(x) denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_K with norm up to x in absolute value. Then

$$F(x) \sim C_K \frac{D}{h_K^D} \frac{x}{\log x} (\log \log x)^{D-1},$$

where D is the Davenport constant of H(K), and C_K is a constant depending only on K.

There is a formula for the constant C_K , in terms of the structure of the class groups of K. When $K = \mathbb{Q}$, we have $C_K = 1$, and we recover the prime number theorem:

$$\pi(x) \sim \frac{x}{\log x}.$$

Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let \mathfrak{m} be a nonzero ideal of \mathbb{Z}_K , and let $\alpha \in \mathbb{Z}_K$ be a nonzero element such that (α) and \mathfrak{m} have no prime ideal factors in common. Then the number of irreducibles $\pi \equiv \alpha \pmod{\mathfrak{m}}$, with $\pi/\alpha \gg 0$, of norm at most x in absolute value is asymptotic to

$$\frac{1}{\Phi(\mathfrak{m})}C_{\mathcal{K}}\frac{D}{h_{\mathcal{K}}^{D}}\frac{x}{\log x}(\log\log x)^{D-1},$$

where D is the Davenport constant of H(K), $\Phi(\mathfrak{m})$ is the analogue of Euler's totient function in this setting, and C_K is the same as in Rémond's theorem.

Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let \mathfrak{m} be a nonzero ideal of \mathbb{Z}_K , and let $\alpha \in \mathbb{Z}_K$ be a nonzero element such that (α) and \mathfrak{m} have no prime ideal factors in common. Then the number of irreducibles $\pi \equiv \alpha \pmod{\mathfrak{m}}$, with $\pi/\alpha \gg 0$, of norm at most x in absolute value is asymptotic to

$$\frac{1}{\Phi(\mathfrak{m})}C_{\mathcal{K}}\frac{D}{h_{\mathcal{K}}^{D}}\frac{x}{\log x}(\log\log x)^{D-1},$$

where D is the Davenport constant of H(K), $\Phi(\mathfrak{m})$ is the analogue of Euler's totient function in this setting, and C_K is the same as in Rémond's theorem.

Remark:

Suppose G := ((α), m) is a product of prime ideals with no principal subproduct. Then there are still infinitely many irreducibles π ≡ α (mod m), and we can count them!

Types of ideals and elements

Write $H(K) = \{C_1, ..., C_h\}$ (so $h = h_K$).

Let $A \subset \mathbb{Z}_K$ a nonzero ideal. We say A is of type $\tau = (t_1, \ldots, t_h)$ if the (unique) prime factorization of A into prime ideals has t_i factors from the ideal class C_i .

So a *type* is just an *h*-tuple of nonnegative integers.

Types of ideals and elements

Write $H(K) = \{C_1, ..., C_h\}$ (so $h = h_K$).

Let $A \subset \mathbb{Z}_K$ a nonzero ideal. We say A is of type $\tau = (t_1, \ldots, t_h)$ if the (unique) prime factorization of A into prime ideals has t_i factors from the ideal class C_i .

So a *type* is just an *h*-tuple of nonnegative integers.

An element $\alpha \in \mathbb{Z}_{\mathcal{K}}$ is of type τ when (α) is of type τ .

The *length* of $\tau = (t_1, \ldots, t_h)$ is $t_1 + \cdots + t_h$, denoted $\ell(\tau)$.

Irreducible types

Let $\pi \in \mathbb{Z}_K$ be irreducible. Write

$$(\pi) = \mathfrak{p}_1 \cdots \mathfrak{p}_\ell.$$

 π irreducible \implies no subproduct of the \mathfrak{p}_i is principal.

We say a type $\tau = (t_1, \ldots, t_h)$ is *irreducible* if, in the class group, $C_1^{t_1} \cdots C_h^{t_h}$ is trivial, while no proper subproduct of the C_i s is trivial.

Irreducible types

Let $\pi \in \mathbb{Z}_{\mathcal{K}}$ be irreducible. Write

$$(\pi) = \mathfrak{p}_1 \cdots \mathfrak{p}_\ell.$$

 π irreducible \implies no subproduct of the \mathfrak{p}_i is principal.

We say a type $\tau = (t_1, \ldots, t_h)$ is *irreducible* if, in the class group, $C_1^{t_1} \cdots C_h^{t_h}$ is trivial, while no proper subproduct of the C_i s is trivial. Every irreducible $\pi \in \mathbb{Z}_K$ has an irreducible type. Conversely, every irreducible type is represented by an irreducible element, since (Landau) every ideal class contains a prime ideal. Finally: A type τ is *maximal* if τ is irreducible and

 $\ell(\tau) = D(H(K)).$

Maximal order of $\nu(\alpha)$

Theorem (Pollack, T)

We have

$$\max\{\nu(\alpha): |\mathsf{N}(\alpha)| \le x\} = (\mathsf{M}_{\mathsf{K}} + o(1)) \Big(\frac{\log x}{h_{\mathsf{K}} \log \log x}\Big)^D,$$

where M_K is a positive constant depending only on K and D is the Davenport constant of the class group H(K).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Define a polynomial

$$P(x_1,\ldots,x_h) = \sum_{\tau \text{ maximal } i=1} \prod_{i=1}^h \frac{x^{t_i}}{t_i!}.$$

Define a polynomial

$$P(x_1,\ldots,x_h) = \sum_{\tau \text{ maximal } i=1} \prod_{i=1}^h \frac{x^{t_i}}{t_i!}.$$

Let M_K denote the maximum value achieved by this polynomial on the simplex

$$S = \{(x_1, \ldots, x_h) : x_i \ge 0, \sum_{i=1}^h x_i \le h\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define a polynomial

$$P(x_1,\ldots,x_h) = \sum_{\tau \text{ maximal } i=1} \prod_{i=1}^h \frac{x^{t_i}}{t_i!}.$$

Let M_K denote the maximum value achieved by this polynomial on the simplex

$$S = \{(x_1, \ldots, x_h) : x_i \ge 0, \sum_{i=1}^h x_i \le h\}.$$

Let $(\gamma_1, \ldots, \gamma_h) \in S$ be a point at which P achieves the value M_K .

Define a polynomial

$$P(x_1,\ldots,x_h) = \sum_{\tau \text{ maximal } i=1} \prod_{i=1}^h \frac{x^{t_i}}{t_i!}.$$

Let M_K denote the maximum value achieved by this polynomial on the simplex

$$S = \{(x_1, \ldots, x_h) : x_i \ge 0, \sum_{i=1}^h x_i \le h\}.$$

Let $(\gamma_1, \ldots, \gamma_h) \in S$ be a point at which P achieves the value M_K . Example: If $H(K) \simeq \mathbb{Z}/3\mathbb{Z}$, the maximal types are (0,3,0) and (0,0,3). So $P(x_1, x_2, x_3) = \frac{1}{3!}(x_2^3 + x_3^3)$, a choice of $(\gamma_1, \gamma_2, \gamma_3) = (0,3,0)$, and $M_K = \frac{1}{3!}3^3$.

Key input:

Theorem (Landau 1907)

Let $C_i \in H(K)$, and let $\pi_i(x)$ denote the count of prime ideals $\mathfrak{p} \in C_i$ with $N(\mathfrak{p}) \leq x$. Then

$$\pi_i(x) = \left(\frac{1}{h} + o(1)\right) \frac{x}{\log x}.$$

Key input:

Theorem (Landau 1907)

Let $C_i \in H(K)$, and let $\pi_i(x)$ denote the count of prime ideals $\mathfrak{p} \in C_i$ with $N(\mathfrak{p}) \leq x$. Then

$$\pi_i(x) = \left(\frac{1}{h} + o(1)\right) \frac{x}{\log x}.$$

Strategy: Mimic maximal order proof for $\omega(n)$.

(Let $n = p_1 \cdots p_m$. Then $\log(n) = \sum_{i=1}^m \log(p_m) = \psi(p_m) \sim p_m$ and

$$\omega(n) = \pi(p_m) \sim \frac{p_m}{\log p_m} \sim \frac{\log n}{\log \log n}$$

as $n \to \infty$ through primorials.)

► Let
$$A = \prod_{i=1}^{h} \prod_{\substack{\mathfrak{p} \in C_i \\ N(\mathfrak{p}) \le \gamma_i \log x}} \mathfrak{p}$$
, with γ_i as before
► $N(A) \approx x$

• Let
$$A = \prod_{i=1}^{h} \prod_{\substack{\mathfrak{p} \in C_i \\ N(\mathfrak{p}) \leq \gamma_i \log x}} \mathfrak{p}$$
, with γ_i as before

• $N(A) \approx x$

• The number of type $au = (t_1, \dots, t_h)$ principal divisors of A is

$$\prod_{i=1}^{h} \binom{\omega_i(A)}{t_i} \approx \prod_{i=1}^{h} \frac{\omega_i(A)^{t_i}}{t_i!}$$

where $\omega_i(A)$ is the number of prime ideal divisors of A from the ideal class C_i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• Let
$$A = \prod_{i=1}^{h} \prod_{\substack{\mathfrak{p} \in C_i \\ N(\mathfrak{p}) \leq \gamma_i \log x}} \mathfrak{p}$$
, with γ_i as before

• $N(A) \approx x$

• The number of type $au = (t_1, \dots, t_h)$ principal divisors of A is

$$\prod_{i=1}^{h} \binom{\omega_i(A)}{t_i} \approx \prod_{i=1}^{h} \frac{\omega_i(A)^{t_i}}{t_i!}$$

where $\omega_i(A)$ is the number of prime ideal divisors of A from the ideal class C_i .

ω_i(A) ≈ γ_i log x/h_K log log x; inserting this into the display above and summing over all maximal types τ, we see that the number of principal divisors of A of irreducible type is

$$\frac{1}{h_{\mathcal{K}}^{D}} \sum_{\tau \text{ maximal}} \frac{\gamma_{i}^{t_{i}}}{t_{i}!} \Big(\frac{\log x}{\log \log x} \Big)^{D}.$$

Counting irreducibles

Theorem (Rémond 1966)

Let F(x) denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_K with norm up to x in absolute value. Then

$$F(x) \sim \frac{D}{h_{\mathcal{K}}^D} \sum_{\tau \text{ maximal}} \frac{1}{t_1! \cdots t_h!} \frac{x(\log \log x)^{D-1}}{\log x},$$

where D is the Davenport constant of H(K).

Counting irreducibles

Theorem (Rémond 1966)

Let F(x) denote the number of pairwise nonassociate irreducible elements of \mathbb{Z}_K with norm up to x in absolute value. Then

$$F(x) \sim \frac{D}{h_{\mathcal{K}}^D} \sum_{\tau \text{ maximal}} \frac{1}{t_1! \cdots t_h!} \frac{x(\log \log x)^{D-1}}{\log x},$$

where D is the Davenport constant of H(K).

When $K = \mathbb{Q}$, we recover the prime number theorem:

$$\pi(x) \sim \frac{x}{\log x}.$$

Irreducibles in arithmetic progressions

Theorem (Pollack, T)

Let \mathfrak{m} be a nonzero ideal of \mathbb{Z}_K , and let $\alpha \in \mathbb{Z}_K$ be a nonzero element such that (α) and \mathfrak{m} have no prime ideal factors in common. Then there are infinitely many irreducible elements π of \mathbb{Z}_K with $\pi \equiv \alpha \pmod{\mathfrak{m}}$, and $\pi/\alpha \gg 0$.

More precisely: The number of principal ideals of norm at most x admitting a generator $\pi \equiv \alpha \pmod{\mathfrak{m}}$ is asymptotic to

$$\frac{1}{\Phi(\mathfrak{m})} \frac{D}{h^D} \sum_{\tau \text{ maximal}} \frac{1}{t_1! \cdots t_h!} \frac{x}{\log x} (\log \log x)^{D-1},$$

where we have written each $\tau = (t_1, \ldots, t_h)$.

Suppose π is of type $\tau = (t_1, \ldots, t_h)$. Write $(\pi) = \mathfrak{p}_1 \cdots \mathfrak{p}_D$, and assume $N\mathfrak{p}_D > x^{1-1/\log \log x}$: This discards a negligible number of ideals (π) .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Suppose π is of type $\tau = (t_1, \ldots, t_h)$. Write $(\pi) = \mathfrak{p}_1 \cdots \mathfrak{p}_D$, and assume $N\mathfrak{p}_D > x^{1-1/\log \log x}$: This discards a negligible number of ideals (π) .

Since $\pi \equiv \alpha \pmod{\mathfrak{m}}$, (π) and (α) are equivalent modulo Prin⁺_m(K), and so represent the same element in $H^+_{\mathfrak{m}}(K)$, the *strict* ray class group modulo \mathfrak{m} .

Given $\mathfrak{p}_1 \cdots \mathfrak{p}_{D-1}$, the ray class of \mathfrak{p}_D is that of (α) times the inverse of the class of $\mathfrak{p}_1 \cdots \mathfrak{p}_{D-1}$.

Theorem (Landau 1918)

The number of prime ideals of \mathbb{Z}_K of norm up to x belonging to a particular strict ray class modulo \mathfrak{m} is asymptotic to

 $\frac{1}{h_{\mathfrak{m}}^+(K)}\frac{x}{\log x}.$

Theorem (Landau 1918)

The number of prime ideals of \mathbb{Z}_K of norm up to x belonging to a particular strict ray class modulo \mathfrak{m} is asymptotic to

 $\frac{1}{h_{\mathfrak{m}}^+(K)}\frac{x}{\log x}.$

The number of possibilities for \mathfrak{p}_D is

$$\sim rac{1}{h_{\mathfrak{m}}^+({\mathcal K})} rac{x/{\mathcal N} \mathfrak{p}_1 \cdots \mathfrak{p}_{D-1}}{\log(x/{\mathcal N} \mathfrak{p}_1 \cdots \mathfrak{p}_{D-1})} \sim rac{1}{h_{\mathfrak{m}}^+({\mathcal K})} rac{x/{\mathcal N} \mathfrak{p}_1 \cdots \mathfrak{p}_{D-1}}{\log(x)}.$$

- Sum on $\mathfrak{p}_1, \ldots, \mathfrak{p}_{D-1}$
- Estimate this sum with a Mertens-type theorem for strict ray classes, which follows from Landau's theorem and partial summation

But wait, there's more

We say a type τ is maximal with respect to τ' if $\tau' \leq \tau$, τ is irreducible and τ has maximal length among the irreducible types which have τ' as a subtype.

Theorem (Pollack, T)

Let $\alpha \in \mathbb{Z}_K$ such that (α) and \mathfrak{m} have no common principal ideal factor. Let $G = ((\alpha), \mathfrak{m})$, and let τ' be the type of G. Then the number of principal ideals of norm at most x admitting a generator $\pi \equiv \alpha \pmod{\mathfrak{m}}$ is asymptotic to

$$\frac{1}{N(G)\Phi(\mathfrak{m}G^{-1})}\frac{L}{h^{L}}\sum_{\substack{\tau' \leq \tau \\ \tau \text{ irred.} \\ \tau \max'l \text{ w.r.t.}\tau'}}\frac{1}{n_{1}!\cdots n_{h}!}\frac{x}{\log x}(\log\log x)^{L-1},$$

where we have written each $\tau - \tau' = (n_1, ..., n_h)$, and where L is the length of these types $\tau - \tau'$.

Thanks!