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Some Review

For our review I am roughly going to follow Hugh Williams’ book
“Édouard Lucas and primality testing”, specifically Chapter 15 (published
1998). One of the first elementary number theory results you likely learned
as an undergrad.
Theorem (Fermat’s Little Theorem) If p is a prime, then

a

p ⌘ a (mod p).
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Some Review

This is of course useful in the following way.
If N is a prime and (a,N) = 1, then

a

N�1 ⌘ 1 (mod N).

Moreover, if we select a such that (a,N) = 1 and we find that

a

N�1 6⌘ 1 (mod N),

then we can say conclusively say N is not a prime.
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Some Review

It is clear that, if we select a such that (a,N) = 1 and we find that

a

N�1 ⌘ 1 (mod N),

then we can not say conclusively say N is a prime. But it does give us
some evidence that it might be the case.
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Some Review

So we may be inclined to call this some sort of “Primality Test”, but it
certainly is not a“Primality Proof”, as

2340 ⌘ 1 (mod 341),

and 341 = (11)(31).
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Some Review

Definition We say that N is a base b pseudoprime (written b-psp or
psp(b)) if N is composite integer such that

b

N�1 ⌘ 1 (mod N).
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Some Review

E. Malo. “Nombres qui, sans être premiers, vérifient exceptionellement
une congruence de Fermat.” L’Intermédiaire des Math., 10:88, 1903.
contains a proof of the infinitude of base 2 pseudoprimes.

Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 7 / 61



Some Review

M. Cipolla. “Sui numeri composti P , che verificano la congruenza di
Fermat aP�1 ⌘ 1 (mod P).” ann. Mat. Pura Appl., 9:139-160, 1904.
contains a proof of the infinitude of base b pseudoprimes for any base b.
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Some Review

Definition Let N be a composite integer such that

b

N�1 ⌘ 1 (mod N)

for all b such that (b,N) = 1. We call such an integer N a Carmichael
number.
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Some Review

Korselt’s Criterion: A positive integer is a Carmichael number if and only if
N is square-free and for all prime divisors p of N, p � 1|N � 1.
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Some Review

Carmichael found the first of such numbers in 1910 and it was 561. Notice
561 = (3)(11)(17) satisfies Korselt’s Criterion it is clearly square-free and
2|560, 10|560, and 16|560.
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Some Review

Question: Are there infinitely many Carmichael numbers?
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Some Review

Answer: The 1994 paper “There are infinitely many Carmichael numbers”
by W. R. Alford, Andrew Granville and Carl Pomerance answers this
question.
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Lucas’ Functions

The Lucas functions u
n

and v

n

are defined by:

u

n

= (↵n � �n)/(↵� �), v

n

= ↵n + �n,

where ↵ and � are the zeros of the polynomial x2 � px + q, and p, q are
rational integers and (p, q) = 1.
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A Special Case of the Lucas’ Functions

If we let p=1 and q=-1 then u

n

(1,�1) = F

n

the Fibonacci Numbers,
where you can recall

F

n

: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

and v

n

(1,�1) = L

n

the Lucas Numbers,

L

n

: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, . . .
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Multiplication Formulas

u

mn

= u

n

m/2�1X

k=0

(�1)k
✓
m � k � 1

k

◆
q

nk

v

m�2k�1
n

(m even),

u

mn

= u

n

bm/2cX

k=0

m

k

✓
m � k � 1

k � 1

◆
q

nk�bm/2c�k

u

m�2k�1
n

(m odd),

v

mn

=

bm/2cX

k=0

(�1)k
m

k

✓
m � k � 1

k � 1

◆
q

nk

v

m�2k
n

.

Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 16 / 61



The Law of Apparition for {u
n

}

Let r be any prime such that r - 2q.
If ✏ = (�/r), then r | u

r�✏.
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Fibonacci Pseudoprime

Emma Lehmer came up with the following definition.
Definition: A Fibonacci pseudoprime is a composite integer N such that

F

N�✏(N) ⌘ 0 (mod N),

where ✏(N) = (�/N).
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The Infinitude of Fibonacci Pseudoprime

Emma Lehmer also showed that for an infinite number of primes p,
N = u2p is a Fibonacci pseudoprime.

Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 19 / 61



Lucas Pseudoprime

Definition: For a given pair of integers P , Q, we say that N is a Lucas
pseudoprime if N is composite and

u

N�✏(N)(P ,Q) ⌘ 0 (mod N),

where ✏(N) = (�/N) and � = P

2 � 4Q.
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Some Review

An example of a Fibonacci Pseudoprime (and thus also a Lucas
Pseudoprime) is N = 323 = (17)(19), here (5/323) = �1 and one can
check that

F324 ⌘ 0 (mod 323) or u324(1,�1) ⌘ 0 (mod 323).
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Infinitude of Lucas Pseudoprimes

In a 1973 paper A. Rotkiewicz showed that if Q = ±1 and P , Q are not
both 1, there are infinitely many odd composite Lucas pseudoprimes with
parameters P , Q.
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Historical Motivation

It was Lucas himself who wished to generalize these sequences. He wrote:
“We believe that, by developing these new methods [concering
higher-order recurrence sequences], by searching for the addition and
multiplication formulas of the numerical functions which originate from the
recurrence sequences of the third or fourth degree, and by studying in a
general way the laws of the residues of these functions for prime moduli...,
we would arrive at important new properties of prime numbers.”
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One finds in particular, in the study of the function

U

n

= � (an, bn, cn, . . .) /�(a, b, c , . . .)

in which a, b, c , . . . designate the roots of the equation, and
�(a, b, c , . . .) the alternating function of the roots, or the square root of
the discriminant of the equation, the generalization of the principal
formulas contained in the first part of this work.
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Lucas (Théorie des Nombres)

The theory of recurrent sequences is an inexhaustible mine which contains
all the properties of numbers; by calculating the successive terms of such
sequences, decomposing them into their prime factors and seeking out by
experimentation the laws of appearance and reproduction of the prime
numbers, one can advance in a systematic manner the study of the
properties of numbers and their application to all branches of mathematics.
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Fundamental Properties of Lucas’ Functions

1 There are two functions (v
n

and u

n

);

2 Both functions satisfy linear recurrences (of order two);

3 One of the functions produces a divisibility sequences;

4 There are addition formulas;

5 There are multiplication formulas.
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A Cubic Generalization of the Lucas’ Functions

Let ↵, �, � be the zeros of X 3 � PX

2 + QX � R , where P , Q, R are
integers. Put � = (↵� �)(� � �)(� � ↵), then
�2 = � = Q

2
P

2 � 4Q3 � 4RP3 + 18PQR � 27R2.

�C
n

=
�
↵n�2n + �n�2n + �n↵2n

�
�
�
↵2n�n + �2n�n + �2n↵n

�

or C
n

=

✓
↵n � �n

↵� �

◆✓
�n � �n

� � �

◆✓
�n � ↵n

� � ↵

◆
and

W

n

=
�
↵n�2n + �n�2n + �n↵2n

�
+
�
↵2n�n + �2n�n + �2n↵n

�
.
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Some Simple Observations

For a fixed m, {C
n

} and {W
n

} both satisfy

X

n+6m = a1Xn+5m � a2Xn+4m + a3Xn+3m � a4Xn+2m

+a5Xn+m

� a6Xn

,

where

a1 = W

m

, a2 =
�
W

2
m

��C

2
m

�
/4 + R

m

W

m

,

a3 = R

m[
�
W

2
m

+�C

2
m

�
/2 + R

2m],

a4 = R

2m
a2, a5 = R

4m
a1, a6 = R

6m.
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{C
n

} is a divisibility sequence

Note that if n = ms, then

C

n

(P ,Q,R) =
(↵n � �n)(�n � �n)(�n � ↵n)

(↵� �)(� � �)(� � ↵)

=
(↵ms � �ms)(�ms � �ms)(�ms � ↵ms)

(↵� �)(� � �)(� � ↵)

=
(↵m � �m)(�m � �m)(�m � ↵m)

(↵� �)(� � �)(� � ↵)
· (↵

ms � �ms)(�ms � �ms)(�ms � ↵ms)

(↵m � �m)(�m � �m)(�m � ↵m)

= C

m

(P ,Q,R) · C
s

(A
m

,B
m

,Rm),

where A

n

= ↵n + �n + �n and B

n

= ↵n�n + �n�n + �n↵n are third order
linear recurrences.
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Addition Formulas

2C
n+3m =

W

m

C

n+2m + C

m

W

n+2m � R

m

W

m

C

n+m

+ R

m

C

m

W

n+m

� 2R3m
C

n

and
2W

n+3m =

�C

m

C

n+2m +W

m

W

n+2m � R

m

W

m

W

n+m

+ R

m�C

m

C

n+m

+ 2R3m
W

n

.
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Multiplication Formulas

W

mn

=
X (�1)�0

m(m � �0 � 1)!

�1!�2!�3!
R

n(�0+�3)
Q̃

�2
n

v�1��2(P̃n

, Q̃
n

)

and

C

mn

/C
n

=
X (�1)�0

m(m � �0 � 1)!

�1!�2!�3!
R

n(�0+�3)
Q̃

�2
n

u�1��2(P̃n

, Q̃
n

),

where
P̃

n

= W

n

, Q̃

n

= (W 2
n

��C

2
n

)/4,

and the sums are evaluated over all values of �0,�1, �2,�3, such that �
i

are non-negative integers that sum to m and �1 + 2�2 + 3�3 = m.
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The Law of Apparition for {C
n

}

If we let !(m) be the least positive integer n such that m | C
n

, it is not
necessarily the case that if m | C

k

, then !(m) | k .
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Ranks of Apparition

Let !1 be the least positive integer for which p|C!1 . For i = 1, 2, . . . , k
define !

i+1, if it exists, to be the least positive integer such that p|C!
i+1 ,

!
i+1 > !

i

and !
j

- !
i+1 for any j  i + 1. We define !1, !2, . . . , !

k

to be
the ranks of apparition for {C

n

}.
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Classification of Primes

(following Adams and Shanks, 1982)

Put f (x) = x

3 � Px

2 + Qx � R and suppose p - 6R�.

p is an I prime if f (x) has no zero in F
p

p is an Q prime if f (x) has only one zero in F
p

p is an S prime if f (x) has all three zeros in F
p
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Determination

p is a Q prime if and only if (�/p) = �1.

If (�/p) = 1, p is an S prime if and only if

u

p�1
3
(P 0,Q 0) ⌘ 0 (mod p),

where P

0 = 2P3 � 9QP + 27R , Q 0 = (P2 � 3Q)3.

p is an I prime otherwise.
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Some Laws of Apparition

Assume p - 6R�.

If p is an I prime there is only one rank of apparition ! of {C
n

} and
!|p2 + p + 1.

If p is a Q prime there is only one rank of apparition ! of {C
n

} and
!|p + 1.

If p is an S prime there can be no more than 3 ranks of apparition of
p. If ! is any rank of apparition, we have !|p � 1.
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Lucas Cubic Pseudoprime?

Definition: For a given set of integers P , Q, R we say that N is a Lucas
cubic pseudoprime if N is composite and

C

N�✏(N)(P ,Q,R) ⌘ 0 (mod N), or

C

N

2+N+1(P ,Q,R) ⌘ 0 (mod N),

where ✏(N) = (�/N) and � = Q

2
P

2 � 4Q3 � 4RP3 + 18PQR � 27R2.
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AN EXAMPLE S-prime like

An example of a Lucas Cubic Pseudoprime is N = 533 = (13)(41), here
(�/533) = 1 and one can check that

C532(1,�1, 1) ⌘ 0 (mod 533).
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AN EXAMPLE Q-prime like

An example of a Lucas Cubic Pseudoprime is N = 407 = (11)(37), here
(�/407) = �1 and one can check that

C408(1,�1, 13) ⌘ 0 (mod 407).

Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 39 / 61



A NONEXAMPLE

If P = 1, Q = 2 and R = 3, then there are no Lucas Cubic Pseudoprimes
below 600.
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Some Fourth Order Recurrences, Guy and Williams

Put f (x) = x

2 � P1x + P2 (P1,P2 2 Z) � = P

2
1 � 4P2( 6= 0). Let ⇢1, ⇢2

be the zeros of f (x) and let ↵
i

, �
i

(i = 1, 2) be the zeros of

x

2 � ⇢
i

x + Q,

where Q 2 Z and (P1,P2,Q) = 1. We define the sequences {U
n

} and
{V

n

} by
U

n

= (↵n

1 + �n

1 � ↵n

2 � �n

2 )/(⇢1 � ⇢2)

V

n

= ↵n

1 + �n

1 + ↵n

2 + �n

2 .
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Recurrence Formulas

For a fixed m {U
n

} and {V
n

} both satisfy

X

n+4m = V

m

X

n+3m � [2Qm + (V 2
m

+�U

2
m

)/4]X
n+2m

+Q

m

V

m

X

n+m

� Q

2m
X

n

.
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Addition Formulas

2U
m+n

= V

m

U

n

+ U

m

V

n

� 2Qn

U

m�n

2V
m+n

V

m

V

n

+�U

m

U

n

� 2Qn

V

m�n
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Multiplication Formulas

2mU
mn

=
X

C (h, i , j , k)(�1)k+i

P

i

12
2k+j

V

k

n

U

i+j

n

Q

nk

u

j

(P1,P2)

2mV
mn

=
X

C (h, i , j , k)(�1)k+i

P

i

12
2k+j

V

k

n

U

i+j

n

Q

nk

v

j

(P1,P2)

where the sums are taken over all non-negative integers h, i , j , k such that

h + i + j + 2k = m

and
C (h, i , j , k) = m(h + i + j + k � 1)!/(h!i !j!k!).
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The Law of Apparition for {U
n

} (1)

Note that ↵1, ↵2, �1, �2 are the zeros of

F (x) = x

4 � P1X
3 + (P2 + 2Q)x2 � QP1x + Q

2.

The discriminant D of F (x) is given by D = E�2
Q

2 where
E = (P2 + 4Q)2 � 4QP2

1 .
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The Law of Apparition for {U
n

} (2)

Let r be a prime such that r - 2�EQ.

If (�/r) = (E/r) = 1, there are at most two ranks of apparition of r
in {U

n

} and both divide either r � 1 or r + 1.

If (�/r) = �1, = (E/r) = 1, there are at most two ranks of
apparition of r in {U

n

}. One divides r � 1 and the other divides
r + 1. There are exactly two if r - P1.

If (�/r) = 1, = (E/r) = �1, there is only one rank of apparition !
of r in {U

n

} and ! | r2 � 1. Also, r2 | U!.

If (�/r) = �1, = (E/r) = �1, there is only one rank of apparition !
of r in {U

n

} and ! | r2 + 1. Also, r2 | U!.
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Lucas Quartic Pseudoprime?

Defintion For a set of integers P1, P2, Q, we say that N is a Lucas
quartic pseudoprime if N is composite and:

U

N�1(P1,P2,Q) ⌘ 0 (mod N) or U

N+1(P1,P2,Q) ⌘ 0 (mod N),

when (�/N) = (E/N) = 1

U

N�1(P1,P2,Q) ⌘ 0 (mod N)

when (�/N) = �1 and (E/N) = 1

U

N

2�1(P1,P2,Q) ⌘ 0 (mod N)

when (�/N) = 1 and (E/N) = �1

U

N

2+1(P1,P2,Q) ⌘ 0 (mod N)

when (�/N) = (E/N) = �1
and � = P

2
1 � 4P2( 6= 0), E = (P2 + 4Q)2 � 4QP2

1
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Hall and Elkies examples of 6th order Divisibility Sequences

Hall (1933) presented the sequence {U
n

} , where U0 = 0, U1 = 1, U2 = 1,
U3 = 1, U4 = 5, U5 = 1, U6 = 7, U7 = 8, U8 = 5, . . . , and

U

n+6 = �U

n+5 + U

n+4 + 3U
n+3 + U

n+2 � U

n+1 � U

n

.

Elkies has also developed the sixth order recurrence below (personal
communication). For this sequence we have U0 = 0, U1 = 1, U2 = 1,
U3 = 2, U4 = 7, U5 = 5, U6 = 20, U7 = 27, U8 = 49, . . . , and

U

n+6 = �U

n+5 + 2U
n+4 + 5U

n+3 + 2U
n+2 � U

n+1 � U

n

.

These are not special cases of C
n

and yet are divisibility sequences. So
what are they?
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A Sixth order {U
n

} and {W
n

}

Let

U

n

= (↵n

1 � �n

1 + ↵n

2 � �n

2 + ↵n

3 � �n

3 )/(↵1 � �1 + ↵2 � �2 + ↵3 � �3)

W

n

= ↵n

1 + �n

1 + ↵n

2 + �n

2 + ↵n

3 + �n

3 .

where ↵
i

, �
i

are the zeros of x2 � �
i

x + R

2 and �
i

(i = 1, 2, 3) are the
zeros of x3 � S1x

2 + S2x + S3, where R , S1, S2, S3 are rational integers
such that

S3 = RS

2
1 � 2RS2 � 4R3
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Some Observations

Here {U
n

} is a divisibility sequence of order 6.
Indeed, in this case both {U

n

} and {W
n

} satisfy

X

n+6 = S1Xn+5 � (S2 + 3Q)X
n+4 + (S3 + 2QS1)Xn+3

�Q(S2 + 3Q)X
n+2 + Q

2
S1Xn+1 � Q

3
X

n

where Q = R

2. For Hall’s sequences, we have S1 = �1, S2 = �4, S3 = 5,
Q = R = 1 and for Elkies’ sequence S1 = �1, S2 = �5, S3 = 7,
Q = R = 1
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A link to something familiar

Let P 0, Q 0, R 0 be arbitrary integers. If we put

S1 = P

0
Q

0 � 3R 0, S2 = P

03
R

0 + Q

03 � 5P 0
Q

0
R

0 + 3R 03,

S3 = R

0(P 02
Q

02 � 2Q 03 � 2P 03
R

0 + 4P 0
Q

0
R

0 � R

03), Q = R

02,

then

U

n

= (↵n � �n)(�n � �n)(�n � ↵n)/[(↵� �)(� � �)(� � ↵)]

where ↵, �, � are the zeros of x3 � P

0
x

2 + Q

0
x � R

0.
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Addition Formulas

2W2n+m

= W

n

W

n+m

+�U

n+m

U

n

� R

n

W

n

W

m

+R

n�U

n

U

m

+ 2Rn+2m
W

n�m

,

2U2n+m

= W

n

U

n+m

+ U

n

W

n+m

� R

n

W

n

U

m

+R

n

U

n

W

m

� 2Rn+2m
U

n�m

.
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Multiplication Formulas

W

mn

=
X

(�1)�0
m(m � �0 � 1)!

�1!�2!�3!
R

n(�0+�3)
Q̃

�2
n

v�1��2 ,

U

mn

= U

n

X
(�1)�0

m(m � �0 � 1)!

�1!�2!�3!
R

n(�0+�3)
Q̃

�2
n

u�1��2 .

Here the sums are taken over all non-zero integers �0, �1, �2, �3 such that

3X

i=0

�
i

=
3X

i=0

i�
i

= m

and u

n

= u

n

(P̃
n

, Q̃
n

), v
n

= v

n

(P̃
n

, Q̃
n

), where P̃

n

= W

n

,
Q̃

n

= (W 2
n

��U

2
n

)/4. Note that P̃1 = S1, Q̃1 = S2 � S1R + 3R2.
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The Law of Apparition

Put � = S

2
1 � 4S2 + 4RS1 � 12R2. Let f (x) = x

3 � S1X
2 + S2x + S3 and

let D denote the discriminant of f (x). Suppose r is a prime such that
r - 2RD and put ✏ = (�/r).
If f (x) is irreducible modulo r , put t = r

2 + ✏r + 1; otherwise, put
t = r � ✏. Then r | U

t

.
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Another Lucas Cubic Pseudoprime

Defintion For a set of integers R , S1, S2, S3, such that
S3 = RS

2
1 � 2RS2 � 4R3 we say N is a Lucas cubic pseudoprime if N is

composite and

U

N

2+✏(N)N+1(S1, S2,R) ⌘ 0 (mod N) or

U

N�✏(N)(S1, S2,R) ⌘ 0 (mod N),

where ✏(N) = (�/N) and � = S

2
1 � 4S2 + 4RS1 � 12R2.
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Twinsies
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What I did not know-2000 work by Grantham

Defintion Let f (x) 2 Z[x ] be a monic polynomial of degree d with
discriminant �. An odd integer n > 1 is said to pass the Frobenius

probable prime test with respect to f (x) if (n, f (0)�) = 1, and it is
declared to be a probable prime by the following algorithm. (Such an
integer will be called a Frobenius probable prime with respect to f (x).)
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Frobenius Probable Prime Algorithm

Factorization Step. Let f0(x) = f (x) mod n. For 1  i  d , let
F

i

(x) =gcmd(xn
i � x , f

i�1(x)) and f

i

(x) = f

i�1(x)/Fi (x). If any of the
gcmds fail to exist, declare n to be composite and stop. If f

d

(x) 6= 1,
declare n to be composite and stop.
Frobenius Step. For 2  i  d , compute F

i

(xn) mod F

i

(x). If it is
nonzero for some i , declare n to be composite and stop.
Jacobi Step. Let S = ⌃2|ideg(Fi (x))/i .

If (�1)S 6=
�
�
n

�
, declare n to be composite and stop.

If n is not declared composite by one of these three steps, declare n to be
a Frobenius probable prime and stop.
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One of Grantham’s Theorems

Theorem

If f (x) = x

2 � Px + Q 2 Z[x ], and n is a Frobenius pseudoprime with

respect to f (x), then n is a Lucas pseudoprime with parameters (P ,Q).
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Conjectures

If f (x) = x

3 � Px

2 + Qx � R 2 Z[x ], and n is a Frobenius
pseudoprime with respect to f (x), then n is a Lucas cubic
pseudoprime with parameters (P ,Q,R).

If f (x) = x

4 � P1X
3 + (P2 + 2Q)x2 � QP1x + Q

2 2 Z[x ], and n is a
Frobenius pseudoprime with respect to f (x), then n is a Lucas quartic
pseudoprime with parameters (P1,P2,Q).

If f (x) = x

3 � S1x
2 + S2x + (RS2

1 � 2RS2 � 4R3) 2 Z[x ], and n is a
Frobenius pseudoprime with respect to f (x), then n is a Lucas cubic
pseudoprime (second type) with parameters (S1, S2,R).

Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 60 / 61



The End
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