イロト 不得下 イヨト イヨト 二日

1/15

Alberta Number Theory Days 2017

THE SIZE FUNCTION FOR A NUMBER FIELD

Ha Tran

Department of Mathematics and Statistics University of Calgary

March 17, 2017

2/15

- Lattices and ideal lattices
- The size function for lattices
- The size function for a number field
- 2 The Riemann-Roch Theorem
- 3 The conjecture of van der Geer and Schoof

Notations

• Let *F* be a number field of degree *n*. For simplicity, assume that *F* is totally real.

Notations

- Let *F* be a number field of degree *n*. For simplicity, assume that *F* is totally real.
- Let Δ be the discriminant of F.

Notations

- Let *F* be a number field of degree *n*. For simplicity, assume that *F* is totally real.
- Let Δ be the discriminant of F.
- Let O_F be the ring of integers of F.

イロン イロン イヨン イヨン 三日

3/15

Notations

- Let *F* be a number field of degree *n*. For simplicity, assume that *F* is totally real.
- Let Δ be the discriminant of F.
- Let O_F be the ring of integers of F.
- Let $\sigma_1, ..., \sigma_n$ be *n* real embeddings of *F*.

Notations

- Let *F* be a number field of degree *n*. For simplicity, assume that *F* is totally real.
- Let Δ be the discriminant of F.
- Let O_F be the ring of integers of F.
- Let $\sigma_1, ..., \sigma_n$ be *n* real embeddings of *F*.
- Denote by $\Phi = (\sigma_1, ..., \sigma_n)$. Then

 $\Phi: F \hookrightarrow \mathbb{R}^n$ takes $x \in F$ to $(\sigma_i(x))_i \in \mathbb{R}^n$.

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
 Ex: Zⁿ ⊂ ℝⁿ.

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
 Ex: Zⁿ ⊂ ℝⁿ.

Ex: Let $F = \mathbb{Q}(\sqrt{5})$.

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
 Ex: Zⁿ ⊂ ℝⁿ.

Ex: Let $F = \mathbb{Q}(\sqrt{5})$. What $\Phi(O_F)$ looks like?

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
 Ex: Zⁿ ⊂ ℝⁿ.

Ex: Let $F = \mathbb{Q}(\sqrt{5})$. What $\Phi(O_F)$ looks like?

Lattices and ideal lattices

- A lattice is a discrete subgroup of an Euclidean space.
 Ex: Zⁿ ⊂ ℝⁿ.
- Ex: Let $F = \mathbb{Q}(\sqrt{5})$. Then $\Phi(O_F)$ is a lattice in \mathbb{R}^2 .

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
 Ex: Zⁿ ⊂ ℝⁿ.

Proposition

Let *I* be a factional ideal of *F*. Then $\Phi(I)$ is a lattice in \mathbb{R}^n .

Ideal lattices

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_F-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

6/15

Lattices and ideal lattices

Ideal lattices

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_F-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Let I be a factional ideal of F and let $u = (u_i)_i \in (\mathbb{R}_{>0})^n$.

Ideal lattices

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_F-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Let *I* be a factional ideal of *F* and let $u = (u_i)_i \in (\mathbb{R}_{>0})^n$. Define $q_u(x, y) = \langle u\Phi(x), u\Phi(y) \rangle$ for any $x, y \in I$.

$$||x||_{u}^{2} = q_{u}(x,x) = ||u\Phi(x)||^{2} = \sum_{i=1}^{n} u_{i}^{2} [\sigma_{i}(x)]^{2}.$$

Ideal lattices

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_F-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Let *I* be a factional ideal of *F* and let $u = (u_i)_i \in (\mathbb{R}_{>0})^n$. Define $q_u(x, y) = \langle u\Phi(x), u\Phi(y) \rangle$ for any $x, y \in I$.

$$||x||_{u}^{2} = q_{u}(x,x) = ||u\Phi(x)||^{2} = \sum_{i=1}^{n} u_{i}^{2} [\sigma_{i}(x)]^{2}.$$

Then (I, q_u) is an ideal lattice.

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q () 6/15 The size function for lattices

The size function for lattices

Let *L* be a lattice of \mathbb{R}^n .

$$h^0(L) := \log \sum_{x \in L} e^{-\pi \|x\|^2}$$

イロン イロン イヨン イヨン 三日

8/15

The size function for a number field

The size function for a number field

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$h^0(I, q_u) = \log \sum_{x \in I} e^{-\pi ||x||_u^2}.$$

0

The size function for a number field

The size function for a number field

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$h^0(I, q_u) = \log \sum_{x \in I} e^{-\pi ||x||_u^2}.$$

Definition

• The pair D = (I, u) is also called an Arakelov divisor of F.

The size function for a number field

The size function for a number field

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$h^0(I, q_u) = \log \sum_{x \in I} e^{-\pi ||x||_u^2}.$$

Definition

- The pair D = (I, u) is also called an Arakelov divisor of F.
- (I, q_u) is also called the ideal lattice associated to D.

The size function for a number field

The size function for a number field

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$h^0(I, q_u) = \log \sum_{x \in I} e^{-\pi ||x||_u^2}.$$

Definition

- The pair D = (I, u) is also called an Arakelov divisor of F.
- (I, q_u) is also called the ideal lattice associated to D.

•
$$h^0(D) := h^0(I, q_u).$$

Analogies

Algebraic curve

• Divisor.

Number field F

Arakelov divisor.

イロン イロン イヨン イヨン 三日

9/15

Algebraic curve

- Divisor.
- Principal divisor.

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.

・ロン ・四 と ・ ヨ と ・ ヨ と

э

9/15

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group $\operatorname{Pic}_{F}^{0}$.

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group $\operatorname{Pic}_{F}^{0}$.
- The inverse different.

Analogies

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- Riemann-Roch theorem

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group $\operatorname{Pic}_{F}^{0}$.
- The inverse different.
- Riemann-Roch theorem.

3

9/15

Analogies

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- Riemann–Roch theorem
- $h^0(D)$.

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group $\operatorname{Pic}_{F}^{0}$.
- The inverse different.
- Riemann-Roch theorem.

イロト 不得下 イヨト イヨト 二日

9/15

• $h^0(D)$

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- Riemann–Roch theorem
- $h^0(D)$.
- ...

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group $\operatorname{Pic}_{F}^{0}$.
- The inverse different.
- Riemann-Roch theorem.
- $h^0(D)$
- ...

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ.
- Riemann–Roch theorem
- $h^0(D)$.
- ...

Number field F

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group Pic_F^0 .
- The inverse different.
- Riemann-Roch theorem.
- $h^0(D)$ the size function of F.

イロト 不得下 イヨト イヨト 二日

9/15

• ...

The Riemann-Roch Theorem

For an algebraic curve

$$h^0(D)-h^0(\kappa-D)=deg(D)-(g-1).$$

The Riemann-Roch Theorem

For an algebraic curve

$$h^0(D) - h^0(\kappa - D) = deg(D) - (g - 1).$$

We define the canonical Arakelov divisor κ to be the Arakelov divisor $(\partial, 1)$ whose ideal part is the inverse of the different ∂ of F.

Premilinar 000 0 0 0

The Riemann-Roch Theorem

For an algebraic curve

$$h^0(D) - h^0(\kappa - D) = deg(D) - (g - 1).$$

We define the canonical Arakelov divisor κ to be the Arakelov divisor $(\partial, 1)$ whose ideal part is the inverse of the different ∂ of F.

van der Geer and Schoof (1999)

Let F be a number field with discriminant Δ and let D be an Arakelov divisor. Then

$$h^0(D)-h^0(\kappa-D)=\deg(D)-rac{1}{2}\log|\Delta|.$$

Premilinarie 000 0 0 0

The Arakelov class group Pic_F^0

• Let D = (I, u). Then $deg(D) := -\log(covol(I, q_u))$.

Premilinarie 000 0 0 0

The Arakelov class group Pic_F^0

- Let D = (I, u). Then $deg(D) := -\log(covol(I, q_u))$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.

Premilinari 000 0 0 0

The Arakelov class group Pic_F^0

- Let D = (I, u). Then $deg(D) := -\log(covol(I, q_u))$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.
- A principal Arakelov divisor has the form (I, u) where $I = x^{-1}O_F$ and $u = |\Phi(x)| = (|\sigma_i(x)|)_i$ and $x \in F^{\times}$.

Premilinari 000 0 0 0

The Arakelov class group $\operatorname{Pic}_{F}^{0}$

- Let D = (I, u). Then $deg(D) := -\log(covol(I, q_u))$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.
- A principal Arakelov divisor has the form (I, u) where $I = x^{-1}O_F$ and $u = |\Phi(x)| = (|\sigma_i(x)|)_i$ and $x \in F^{\times}$.
- The Arakelov class group Pic⁰_F is the quotient of Div⁰_F by its subgroup of principal divisors.

Premilinaries

The Arakelov class group $\operatorname{Pic}_{F}^{0}$

- Let D = (I, u). Then $deg(D) := -\log(covol(I, q_u))$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.
- A principal Arakelov divisor has the form (I, u) where $I = x^{-1}O_F$ and $u = |\Phi(x)| = (|\sigma_i(x)|)_i$ and $x \in F^{\times}$.
- The Arakelov class group Pic⁰_F is the quotient of Div⁰_F by its subgroup of principal divisors.

Proposition

 $\operatorname{Pic}_{F}^{0} \longrightarrow \{ \text{isometry classes of ideal lattices of covolume } \sqrt{\Delta} \}$ the class of $D = (I, u) \longmapsto$ the isometry class of (I, q_u) is a bijection. Premilinaries

The Arakelov class group $\operatorname{Pic}_{F}^{0}$

- Let D = (I, u). Then $deg(D) := -\log(covol(I, q_u))$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.
- A principal Arakelov divisor has the form (I, u) where $I = x^{-1}O_F$ and $u = |\Phi(x)| = (|\sigma_i(x)|)_i$ and $x \in F^{\times}$.
- The Arakelov class group $\operatorname{Pic}_{F}^{0}$ is the quotient of $\operatorname{Div}_{F}^{0}$ by its subgroup of principal divisors.

Proposition

 $\operatorname{Pic}_{F}^{0} \longrightarrow \{ \text{isometry classes of ideal lattices of covolume } \sqrt{\Delta} \}$ the class of $D = (I, u) \longmapsto$ the isometry class of (I, q_u) is a bijection.

Note: h^0 is well defined on Pic_F^0 .

Let F be a real quadratic field (Galois over \mathbb{Q}) or quadratic extension of a complex quadratic field K (Galois over K). The origin is the divisor (O_F , 1).

A cyclic cubic field (Galois over \mathbb{Q}). The origin is the divisor (O_F , 1).

Conjecture. Let F be a number field that is Galois over \mathbb{Q} or over an imaginary quadratic field. Then the function h^0 on Pic_F^0 assumes its maximum on the trivial class $(O_F, 1)$.

Conjecture. Let *F* be a number field that is Galois over \mathbb{Q} or over an imaginary quadratic field. Then the function h^0 on Pic_F^0 assumes its maximum on the trivial class $(O_F, 1)$.

Results. The conjecture is proved for number fields of degree:

- *n* = 2: Francini (2001).
- n = 3: Francini (2004) For some certain pure cubic fields.
- *n* = 4: (2014) For quadratic extensions of imaginary quadratic fields.
- n = 3: (2016) For cyclic cubic fields.

References

Paolo Francini.

The size function h^0 for quadratic number fields. J. Théor. Nombres Bordeaux, 13(1):125–135, 2001. 21st Journées Arithmétiques (Rome, 2001).

Paolo Francini.

The size function h° for a pure cubic field. Acta Arith., 111(3):225-237, 2004.

Richard P. Groenewegen.

The size function for number fields. Doctoraalscriptie, Universiteit van Amsterdam, 1999.

René Schoof.

Computing Arakelov class groups.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 447–495. Cambridge Univ. Press, Cambridge, 2008.

Gerard van der Geer and René Schoof.

Effectivity of Arakelov divisors and the theta divisor of a number field. Selecta Math. (N.S.), 6(4):377–398, 2000.