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Basic terminology

Let B be n × n matrix, and let α, β ⊆ [n].

B[α, β] denotes the submatrix lying in
rows indexed by α and columns indexed by β.

Definition

Let B be an n × n matrix.

1. B[α, β] is a principal submatrix if α = β,
and B[α, α]:=B[α].

2. detB[α, β] is a principal minor if α = β.

3. The order of the principal minor detB[α] is |α| .
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Example

Let B =

1 2 3
2 4 5
3 5 6

. Then

B[{2}] =
[
4
]
;

B[{1, 2}] =

[
1 2
2 4

]
;

B[{1, 3}] =

[
1 3
3 6

]
;

B[{1, 2, 3}] = B .

BUT,

[
2 3
4 5

]
is NOT a principal submatrix.
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Applications of principal minors

As stated by [Griffin and Tsatsomeros, 2006] and
[Holtz and Sturmfels, 2007]:

• matrix theory;
• probability theory;
• spectral graph theory.

In particular, as stated by [Griffin and Tsatsomeros, 2006]:

• detection of P-matrices;
• cartan matrices in Lie algebras;
• univalent differentiable mappings;
• self-validating algorithms;
• interval matrix analysis;
• counting of spanning trees of a graph using the Laplacian;
• D-nilpotent automorphisms;
• inverse multiplicative eigenvalue problem.
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The principal minor assignment problem

[Holtz and Schneider, 2002]

Given a vector u ∈ R2n−1, when is there an n × n matrix
having its 2n − 1 principal minors given by the entries of u?

Our focus here will be on Hermitian matrices.
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Example

Let u = [1, 4, 6︸ ︷︷ ︸
Order1

, 0, −3, −1︸ ︷︷ ︸
Order2

, −1︸︷︷︸
Order3

]T ∈ R23−1.

B =

1 2 3
2 4 5
3 5 6

.

det

[
1 2
2 4

]
= 0; det

[
1 3
3 6

]
= −3; det

[
4 5
5 6

]
= −1.

detB = −1.
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Example

Consider

u = [0, a, b︸ ︷︷ ︸
Order1

, 0, 0, 0︸ ︷︷ ︸
Order2

, c︸︷︷︸
Order3

]T ∈ R23−1,

where a, b, c 6= 0.

There is not any 3× 3 Hermitian matrix having its eight
principal minors given by u.
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The epr-sequence

Definition (Butler et al.; 2016)

The enhanced principal rank characteristic sequence of an
n × n matrix B is the sequence (epr-sequence)
epr(B) = `1`2 · · · `n, where

`k =



A if all order-k principal minors are nonzero;

N if none of the order-k principal minors are

nonzero;

S if some (but not all) order-k principal minors are

nonzero.
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Example

Let B =


1 1 1 1
1 1 1 1
1 1 1 −1
1 1 −1 1

 ∈ R4×4 and let epr(B) = `1`2`3`4.

All order-1 principal minors are
nonzero =⇒ `1 = A.

None of the order-2 principal minors are
nonzero =⇒ `2 = N.

det(B[{1, 2, 3}]) = 0 and det(B[{2, 3, 4}]) 6= 0 =⇒ `3 = S.

det(B) = 0 =⇒ `4 = N.

Hence, epr(B) = ANSN.



Motivation The epr-sequence The sepr-sequence References

Example

Let B =


1 1 1 1
1 1 1 1
1 1 1 −1
1 1 −1 1

 ∈ R4×4 and let epr(B) = `1`2`3`4.

All order-1 principal minors are
nonzero =⇒ `1 = A.

None of the order-2 principal minors are
nonzero =⇒ `2 = N.

det(B[{1, 2, 3}]) = 0 and det(B[{2, 3, 4}]) 6= 0 =⇒ `3 = S.

det(B) = 0 =⇒ `4 = N.

Hence, epr(B) = ANSN.



Motivation The epr-sequence The sepr-sequence References

Example

Let B =


1 1 1 1
1 1 1 1
1 1 1 −1
1 1 −1 1

 ∈ R4×4 and let epr(B) = `1`2`3`4.

All order-1 principal minors are
nonzero =⇒ `1 = A.

None of the order-2 principal minors are
nonzero =⇒ `2 = N.

det(B[{1, 2, 3}]) = 0 and det(B[{2, 3, 4}]) 6= 0 =⇒ `3 = S.

det(B) = 0 =⇒ `4 = N.

Hence, epr(B) = ANSN.



Motivation The epr-sequence The sepr-sequence References

Example

Let B =


1 1 1 1
1 1 1 1
1 1 1 −1
1 1 −1 1

 ∈ R4×4 and let epr(B) = `1`2`3`4.

All order-1 principal minors are
nonzero =⇒ `1 = A.

None of the order-2 principal minors are
nonzero =⇒ `2 = N.

det(B[{1, 2, 3}]) = 0 and det(B[{2, 3, 4}]) 6= 0 =⇒ `3 = S.

det(B) = 0 =⇒ `4 = N.

Hence, epr(B) = ANSN.



Motivation The epr-sequence The sepr-sequence References

Example

Let B =


1 1 1 1
1 1 1 1
1 1 1 −1
1 1 −1 1

 ∈ R4×4 and let epr(B) = `1`2`3`4.

All order-1 principal minors are
nonzero =⇒ `1 = A.

None of the order-2 principal minors are
nonzero =⇒ `2 = N.

det(B[{1, 2, 3}]) = 0 and det(B[{2, 3, 4}]) 6= 0 =⇒ `3 = S.

det(B) = 0 =⇒ `4 = N.

Hence, epr(B) = ANSN.



Motivation The epr-sequence The sepr-sequence References

Example

Let B =


1 1 1 1
1 1 1 1
1 1 1 −1
1 1 −1 1

 ∈ R4×4 and let epr(B) = `1`2`3`4.

All order-1 principal minors are
nonzero =⇒ `1 = A.

None of the order-2 principal minors are
nonzero =⇒ `2 = N.

det(B[{1, 2, 3}]) = 0 and det(B[{2, 3, 4}]) 6= 0 =⇒ `3 = S.

det(B) = 0 =⇒ `4 = N.

Hence, epr(B) = ANSN.



Motivation The epr-sequence The sepr-sequence References

The Inverse Theorem

Theorem (Butler et al.; 2016)

Suppose B is an n × n nonsingular Hermitian matrix.
If epr(B) = `1`2 · · · `n−1A, then epr(B−1) = `n−1`n−2 · · · `1A.
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NN forces Ns

Theorem (Butler et al.; 2016)

Suppose B is an n × n Hermitian matrix, epr(B) = `1`2 · · · `n,
and `k = `k+1 = N for some k . Then `i = N for all i ≥ k .
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The sepr-sequence

Definition (Mart́ınez; under review)

Let B be a Hermitian matrix with epr(B) = `1`2 · · · `n.
The signed enhanced principal rank characteristic sequence
(sepr-sequence) of B is the sequence sepr(B) = t1t2 · · · tn,
where

tk =



A+ if all the order-k principal minors are positive;

A− if all the order-k principal minors are negative;

A∗ if `k = A and there is both a positive and a negative

order-k principal minor;

N if none of the order-k principal minors are nonzero;

S+ if `k = S and all the order-k principal minors are nonnegative;

S− if `k = S and all the order-k principal minors are nonpositive;

S∗ if `k = S and there is both a positive and a negative

order-k principal minor.
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Terminology & notation

1. A sequence x1x2 · · · xk is nonnegative if xj ∈ {A+, S+, N}.

2. A sequence x1x2 · · · xk is nonpositive if xj ∈ {A−, S−, N}.
3. · · · X · · · Y · · · .
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Basic result

Proposition (Mart́ınez; under review)

No Hermitian matrix can have any of the following
sepr-sequences.

1. A∗A+ · · ·.
2. A∗S+ · · ·.
3. A∗N · · ·.
4. S∗A+ · · ·.
5. S∗S+ · · ·.
6. S∗N · · ·.

7. S+A+ · · ·.
8. S−A+ · · ·.
9. NA∗ · · ·.

10. NA+ · · ·.
11. NS∗ · · ·.
12. NS+ · · ·.
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A∗N and NA∗

Theorem (Mart́ınez; under review)

The following sequences cannot occur in the sepr-sequence of
a Hermitian matrix:

1. A∗N;

2. NA∗.
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A+XA+ & A−XA−

Theorem (Mart́ınez; under review)

If any of the sequences A+XA+ or A−XA− occurs in
the sepr-sequence of a Hermitian matrix,
then X ∈ {A+, A−}.
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S+XA+ & S−XA−

Theorem (Mart́ınez; under review)

If any of the sequences S+XA+ or S−XA− occurs in the
sepr-sequence of a Hermitian matrix, then X ∈ {A+, A−}.



Motivation The epr-sequence The sepr-sequence References

A+XS+ & A−XS−

Theorem (Mart́ınez; under review)

For any X and for Y ∈ {A∗, A+, A−},
if any of the sepr-sequences
· · · A+XS+ · · · Y · · · or · · · A−XS− · · · Y · · ·
is attainable by a Hermitian matrix, then X ∈ {A+, A−}.
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Theorem (Mart́ınez; under review)

For any X and for Y ∈ {A∗, A+, A−},
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· · · A+XS+ · · · Y · · · or · · · A−XS− · · · Y · · ·
is attainable by a Hermitian matrix, then X ∈ {A+, A−}.
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Nonnegative sequences

Definition

A sequence x1x2 · · · xk is nonnegative if xi ∈ {A+, S+, N}.

Theorem (Mart́ınez; under review)

Let B be an n × n Hermitian matrix, and
let σ = x1x2 · · · xk be a nonnegative subsequence of sepr(B),
where 2 ≤ k ≤ n.
Then x2x3 · · · xk = A+ S+ N.

Corollary (Mart́ınez; under review)

Let B be a (Hermitian) positive semidefinite matrix.
Then sepr(B) = A+ S+ N,
where N is nonempty if S+ is nonempty.
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Thanks!
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