The sepr-sequence of a Hermitian matrix

Xavier Martínez-Rivera

Iowa State University

Special WCLAM July 8, 2017

Outline

Motivation

The epr-sequence

The sepr-sequence

References

Basic terminology

Let B be $n \times n$ matrix, and let $\alpha, \beta \subseteq[n]$.
$B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β.

Basic terminology

Let B be $n \times n$ matrix, and let $\alpha, \beta \subseteq[n]$.
$B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β.

Definition

Let B be an $n \times n$ matrix.

1. $B[\alpha, \beta]$ is a principal submatrix if $\alpha=\beta$, and $B[\alpha, \alpha]:=B[\alpha]$.

Basic terminology

Let B be $n \times n$ matrix, and let $\alpha, \beta \subseteq[n]$.
$B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β.

Definition

Let B be an $n \times n$ matrix.

1. $B[\alpha, \beta]$ is a principal submatrix if $\alpha=\beta$, and $B[\alpha, \alpha]:=B[\alpha]$.
2. $\operatorname{det} B[\alpha, \beta]$ is a principal minor if $\alpha=\beta$.

Basic terminology

Let B be $n \times n$ matrix, and let $\alpha, \beta \subseteq[n]$.
$B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β.

Definition

Let B be an $n \times n$ matrix.

1. $B[\alpha, \beta]$ is a principal submatrix if $\alpha=\beta$, and $B[\alpha, \alpha]:=B[\alpha]$.
2. $\operatorname{det} B[\alpha, \beta]$ is a principal minor if $\alpha=\beta$.
3. The order of the principal minor $\operatorname{det} B[\alpha]$ is $|\alpha|$.

Example

Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Then

Example

Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Then
$B[\{2\}]=[4]$;

Example

Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Then
$B[\{2\}]=[4]$;
$B[\{1,2\}]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] ;$

Example

Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Then
$B[\{2\}]=[4]$;
$B[\{1,2\}]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] ;$
$B[\{1,3\}]=\left[\begin{array}{ll}1 & 3 \\ 3 & 6\end{array}\right] ;$

Example

Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Then
$B[\{2\}]=[4]$;
$B[\{1,2\}]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] ;$
$B[\{1,3\}]=\left[\begin{array}{ll}1 & 3 \\ 3 & 6\end{array}\right] ;$
$B[\{1,2,3\}]=B$.

Example

Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Then
$B[\{2\}]=[4]$;
$B[\{1,2\}]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] ;$
$B[\{1,3\}]=\left[\begin{array}{ll}1 & 3 \\ 3 & 6\end{array}\right] ;$
$B[\{1,2,3\}]=B$.
BUT, $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ is NOT a principal submatrix.

Applications of principal minors

As stated by [Griffin and Tsatsomeros, 2006] and [Holtz and Sturmfels, 2007]:

- matrix theory;
- probability theory;
- spectral graph theory.

Applications of principal minors

As stated by [Griffin and Tsatsomeros, 2006] and [Holtz and Sturmfels, 2007]:

- matrix theory;
- probability theory;
- spectral graph theory.

In particular, as stated by [Griffin and Tsatsomeros, 2006]:

- detection of P-matrices;
- cartan matrices in Lie algebras;
- univalent differentiable mappings;
- self-validating algorithms;
- interval matrix analysis;
- counting of spanning trees of a graph using the Laplacian;
- D-nilpotent automorphisms;
- inverse multiplicative eigenvalue problem.

The principal minor assignment problem [Holtz and Schneider, 2002]

Given a vector $\mathbf{u} \in \mathbb{R}^{2^{n}-1}$, when is there an $n \times n$ matrix having its $2^{n}-1$ principal minors given by the entries of \mathbf{u} ?

The principal minor assignment problem [Holtz and Schneider, 2002]

Given a vector $\mathbf{u} \in \mathbb{R}^{2^{n}-1}$, when is there an $n \times n$ matrix having its $2^{n}-1$ principal minors given by the entries of \mathbf{u} ?

Our focus here will be on Hermitian matrices.

Example

Let $\mathbf{u}=[\underbrace{1,4,6}_{\text {Order } 1}, \underbrace{0,-3,-1}_{\text {Order } 2}, \underbrace{-1}_{\text {Order } 3}]^{T} \in \mathbb{R}^{2^{3}-1}$.

Example

Let $\mathbf{u}=[\underbrace{1,4,6}_{\text {Order } 1}, \underbrace{\mathbf{0},-3,-1}_{\text {Order } 2}, \underbrace{-1}_{\text {Order } 3}]^{T} \in \mathbb{R}^{2^{3}-1}$.
$B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$.

Example

$$
\text { Let } \mathbf{u}=[\underbrace{1,4,6}_{\text {Order } 1}, \underbrace{\mathbf{0},-\mathbf{3},-1}_{\text {Order } 2}, \underbrace{-1}_{\text {Order } 3}]^{T} \in \mathbb{R}^{2^{3}-1} \text {. }
$$

$B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$.
$\operatorname{det}\left[\begin{array}{ll}\mathbf{1} & 2 \\ 2 & 4\end{array}\right]=\mathbf{0} ; \operatorname{det}\left[\begin{array}{ll}1 & 3 \\ \mathbf{3} & 6\end{array}\right]=-\mathbf{3} ; \operatorname{det}\left[\begin{array}{ll}4 & 5 \\ 5 & 6\end{array}\right]=-\mathbf{1}$.

Example

$$
\text { Let } \mathbf{u}=[\underbrace{1,4,6}_{\text {Order } 1}, \underbrace{\mathbf{0},-3,-1}_{\text {Order } 2}, \underbrace{-1}_{\text {Order } 3}]^{T} \in \mathbb{R}^{2^{3}-1} \text {. }
$$

$B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$.
$\operatorname{det}\left[\begin{array}{ll}\mathbf{1} & 2 \\ 2 & 4\end{array}\right]=\mathbf{0} ; \operatorname{det}\left[\begin{array}{ll}\mathbf{1} & 3 \\ \mathbf{3} & 6\end{array}\right]=-\mathbf{3} ; \operatorname{det}\left[\begin{array}{ll}4 & 5 \\ 5 & 6\end{array}\right]=-\mathbf{1}$.
$\operatorname{det} B=-1$.

Example

Consider

$$
\mathbf{u}=[\underbrace{\mathbf{0}, \mathbf{a}, \mathbf{b}}_{\text {Order } 1}, \underbrace{\mathbf{0}, \mathbf{0}, \mathbf{0}}_{\text {Order2 }}, \underbrace{\mathbf{c}^{c}}_{\text {Order } 3}]^{T} \in \mathbb{R}^{\mathbf{R}^{3}-1},
$$

where $a, b, c \neq 0$.

Example

Consider

$$
\mathbf{u}=[\underbrace{\mathbf{0}, \mathbf{a}, \mathbf{b}}_{\text {Order } 1}, \underbrace{\mathbf{0}, \mathbf{0}, \mathbf{0}}_{\text {Order } 2}, \underbrace{\mathbf{c}^{c}}_{\text {Order } 3}]^{T} \in \mathbb{R}^{2^{3}-1}
$$

where $a, b, c \neq 0$.

There is not any 3×3 Hermitian matrix having its eight principal minors given by \mathbf{u}.

The epr-sequence

Definition (Butler et al.; 2016)

The enhanced principal rank characteristic sequence of an $n \times n$ matrix B is the sequence (epr-sequence) $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$, where

$$
\ell_{k}= \begin{cases}\text { A } & \text { if all order- } k \text { principal minors are nonzero; } \\
\mathrm{N} & \text { if none of the order- } k \text { principal minors are } \\
& \text { nonzero; } \\
\mathrm{S} & \begin{array}{l}
\text { if some (but not all) } \\
\\
\text { nonzero. }
\end{array}\end{cases}
$$

Example

Let $B=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ and let $\operatorname{epr}(B)=\ell_{1} \ell_{2} \ell_{3} \ell_{4}$.

Example

Let $B=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ and let $\operatorname{epr}(B)=\ell_{1} \ell_{2} \ell_{3} \ell_{4}$.
All order-1 principal minors are nonzero $\Longrightarrow \ell_{1}=\mathrm{A}$.

Example

Let $B=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ and let $\operatorname{epr}(B)=\ell_{1} \ell_{2} \ell_{3} \ell_{4}$.
All order- 1 principal minors are nonzero $\Longrightarrow \ell_{1}=\mathrm{A}$.

None of the order-2 principal minors are nonzero $\Longrightarrow \ell_{2}=\mathrm{N}$.

Example

Let $B=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ and let $\operatorname{epr}(B)=\ell_{1} \ell_{2} \ell_{3} \ell_{4}$.
All order- 1 principal minors are nonzero $\Longrightarrow \ell_{1}=\mathrm{A}$.

None of the order-2 principal minors are nonzero $\Longrightarrow \ell_{2}=\mathrm{N}$. $\operatorname{det}(B[\{1,2,3\}])=\mathbf{0}$ and $\operatorname{det}(B[\{2,3,4\}]) \neq \mathbf{0} \Longrightarrow \ell_{\mathbf{3}}=\mathrm{S}$.

Example

Let $B=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ and let $\operatorname{epr}(B)=\ell_{1} \ell_{2} \ell_{3} \ell_{4}$.
All order- 1 principal minors are nonzero $\Longrightarrow \ell_{1}=\mathrm{A}$.

None of the order-2 principal minors are nonzero $\Longrightarrow \ell_{2}=\mathrm{N}$. $\operatorname{det}(B[\{1,2,3\}])=\mathbf{0}$ and $\operatorname{det}(B[\{2,3,4\}]) \neq \mathbf{0} \Longrightarrow \ell_{\mathbf{3}}=\mathrm{S}$. $\operatorname{det}(B)=0 \Longrightarrow \ell_{4}=N$.

Example

Let $B=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ and let $\operatorname{epr}(B)=\ell_{1} \ell_{2} \ell_{3} \ell_{4}$.
All order- 1 principal minors are nonzero $\Longrightarrow \ell_{1}=\mathrm{A}$.

None of the order-2 principal minors are nonzero $\Longrightarrow \ell_{2}=\mathrm{N}$. $\operatorname{det}(B[\{1,2,3\}])=\mathbf{0}$ and $\operatorname{det}(B[\{2,3,4\}]) \neq \mathbf{0} \Longrightarrow \ell_{\mathbf{3}}=\mathrm{S}$. $\operatorname{det}(B)=0 \Longrightarrow \ell_{4}=N$.

Hence, $\operatorname{epr}(B)=$ ANSN.

The Inverse Theorem

Theorem (Butler et al.; 2016)

Suppose B is an $n \times n$ nonsingular Hermitian matrix. If $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n-1} \mathrm{~A}$, then $\operatorname{epr}\left(B^{-1}\right)=\ell_{n-1} \ell_{n-2} \cdots \ell_{1} \mathrm{~A}$.

NN forces Ns

Theorem (Butler et al.; 2016)

Suppose B is an $n \times n$ Hermitian matrix, $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$, and $\ell_{k}=\ell_{k+1}=\mathrm{N}$ for some k. Then $\ell_{i}=\mathrm{N}$ for all $i \geq k$.

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}=\{$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}=\left\{\begin{array}{l}\mathrm{A}^{+} \\ \end{array}\right.$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
(A^{+}if all the order- k principal minors are positive;

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}= \begin{cases}\mathrm{A}^{+} & \text {if all the order- } k \text { principal minors are positive; } \\ \mathrm{A}^{-} & \\ \\ \end{cases}$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
A^{+}if all the order- k principal minors are positive;
A^{-}if all the order- k principal minors are negative;

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
(A^{+}if all the order- k principal minors are positive;
A^{-}if all the order- k principal minors are negative;
A*
$t_{k}=\{$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
(A^{+}if all the order- k principal minors are positive;
A^{-}if all the order- k principal minors are negative;
A* if $\ell_{k}=\mathrm{A}$ and there is both a positive and a negative order-k principal minor;

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
(A^{+}if all the order- k principal minors are positive;
A^{-}if all the order- k principal minors are negative;
A* if $\ell_{k}=\mathrm{A}$ and there is both a positive and a negative order-k principal minor;

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}= \begin{cases}A^{+} & \text {if all the order }-k \text { principal minors are positive; } \\ A^{-} & \text {if all the order- } k \text { principal minors are negative; } \\ A^{*} & \text { if } \ell_{k}=A \text { and there is both a positive and a negative } \\ & \text { order- } k \text { principal minor; } \\ \text { Nf none of the order }-k \text { principal minors are nonzero; }\end{cases}$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}= \begin{cases}\mathrm{A}^{+} & \text {if all the order- } k \text { principal minors are positive; } \\ \mathrm{A}^{-} & \text {if all the order- } k \text { principal minors are negative; } \\ \mathrm{A}^{*} & \text { if } \ell_{k}=\mathrm{A} \text { and there is both a positive and a negative } \\ \mathrm{N} & \begin{array}{l}\text { order- } k \text { principal minor; } \\ \mathrm{S}^{+}\end{array}\end{cases}$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}= \begin{cases}\mathrm{A}^{+} & \text {if all the order- } k \text { principal minors are positive; } \\ \mathrm{A}^{-} & \text {if all the order- } k \text { principal minors are negative; } \\ \mathrm{A}^{*} & \text { if } \ell_{k}=\mathrm{A} \text { and there is both a positive and a negative } \\ \mathrm{N} & \begin{array}{l}\text { order- } k \text { principal minor; } \\ \mathrm{S}^{+} \\ \text {if } \ell_{k}=\mathrm{S} \text { and all the order- } k \text { principal minors are nonnegative; }\end{array}\end{cases}$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
(A^{+}if all the order- k principal minors are positive;
A^{-}if all the order- k principal minors are negative;
A* if $\ell_{k}=\mathrm{A}$ and there is both a positive and a negative order-k principal minor;
$t_{k}=\left\{\begin{array}{l}\mathrm{N} \quad \text { if none of the order- } k \text { principal minors are nonzero; }\end{array}\right.$
S^{+}if $\ell_{k}=\mathrm{S}$ and all the order- k principal minors are nonnegative;
S^{-}

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}= \begin{cases}\mathrm{A}^{+} & \text {if all the order- } k \text { principal minors are positive; } \\ \mathrm{A}^{-} & \text {if all the order- } k \text { principal minors are negative; } \\ \mathrm{A}^{*} & \text { if } \ell_{k}=\mathrm{A} \text { and there is both a positive and a negative } \\ \mathrm{N} & \text { order- } k \text { principal minor; } \\ \mathrm{S}^{+} & \text {if } \ell_{k}=\mathrm{S} \text { and all the order- } k \text { principal minors are nonnegative; } \\ \mathrm{S}^{-} & \text {if } \ell_{k}=\mathrm{S} \text { and all the order- } k \text { principal minors are nonpositive; }\end{cases}$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
$t_{k}= \begin{cases}\mathrm{A}^{+} & \text {if all the order- } k \text { principal minors are positive; } \\ \mathrm{A}^{-} & \text {if all the order- } k \text { principal minors are negative; } \\ \mathrm{A}^{*} & \text { if } \ell_{k}=\mathrm{A} \text { and there is both a positive and a negative } \\ \mathrm{N} & \begin{array}{l}\text { order- } k \text { principal minor; } \\ \mathrm{S}^{+} \\ \text {if } \ell_{k}=\mathrm{S} \text { and all the order- } k \text { principal minors are nonnegative; } \\ \mathrm{S}^{-} \\ \text {if } \ell_{k}=\mathrm{S} \text { and all the order- } k \text { principal minors are nonpositive; } \\ \mathrm{S}^{*}\end{array}\end{cases}$

The sepr-sequence

Definition (Martínez; under review)

Let B be a Hermitian matrix with $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $\operatorname{sepr}(B)=t_{1} t_{2} \cdots t_{n}$, where
A^{+}if all the order- k principal minors are positive;
A^{-}if all the order- k principal minors are negative;
A* if $\ell_{k}=\mathrm{A}$ and there is both a positive and a negative order-k principal minor;
$t_{k}=\left\{\begin{array}{l}\mathrm{N} \quad \text { if none of the order- } k \text { principal minors are nonzero; }\end{array}\right.$
S^{+}if $\ell_{k}=\mathrm{S}$ and all the order- k principal minors are nonnegative;
$\mathrm{S}^{-} \quad$ if $\ell_{k}=\mathrm{S}$ and all the order- k principal minors are nonpositive;
$\mathrm{S}^{*} \quad$ if $\ell_{k}=\mathrm{S}$ and there is both a positive and a negative order- k principal minor.

Terminology \& notation

1. A sequence $x_{1} x_{2} \cdots x_{k}$ is nonnegative if $x_{j} \in\left\{\mathrm{~A}^{+}, \mathrm{S}^{+}, \mathrm{N}\right\}$.

Terminology \& notation

1. A sequence $x_{1} x_{2} \cdots x_{k}$ is nonnegative if $x_{j} \in\left\{\mathrm{~A}^{+}, \mathrm{S}^{+}, \mathrm{N}\right\}$.
2. A sequence $x_{1} x_{2} \cdots x_{k}$ is nonpositive if $x_{j} \in\left\{\mathrm{~A}^{-}, \mathrm{S}^{-}, \mathrm{N}\right\}$.

Terminology \& notation

1. A sequence $x_{1} x_{2} \cdots x_{k}$ is nonnegative if $x_{j} \in\left\{\mathrm{~A}^{+}, \mathrm{S}^{+}, \mathrm{N}\right\}$.
2. A sequence $x_{1} x_{2} \cdots x_{k}$ is nonpositive if $x_{j} \in\left\{\mathrm{~A}^{-}, \mathrm{S}^{-}, \mathrm{N}\right\}$.
3. $\cdot \mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Y}$.

Basic result

Proposition (Martínez; under review)

No Hermitian matrix can have any of the following sepr-sequences.

1. $A^{*} A^{+} \ldots$.
2. $A^{*} S^{+} \ldots$.
3. $A^{*} N \cdot \cdots$.
4. $S^{*} A^{+} \ldots$.
5. $S^{*} S^{+} \ldots$.
6. $S^{*} \mathrm{~N} \cdot \cdots$.
7. $S^{+} A^{+} \ldots$.
8. $S^{-} A^{+} \ldots$.
9. $\mathrm{NA}^{*} \cdot$.
10. $\mathrm{NA}^{+} \ldots$.
11. $\mathrm{NS}^{*} \ldots$.
12. $\mathrm{NS}^{+} . .$.

$\mathrm{A}^{*} \mathrm{~N}$ and NA^{*}

Theorem (Martínez; under review)

The following sequences cannot occur in the sepr-sequence of a Hermitian matrix:

1. $\mathrm{A}^{*} \mathrm{~N}$;
2. $N A^{*}$.

$\mathrm{A}^{+} \mathrm{XA}^{+}$\& $\mathrm{A}^{-} \mathrm{XA}^{-}$

Theorem (Martínez; under review)

If any of the sequences $\mathrm{A}^{+} \mathrm{XA}^{+}$or $\mathrm{A}^{-} \mathrm{XA}^{-}$occurs in the sepr-sequence of a Hermitian matrix, then $\mathrm{X} \in\left\{\mathrm{A}^{+}, \mathrm{A}^{-}\right\}$.

$S^{+} X A A^{+}$\& $S^{-} X A^{-}$

Theorem (Martínez; under review)

If any of the sequences $\mathrm{S}^{+} \mathrm{XA}^{+}$or $\mathrm{S}^{-} \mathrm{XA}^{-}$occurs in the sepr-sequence of a Hermitian matrix, then $\mathrm{X} \in\left\{\mathrm{A}^{+}, \mathrm{A}^{-}\right\}$.

$$
\mathrm{A}^{+} \mathrm{XS}^{+} \text {\& } \mathrm{A}^{-} \mathrm{XS}^{-}
$$

$A^{+} X S^{+}$\& $A^{-} X S^{-}$

Theorem (Martínez; under review)

For any X and for $\mathrm{Y} \in\left\{\mathrm{A}^{*}, \mathrm{~A}^{+}, \mathrm{A}^{-}\right\}$,
if any of the sepr-sequences
$\cdots \mathrm{A}^{+} \mathrm{XS}^{+} \ldots \mathrm{Y} \cdots$ or $\cdots \mathrm{A}^{-} \mathrm{XS}^{-} \ldots \mathrm{Y} \cdots$
is attainable by a Hermitian matrix, then $\mathrm{X} \in\left\{\mathrm{A}^{+}, \mathrm{A}^{-}\right\}$.

Nonnegative sequences

Definition

A sequence $x_{1} x_{2} \cdots x_{k}$ is nonnegative if $x_{i} \in\left\{\mathrm{~A}^{+}, \mathrm{S}^{+}, \mathrm{N}\right\}$.

Nonnegative sequences

Definition

A sequence $x_{1} x_{2} \cdots x_{k}$ is nonnegative if $x_{i} \in\left\{\mathrm{~A}^{+}, \mathrm{S}^{+}, \mathrm{N}\right\}$.

Theorem (Martínez; under review)

Let B be an $n \times n$ Hermitian matrix, and let $\sigma=x_{1} x_{2} \cdots x_{k}$ be a nonnegative subsequence of $\operatorname{sepr}(B)$, where $2 \leq k \leq n$.
Then $x_{2} x_{3} \cdots x_{k}=\overline{\mathrm{A}^{+}} \overline{\mathrm{S}^{+}} \overline{\mathrm{N}}$.

Nonnegative sequences

Definition

A sequence $x_{1} x_{2} \cdots x_{k}$ is nonnegative if $x_{i} \in\left\{\mathrm{~A}^{+}, \mathrm{S}^{+}, \mathrm{N}\right\}$.

Theorem (Martínez; under review)

Let B be an $n \times n$ Hermitian matrix, and let $\sigma=x_{1} x_{2} \cdots x_{k}$ be a nonnegative subsequence of $\operatorname{sepr}(B)$, where $2 \leq k \leq n$.
Then $x_{2} x_{3} \cdots x_{k}=\overline{\mathrm{A}^{+}} \overline{\mathrm{S}^{+}} \overline{\mathrm{N}}$.

Corollary (Martínez; under review)

Let B be a (Hermitian) positive semidefinite matrix. Then sepr $(B)=\overline{\mathrm{A}^{+}} \overline{\mathrm{S}^{+}} \overline{\mathrm{N}}$, where $\overline{\mathrm{N}}$ is nonempty if $\overline{\mathrm{S}^{+}}$is nonempty.

Thanks!

References

围 S. Butler, M. Catral, S. M. Fallat, H. T. Hall, L. Hogben, P. van den Driessche, M. Young. The enhanced principal rank characteristic sequence. Linear Algebra Appl. 498 (2016), 181-200.

References

國 K. Griffin, M. J. Tsatsomeros.
Principal minors, Part II: The principal minor assignment problem.
Linear Algebra Appl. 419 (2006), 125-171.
目 O. Holtz, H. Schneider.
Open problems on GKK τ-matrices. Linear Algebra Appl. 345 (2002), 263-267.

References

O. Holtz, B. Sturmfels.

Hyperdeterminantal relations among symmetric principal minors.
J. Algebra 316 (2007), 634-648.
© X. Martínez-Rivera.
The signed enhanced principal rank characteristic sequence.
Under review.

