◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The sepr-sequence of a Hermitian matrix

Xavier Martínez-Rivera

Iowa State University

Special WCLAM July 8, 2017

Motivation

The epr-sequence

The sepr-sequence

References

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Basic terminology

Let *B* be $n \times n$ matrix, and let $\alpha, \beta \subseteq [n]$.

 $B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β .

Basic terminology

Let *B* be $n \times n$ matrix, and let $\alpha, \beta \subseteq [n]$.

 $B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β .

Definition

Let *B* be an $n \times n$ matrix.

1. $B[\alpha, \beta]$ is a *principal* submatrix if $\alpha = \beta$, and $B[\alpha, \alpha] := B[\alpha]$.

Basic terminology

Let *B* be $n \times n$ matrix, and let $\alpha, \beta \subseteq [n]$.

 $B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β .

Definition

Let *B* be an $n \times n$ matrix.

- 1. $B[\alpha, \beta]$ is a *principal* submatrix if $\alpha = \beta$, and $B[\alpha, \alpha] := B[\alpha]$.
- 2. det $B[\alpha, \beta]$ is a *principal* minor if $\alpha = \beta$.

Basic terminology

Let *B* be $n \times n$ matrix, and let $\alpha, \beta \subseteq [n]$.

 $B[\alpha, \beta]$ denotes the submatrix lying in rows indexed by α and columns indexed by β .

Definition

Let *B* be an $n \times n$ matrix.

- 1. $B[\alpha, \beta]$ is a *principal* submatrix if $\alpha = \beta$, and $B[\alpha, \alpha] := B[\alpha]$.
- 2. det $B[\alpha, \beta]$ is a *principal* minor if $\alpha = \beta$.
- 3. The *order* of the principal minor det $B[\alpha]$ is $|\alpha|$.

Let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Then

Let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Then
 $B[\{2\}] = [4];$

Let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Then
 $B[\{2\}] = \begin{bmatrix} 4 \end{bmatrix};$
 $B[\{1,2\}] = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix};$

Let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Then
 $B[\{2\}] = [4];$
 $B[\{1,2\}] = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix};$
 $B[\{1,3\}] = \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix};$

Let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Then
 $B[\{2\}] = [4];$
 $B[\{1,2\}] = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix};$
 $B[\{1,3\}] = \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix};$
 $B[\{1,2,3\}] = B.$

▲□▶ ▲圖▶ ▲園▶ ▲園▶

€ 990

Let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Then
 $B[\{2\}] = [4];$
 $B[\{1,2\}] = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix};$
 $B[\{1,3\}] = \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix};$
 $B[\{1,2,3\}] = B.$
BUT, $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ is **NOT** a principal submatrix.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Applications of principal minors

As stated by [Griffin and Tsatsomeros, 2006] and [Holtz and Sturmfels, 2007]:

- matrix theory;
- probability theory;
- spectral graph theory.

Applications of principal minors

As stated by [Griffin and Tsatsomeros, 2006] and [Holtz and Sturmfels, 2007]:

- matrix theory;
- probability theory;
- spectral graph theory.

In particular, as stated by [Griffin and Tsatsomeros, 2006]:

- detection of P-matrices;
- cartan matrices in Lie algebras;
- univalent differentiable mappings;
- self-validating algorithms;
- interval matrix analysis;
- counting of spanning trees of a graph using the Laplacian;
- D-nilpotent automorphisms;
- inverse multiplicative eigenvalue problem.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The principal minor assignment problem [Holtz and Schneider, 2002]

Given a vector $\mathbf{u} \in \mathbb{R}^{2^n-1}$, when is there an $n \times n$ matrix having its $2^n - 1$ principal minors given by the entries of \mathbf{u} ?

The principal minor assignment problem [Holtz and Schneider, 2002]

Given a vector $\mathbf{u} \in \mathbb{R}^{2^n-1}$, when is there an $n \times n$ matrix having its $2^n - 1$ principal minors given by the entries of \mathbf{u} ?

Our focus here will be on Hermitian matrices.

Let
$$\mathbf{u} = [\underbrace{\mathbf{1}, \mathbf{4}, \mathbf{6}}_{Order1}, \underbrace{\mathbf{0}, -\mathbf{3}, -\mathbf{1}}_{Order2}, \underbrace{-\mathbf{1}}_{Order3}]^T \in \mathbb{R}^{2^3-1}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example

Let
$$\mathbf{u} = \begin{bmatrix} \mathbf{1}, \ \mathbf{4}, \ \mathbf{6} \\ Order1 \end{bmatrix}, \underbrace{\mathbf{0}, \ -\mathbf{3}, \ -\mathbf{1}}_{Order2}, \underbrace{\mathbf{-1}}_{Order3} \end{bmatrix}^T \in \mathbb{R}^{2^3 - 1}.$$

$$B = \begin{bmatrix} \mathbf{1} & 2 & 3 \\ 2 & \mathbf{4} & 5 \\ 3 & 5 & \mathbf{6} \end{bmatrix}.$$
$$\det \begin{bmatrix} \mathbf{1} & 2 \\ 2 & \mathbf{4} \end{bmatrix} = \mathbf{0}; \ \det \begin{bmatrix} \mathbf{1} & 3 \\ 3 & \mathbf{6} \end{bmatrix} = -\mathbf{3}; \ \det \begin{bmatrix} \mathbf{4} & 5 \\ 5 & \mathbf{6} \end{bmatrix} = -\mathbf{1}.$$

(ロ)、

Example

Let
$$\mathbf{u} = \begin{bmatrix} \mathbf{1}, \ \mathbf{4}, \ \mathbf{6}, \ \mathbf{0}, \ -\mathbf{3}, \ -\mathbf{1}, \ \mathbf{0} \end{bmatrix}^T \in \mathbb{R}^{2^3 - 1}.$$

 $B = \begin{bmatrix} \mathbf{1} & 2 & 3 \\ 2 & \mathbf{4} & 5 \\ 3 & 5 & \mathbf{6} \end{bmatrix}.$
det $\begin{bmatrix} \mathbf{1} & 2 \\ 2 & \mathbf{4} \end{bmatrix} = \mathbf{0}$; det $\begin{bmatrix} \mathbf{1} & 3 \\ 3 & \mathbf{6} \end{bmatrix} = -\mathbf{3}$; det $\begin{bmatrix} \mathbf{4} & 5 \\ 5 & \mathbf{6} \end{bmatrix} = -\mathbf{1}.$
det $B = -\mathbf{1}.$

・ロト・4回ト・4回ト・4回ト・4回ト

Example

Consider

$$\mathbf{u} = [\underbrace{\mathbf{0}, \mathbf{a}, \mathbf{b}}_{Order1}, \underbrace{\mathbf{0}, \mathbf{0}, \mathbf{0}}_{Order2}, \underbrace{\mathbf{c}}_{Order3}]^T \in \mathbb{R}^{2^3 - 1},$$

where $a, b, c \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Consider

$$\mathbf{u} = [\underbrace{\mathbf{0}, \mathbf{a}, \mathbf{b}}_{Order1}, \underbrace{\mathbf{0}, \mathbf{0}, \mathbf{0}}_{Order2}, \underbrace{\mathbf{c}}_{Order3}]^{T} \in \mathbb{R}^{2^{3}-1},$$

where $a, b, c \neq 0$.

There is <u>**not**</u> any 3×3 Hermitian matrix having its eight principal minors given by **u**.

・ロト・日本・モート モー うへぐ

The epr-sequence

Definition (Butler et al.; 2016)

The enhanced principal rank characteristic sequence of an $n \times n$ matrix B is the sequence (*epr-sequence*) $epr(B) = \ell_1 \ell_2 \cdots \ell_n$, where

- $\ell_k = \begin{cases} A & \text{if all order-}k \text{ principal minors are nonzero;} \\ \mathbb{N} & \text{if none of the order-}k \text{ principal minors are nonzero;} \\ S & \text{if some (but not all) order-}k \text{ principal minors are nonzero.} \end{cases}$

Example

All order-1 principal minors are nonzero $\implies \ell_1 = A$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example

All order-1 principal minors are nonzero $\implies \ell_1 = A$.

None of the order-2 principal minors are nonzero $\implies \ell_2 = \mathbb{N}$.

Example

All order-1 principal minors are nonzero $\implies \ell_1 = A$.

None of the order-2 principal minors are nonzero $\implies \ell_2 = \mathbb{N}$.

 $det(B[\{1,2,3\}]) = \mathbf{0} \text{ and } det(B[\{2,3,4\}]) \neq \mathbf{0} \implies \ell_{\mathbf{3}} = \mathbf{S}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example

All order-1 principal minors are nonzero $\implies \ell_1 = A$.

None of the order-2 principal minors are nonzero $\implies \ell_2 = \mathbb{N}$.

 $det(B[\{1,2,3\}]) = \mathbf{0} \text{ and } det(B[\{2,3,4\}]) \neq \mathbf{0} \implies \ell_3 = \mathbf{S}.$

 $\det(\mathbf{B}) = \mathbf{0} \implies \ell_{\mathbf{4}} = \mathbb{N}.$

Example

All order-1 principal minors are nonzero $\implies \ell_1 = A$.

None of the order-2 principal minors are nonzero $\implies \ell_2 = \mathbb{N}$.

 $det(B[\{1,2,3\}]) = \mathbf{0} \text{ and } det(B[\{2,3,4\}]) \neq \mathbf{0} \implies \ell_{\mathbf{3}} = \mathbf{S}.$

 $det(\mathbf{B}) = \mathbf{0} \implies \ell_{\mathbf{4}} = \mathbb{N}.$

Hence, epr(B) = ANSN.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Inverse Theorem

Theorem (Butler et al.; 2016)

Suppose B is an $n \times n$ nonsingular Hermitian matrix. If $epr(B) = \ell_1 \ell_2 \cdots \ell_{n-1} A$, then $epr(B^{-1}) = \ell_{n-1} \ell_{n-2} \cdots \ell_1 A$.

Theorem (Butler et al.; 2016)

Suppose B is an $n \times n$ Hermitian matrix, $epr(B) = \ell_1 \ell_2 \cdots \ell_n$, and $\ell_k = \ell_{k+1} = \mathbb{N}$ for some k. Then $\ell_i = \mathbb{N}$ for all $i \ge k$.

References

The sepr-sequence

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of *B* is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of *B* is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where (A^+)

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of *B* is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

A⁺ if all the order-k principal minors are positive;

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of *B* is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

+ if **all** the order-*k* principal minors are **positive**;

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

if all the order-*k* principal minors are **positive**; if all the order-*k* principal minors are **negative**;

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

if all the order-*k* principal minors are **positive**; if all the order-*k* principal minors are **negative**;

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

- $\begin{array}{l} \mathbb{A}^+ & \text{if all the order-}k \text{ principal minors are positive;} \\ \mathbb{A}^- & \text{if all the order-}k \text{ principal minors are negative;} \\ \mathbb{A}^* & \text{if } \ell_k = \mathbb{A} \text{ and there is both a positive and a negative} \end{array}$ order-k principal minor;

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence $t_{k} = \begin{cases} A^{+} & \text{if all the order-}k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-}k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative} \\ & \text{order-}k \text{ principal minor;} \end{cases}$ (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$,

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

- $\begin{aligned} \mathbf{A}^+ & \text{if all the order-} k \text{ principal minors are positive;} \\ \mathbf{A}^- & \text{if all the order-} k \text{ principal minors are negative;} \\ \mathbf{A}^* & \text{if } \ell_k = \mathbf{A} \text{ and there is both a positive and a negative order-} k \text{ principal minor;} \\ \mathbf{t}_k = \begin{cases} \mathbf{N} & \text{if none of the order-} k \text{ principal minors are nonzero;} \end{cases} \end{aligned}$

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, $t_{k} = \begin{cases} A^{+} & \text{if all the order-}k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-}k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative order-}k \text{ principal minor;} \\ N & \text{if none of the order-}k \text{ principal minors are nonzero;} \end{cases}$

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

- $t_{k} = \begin{cases} A^{+} & \text{if all the order-} k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-} k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative order-} k \text{ principal minor;} \\ N & \text{if none of the order-} k \text{ principal minors are nonzero;} \\ S^{+} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonnegative;} \end{cases}$

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence $t_{k} = \begin{cases} A^{+} & \text{if all the order-}k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-}k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative order-}k \text{ principal minor;} \\ N & \text{if none of the order-}k \text{ principal minors are nonzero;} \\ S^{+} & \text{if } \ell_{k} = S \text{ and all the order-}k \text{ principal minors are nonzero;} \\ S^{-} \end{cases}$ (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$,

Definition (Martínez; under review)

Let B be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

- $t_{k} = \begin{cases} A^{+} & \text{if all the order-} k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-} k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative order-} k \text{ principal minor;} \\ t_{k} = \begin{cases} N & \text{if none of the order-} k \text{ principal minors are nonzero;} \\ S^{+} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonnegative;} \\ S^{-} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonnegative;} \end{cases}$

Definition (Martínez; under review)

Let B be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$,

- $t_{k} = \begin{cases} A^{+} & \text{if all the order-} k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-} k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative order-} k \text{ principal minor;} \\ N & \text{if none of the order-} k \text{ principal minors are nonzero;} \\ S^{+} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonnegative;} \\ S^{-} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonnegative;} \\ S^{*} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonpositive;} \end{cases}$

Definition (Martínez; under review)

Let *B* be a Hermitian matrix with $epr(B) = \ell_1 \ell_2 \cdots \ell_n$. The signed enhanced principal rank characteristic sequence (sepr-sequence) of B is the sequence $sepr(B) = t_1 t_2 \cdots t_n$, where

- $t_{k} = \begin{cases} A^{+} & \text{if all the order-} k \text{ principal minors are positive;} \\ A^{-} & \text{if all the order-} k \text{ principal minors are negative;} \\ A^{*} & \text{if } \ell_{k} = A \text{ and there is both a positive and a negative order-} k \text{ principal minor;} \\ t_{k} = \begin{cases} N & \text{if none of the order-} k \text{ principal minors are nonzero;} \\ S^{+} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonnegative;} \\ S^{-} & \text{if } \ell_{k} = S \text{ and all the order-} k \text{ principal minors are nonpositive;} \\ S^{*} & \text{if } \ell_{k} = S \text{ and there is both a positive and a negative order-} k \text{ principal minors are nonpositive;} \end{cases}$
 - - order-k principal minor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Terminology & notation

1. A sequence $x_1x_2 \cdots x_k$ is *nonnegative* if $x_j \in \{A^+, S^+, N\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Terminology & notation

- 1. A sequence $x_1x_2 \cdots x_k$ is *nonnegative* if $x_j \in \{A^+, S^+, N\}$.
- 2. A sequence $x_1 x_2 \cdots x_k$ is *nonpositive* if $x_j \in \{A^-, S^-, N\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Terminology & notation

A sequence x₁x₂ ··· x_k is *nonnegative* if x_j ∈ {A⁺, S⁺, N}.
 A sequence x₁x₂ ··· x_k is *nonpositive* if x_j ∈ {A⁻, S⁻, N}.
 ··· X ··· Y ···.

Basic result

Proposition (Martínez; under review)

No Hermitian matrix can have any of the following sepr-sequences.

- 1. $A^*A^+ \cdots$
- 2. $A^*S^+ \cdots$
- 3. $A^*N \cdots$
- 4 $S^*A^+\cdots$
- 5. $S^*S^+ \cdots$
- 6. $S^*N \cdots$

- 7. $S^+A^+\cdots$
- 8. $S^-A^+\cdots$
- 9. $NA^* \cdots$
- 10. $NA^+ \cdots$
- 11. $NS^* \cdots$
- 12. $NS^+ \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Martínez; under review)

The following sequences cannot occur in the sepr-sequence of a Hermitian matrix:

- 1. A*N;
- 2. NA*.

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 A^+XA^+ & A^-XA^-

Theorem (Martínez; under review)

If any of the sequences A^+XA^+ or A^-XA^- occurs in the sepr-sequence of a Hermitian matrix, then $X \in \{A^+, A^-\}$.

The sepr-sequence

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 S^+XA^+ & S^-XA^-

Theorem (Martínez; under review)

If any of the sequences S^+XA^+ or S^-XA^- occurs in the sepr-sequence of a Hermitian matrix, then $X \in \{A^+, A^-\}$.

The epr-sequence

The sepr-sequence

References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

References

 A^+XS^+ & A^-XS^-

Theorem (Martínez; under review)

For any X and for $Y \in \{A^*, A^+, A^-\}$, if any of the sepr-sequences $\cdots A^+XS^+ \cdots Y \cdots$ or $\cdots A^-XS^- \cdots Y \cdots$ is attainable by a Hermitian matrix, then $X \in \{A^+, A^-\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nonnegative sequences

Definition

A sequence $x_1x_2\cdots x_k$ is *nonnegative* if $x_i \in \{A^+, S^+, N\}$.

Nonnegative sequences

Definition

A sequence $x_1x_2\cdots x_k$ is *nonnegative* if $x_i \in \{A^+, S^+, N\}$.

Theorem (Martínez; under review)

Let B be an $n \times n$ Hermitian matrix, and let $\sigma = x_1 x_2 \cdots x_k$ be a nonnegative subsequence of sepr(B), where $2 \le k \le n$. Then $x_2 x_3 \cdots x_k = \overline{A^+} \ \overline{S^+} \ \overline{N}$.

▲□▶▲□▶▲□▶▲□▶ = シペの

Nonnegative sequences

Definition

A sequence $x_1x_2\cdots x_k$ is *nonnegative* if $x_i \in \{A^+, S^+, N\}$.

Theorem (Martínez; under review)

Let B be an $n \times n$ Hermitian matrix, and let $\sigma = x_1 x_2 \cdots x_k$ be a nonnegative subsequence of sepr(B), where $2 \le k \le n$. Then $x_2 x_3 \cdots x_k = \overline{A^+} \ \overline{S^+} \ \overline{N}$.

Corollary (Martínez; under review)

Let B be a (Hermitian) positive semidefinite matrix. Then sepr(B) = $\overline{A^+} \overline{S^+} \overline{\mathbb{N}}$, where $\overline{\mathbb{N}}$ is nonempty if $\overline{S^+}$ is nonempty.

Thanks!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 S. Butler, M. Catral, S. M. Fallat, H. T. Hall, L. Hogben, P. van den Driessche, M. Young.
 The enhanced principal rank characteristic sequence. *Linear Algebra Appl.* 498 (2016), 181–200.

K. Griffin, M. J. Tsatsomeros.

Principal minors, Part II: The principal minor assignment problem.

Linear Algebra Appl. 419 (2006), 125–171.

O. Holtz, H. Schneider.
 Open problems on GKK τ-matrices.
 Linear Algebra Appl. 345 (2002), 263–267.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

O. Holtz, B. Sturmfels.

Hyperdeterminantal relations among symmetric principal minors.

J. Algebra **316** (2007), 634–648.

X. Martínez-Rivera.

The signed enhanced principal rank characteristic sequence.

Under review.