Bezout equations for stable rational matrix functions: the least squares solution and description of all solutions

M.A. Kaashoek, VU Amsterdam

Dedicated to Peter Lancaster, a wonderful mathematician and a great friend.

July 9, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem

By $RH_{p\times q}^{\infty}$ we denote all stable rational $p \times q$ matrix functions. Here *stable* means all poles are outside the closed unit disc. Such functions are analytic on the open unit disc \mathbb{D} and continuous on the closed unite disc $\overline{\mathbb{D}}$. Hence they are matrix-valued H^{∞} functions as well as H^2 functions.

Problem. Given $G \in RH_{p \times q}^{\infty}$, $p \leq q$, find $X \in RH_{q \times p}$ such that

 $G(z)X(z) = I_p$ [I_p is the $p \times p$ identity matrix]

Example. $G(z) = \begin{bmatrix} 1+z & -z \end{bmatrix}$. Thus p = 1 and q = 2. We have $G(z)X(z) = 1 \iff (1+z)x_1(z) - zx_2(z) = 1$ [classical Bezout] $X(z) \equiv \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies G(z)X(z) = 1.$

Bezout equations and stable rational matrix functions

July 9, 2017 2 / 14

Main aims

We are interested in

- (a) conditions of existence of solutions
- (b) least squares solution
- (c) description of all solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Existence of solutions

With $G \in RH^{\infty}_{p \times q}$ we associate the analytic Toeplitz operator T_G given by:

$$T_G = \begin{bmatrix} G_0 & & & \\ G_1 & G_0 & & \\ G_2 & G_1 & G_0 & \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} : \ell_+^2(\mathbb{C}^q) \to \ell_+^2(\mathbb{C}^p).$$

$$\ell^2_+(\mathbb{C}^k) \equiv H^2(\mathbb{C}^k) \implies T_G \equiv M_G$$

It follows that

$$egin{aligned} G(z)X(z) &= I_{p imes p} \quad (z\in\mathbb{D}) \Rightarrow T_G T_X = T_{GX} = I_{\ell^2_+(\mathbb{C}^m)} \ &\Rightarrow T_G ext{ right invertible.} \end{aligned}$$

Bezout equations and stable rational matrix functions

July 9, 2017 4 / 14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

THM. Let $G \in RH_{p \times q}^{\infty}$. Then the equation

$$G(z)X(z) = I_{p} \qquad (\star)$$

has a solution $X \in RH^{\infty}_{q \times p}$ if and only if the Toeplitz operator T_G is right invertible. Moreover, in that case $T_G T^*_G$ is invertible and the function

$$X(\cdot) := \mathcal{F}_{\mathbb{C}^p}\Big(T_G^*(T_G T_G^*)^{-1} E_p\Big), \text{ where } E_p := \begin{bmatrix} I_p \\ 0 \\ 0 \\ \vdots \end{bmatrix}.$$

is in $RH_{p\times q}^{\infty}$ and satisfies the Bezout equation (*). Furthermore, X is the least squares solution, that is, for any other solution $Y \in RH_{q\times p}^{\infty}$ we have

$$\|T_X E_p u\|_{\ell^2_+(\mathbb{C}^q)} \le \|T_Y E_p u\|_{\ell^2_+(\mathbb{C}^q)}$$
 for each u in \mathbb{C}^p .

N.B. The operator $T_G^*(T_G T_G^*)^{-1}$ is the Moore-Penrose inverse of T_G .

Computing solutions by using state space methods (1)

 $G \in RH_{p \times q}^{\infty}$ admits a finite dimensional state space realization, that is, G can be written as:

 $G(z) = D + zC(I_n - zA)^{-1}B$, where

A, B, C, D are matrices of appropriate sizes, and

A is stable, that is all eigenvalues of A are in the open unit disc \mathbb{D} .

Given the realization of *G* we let *P* be the unique solution of the Stein equation $P - APA^* = BB^*$, that is, $P = \sum_{n=0}^{\infty} A^n BB^* A^{*n}$. Furthermore, we consider the algebraic Riccati equation:

(ARE)
$$Q = A^*QA + (C - \Lambda^*QA)^*(R_0 - \Lambda^*Q\Lambda)^{-1}(C - \Lambda^*QA)$$

where $R_0 = DD^* + CPC^*$ and $\Lambda = BD^* + APC^*$.

Bezout equations and stable rational matrix functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへの

Computing solutions by using state space methods (2)

(ARE)
$$Q = A^*QA + (C - \Lambda^*QA)^*(R_0 - \Lambda^*Q\Lambda)^{-1}(C - \Lambda^*QA)$$

 $P - APA^* = BB^*$

THM. The operator T_G is right invertible if and only if

(1) the ARE has a (unique) stabilizing solution Q, that is,

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q @

July 9, 2017

7 / 14

(2) the matrix
$$I_n - PQ$$
 is non-singular.

Bezout equations and stable rational matrix functions

Computing solutions by using state space methods (3)

(ARE)
$$Q = A^*QA + (C - \Lambda^*QA)^*(R_0 - \Lambda^*Q\Lambda)^{-1}(C - \Lambda^*QA)$$

 $P - APA^* = BB^*$

THM 1. Assume the ARE has a stabilizing solution Q and $I_n - PQ$ is non-singular. Then the least squares solution Φ is given by

$$\Phi(z) = \left(I_p - zC_1(I_n - zA_0)^{-1}(I_n - PQ)^{-1}B\right)D_1,$$

where

$$\begin{aligned} A_0 &= A - \Lambda (R_0 - \Lambda^* Q \Lambda)^{-1} (C - \Lambda^* Q A), \quad [A_0 \text{ is stable}] \\ C_1 &= D^* C_0 + B^* Q A_0, \\ & \text{with } C_0 := (R_0 - \Lambda^* Q \Lambda)^{-1} (C - \Lambda^* Q A), \end{aligned}$$

$$D_1 = (D^* - B^*Q\Lambda)(R_0 - \Lambda^*Q\Lambda)^{-1} + C_1(I_n - PQ)^{-1}PC_0^*$$

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ の Q @

Computing solutions by using state space methods (4)

THM 2. Assume the ARE has a stabilizing solution Q and $I_n - PQ$ is non-singular. Then all solutions are given by $X = \Phi + \Theta F$. Here Φ is the least squares solution, the free parameter F is an arbitrary function in $RH^{\infty}_{(q-p)\times p}$ and $\Theta \in RH^{\infty}_{q\times (q-p)}$ is given by

$$\Theta(z) = \left(I_q - zC_1(I_n - zA_0)^{-1}(I_n - PQ)^{-1}B\right)\hat{D}.$$

Here A_0 and C_1 are as on the previous slide, and \hat{D} is any one-to-one $q \times (q - p)$ matrix such that

$$\hat{D}\hat{D}^* = I_q - (D^* - B^*Q\Lambda)(R_0 - \Lambda^*Q\Lambda)^{-1}(D - \Lambda^*QB) + - B^*QB - C_1(I_n - PQ)^{-1}PC_1^*.$$

Furthermore, \hat{D} is uniquely determined up to a constant unitary matrix on the right and Θ is inner.

Bezout equations and stable rational matrix functions

Back to the example $G(z) = \begin{bmatrix} 1+z & -z \end{bmatrix}$

$$G(z)X(z) = 1 \iff (1+z)x_1(z) - zx_2(z) = 1$$
 [classical Bezout]

We already know that $X(z) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is solution. Questions: what is the least square solution, all solutions?

We apply our theorems. A stable realization of G is given by

$$A = 0, \quad B = \begin{bmatrix} 1 & -1 \end{bmatrix}, \quad C = 1, \quad D = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

The solution P of the Stein equation $P - APA^* = BB^*$ is given by P = 2,

$$R_0 = DD^* + CPC^* = 3$$
 and $\Lambda = BD^* + APC^* = 1$.

The corresponding ARE is $Q = (3 - Q)^{-1}$.

Bezout equations and stable rational matrix functions

<□> <@> < E> < E> E のQ@

Example – cont'd

The corresponding ARE is $Q = (3 - Q)^{-1}$, which has two solutions: $Q = \frac{1}{2}(3 \pm \sqrt{5})$. The stabilizing solution is given by $Q = \frac{1}{2}(3 - \sqrt{5})$. Indeed, for this Q we have

$$R_0 - \Lambda^* Q \Lambda = 3 - Q = \frac{1}{2}(3 + \sqrt{5}) > 0;$$

 $A_0 = A - \Lambda (R_0 - \Lambda^* Q \Lambda)^{-1} (C - \Lambda^* Q A) = Q$, and thus A_0 is stable.

Furthermore, $I - PQ = \sqrt{5} - 2 \neq 0$.

Then **THM 1** shows that for $G(z) = \begin{bmatrix} 1 + z & -z \end{bmatrix}$ the least squares solution of G(z)X(z) = 1 is given

$$X(z) = rac{Q}{1-2Q}(1+zQ)^{-1} egin{bmatrix} 1-Q \ Q \end{bmatrix}, ext{ where } Q = rac{1}{2}(3-\sqrt{5}).$$

Bezout equations and stable rational matrix functions

July 9, 2017 11 / 14

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example – cont'd

Furthermore, **THM 2** shows that for $G(z) = \begin{bmatrix} 1 + z & -z \end{bmatrix}$ all stable rational 2×1 matrix solutions Y of G(z)Y(z) = 1 are given by

$$Y(z) = X(z) + \Theta(z)\varphi(z),$$

where φ is any scalar stable rational function and

$$\Theta(z) = \sqrt{Q}(1+zQ)^{-1} \begin{bmatrix} z\\ 1+z \end{bmatrix}$$
, with $Q = \frac{1}{2}(3-\sqrt{5})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

July 9, 2017 12 / 14

Bezout equations and stable rational matrix functions

Where does the ARE come from?

Put $R(z) = G(z)G(\overline{z}^{-1})^*$. Let $\{R_j\}_{j\in\mathbb{Z}}$ be the Fourier coefficients of R.

$$T_{R} := \begin{bmatrix} R_{0} & R_{-1} & R_{-2} & \cdots \\ R_{1} & R_{0} & R_{-1} & \cdots \\ R_{2} & R_{1} & R_{0} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} : \ell_{+}^{2}(\mathbb{C}^{p}) \to \ell_{+}^{2}(\mathbb{C}^{p}). \quad [T_{R} \neq T_{G}T_{G}^{*}]$$

$$R(z) = zC(I - zA)^{-1}\Lambda + (DD^* + CPC^*) + \Lambda^*(zI - A^*)^{-1}C^* \quad (z \in \mathbb{T})$$

THM. The operator T_R is invertible if and only if

$$Q = A^*QA + (C - \Lambda^*QA)^*(R_0 - \Lambda^*Q\Lambda)^{-1}(C - \Lambda^*QA)$$

has a stabilizing solution Q. Moreover in that case $Q := W_{obs}^* T_R^{-1} W_{obs}$, where $W_{obs} = \operatorname{col} [CA^j]_{j=0}^{\infty}$.

Bezout equations and stable rational matrix functions

July 9, 2017 13 / 14

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Thank you for your attention!

Bezout equations and stable rational matrix functions