Bezout equations for stable rational matrix functions：

 the least squares solution and description of all solutionsM．A．Kaashoek，VU Amsterdam

Dedicated to Peter Lancaster，a wonderful mathematician and a great friend．

July 9， 2017

Problem

By $R H_{p \times q}^{\infty}$ we denote all stable rational $p \times q$ matrix functions. Here stable means all poles are outside the closed unit disc. Such functions are analytic on the open unit disc \mathbb{D} and continuous on the closed unite disc $\overline{\mathbb{D}}$. Hence they are matrix-valued H^{∞} functions as well as H^{2} functions.

Problem. Given $G \in R H_{p \times q}^{\infty}, p \leq q$, find $X \in R H_{q \times p}$ such that

$$
G(z) X(z)=I_{p} \quad\left[I_{p} \text { is the } p \times p \text { identity matrix }\right]
$$

Example. $G(z)=\left[\begin{array}{ll}1+z & -z\end{array}\right]$. Thus $p=1$ and $q=2$. We have

$$
\begin{gathered}
G(z) X(z)=1 \Longleftrightarrow(1+z) x_{1}(z)-z x_{2}(z)=1 \quad \text { [classical Bezout] } \\
X(z) \equiv\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Longrightarrow \quad G(z) X(z)=1
\end{gathered}
$$

Main aims

We are interested in
(a) conditions of existence of solutions
(b) least squares solution
(c) description of all solutions

Existence of solutions

With $G \in R H_{p \times q}^{\infty}$ we associate the analytic Toeplitz operator T_{G} given by:

$$
\begin{gathered}
T_{G}=\left[\begin{array}{cccc}
G_{0} & & & \\
G_{1} & G_{0} & & \\
G_{2} & G_{1} & G_{0} & \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]: \ell_{+}^{2}\left(\mathbb{C}^{q}\right) \rightarrow \ell_{+}^{2}\left(\mathbb{C}^{p}\right) . \\
\\
\ell_{+}^{2}\left(\mathbb{C}^{k}\right) \equiv H^{2}\left(\mathbb{C}^{k}\right) \quad \Longrightarrow \quad T_{G} \equiv M_{G}
\end{gathered}
$$

It follows that

$$
\begin{aligned}
G(z) X(z)= & I_{p \times p} \quad(z \in \mathbb{D}) \Rightarrow T_{G} T_{X}=T_{G X}=I_{\ell_{+}^{2}\left(\mathbb{C}^{m}\right)} \\
& \Rightarrow T_{G} \text { right invertible. }
\end{aligned}
$$

THM. Let $G \in R H_{p \times q}^{\infty}$. Then the equation

$$
G(z) X(z)=I_{p}
$$

has a solution $X \in R H_{q \times p}^{\infty}$ if and only if the Toeplitz operator T_{G} is right invertible. Moreover, in that case $T_{G} T_{G}^{*}$ is invertible and the function

$$
X(\cdot):=\mathcal{F}_{\mathbb{C}^{p}}\left(T_{G}^{*}\left(T_{G} T_{G}^{*}\right)^{-1} E_{p}\right) \text {, where } E_{p}:=\left[\begin{array}{c}
I_{p} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

is in $R H_{p \times q}^{\infty}$ and satisfies the Bezout equation (\star). Furthermore, X is the least squares solution, that is, for any other solution $Y \in R H_{q \times p}^{\infty}$ we have

$$
\left\|T_{X} E_{p} u\right\|_{\ell_{+}^{2}\left(\mathbb{C}^{q}\right)} \leq\left\|T_{Y} E_{p} u\right\|_{\ell_{+}^{2}\left(\mathbb{C}^{q}\right)} \text { for each } u \text { in } \mathbb{C}^{p} .
$$

N.B. The operator $T_{G}^{*}\left(T_{G} T_{G}^{*}\right)^{-1}$ is the Moore-Penrose inverse of T_{G}.

Computing solutions by using state space methods (1)

$G \in R H_{p \times q}^{\infty}$ admits a finite dimensional state space realization, that is, G can be written as:
$G(z)=D+z C\left(I_{n}-z A\right)^{-1} B$, where
A, B, C, D are matrices of appropriate sizes, and
A is stable, that is all eigenvalues of A are in the open unit disc \mathbb{D}.
Given the realization of G we let P be the unique solution of the Stein equation $P-A P A^{*}=B B^{*}$, that is, $P=\sum_{n=0}^{\infty} A^{n} B B^{*} A^{* n}$. Furthermore, we consider the algebraic Riccati equation:
(ARE) $\quad Q=A^{*} Q A+\left(C-\Lambda^{*} Q A\right)^{*}\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right)$ where $R_{0}=D D^{*}+C P C^{*}$ and $\Lambda=B D^{*}+A P C^{*}$.

Computing solutions by using state space methods (2)

(ARE) $Q=A^{*} Q A+\left(C-\Lambda^{*} Q A\right)^{*}\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right)$

$$
P-A P A^{*}=B B^{*}
$$

THM. The operator T_{G} is right invertible if and only if
(1) the ARE has a (unique) stabilizing solution Q, that is,
(a) Q is an $n \times n$ matrix satisfying (ARE),
(b) $R_{0}-\Lambda^{*} Q \Lambda$ is positive definite,
(c) the matrix $A_{0}:=A-\Lambda\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right)$ is stable.
(2) the matrix $I_{n}-P Q$ is non-singular.

Computing solutions by using state space methods (3)

(ARE) $Q=A^{*} Q A+\left(C-\Lambda^{*} Q A\right)^{*}\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right)$

$$
P-A P A^{*}=B B^{*}
$$

THM 1. Assume the ARE has a stabilizing solution Q and $I_{n}-P Q$ is non-singular. Then the least squares solution Φ is given by

$$
\Phi(z)=\left(I_{p}-z C_{1}\left(I_{n}-z A_{0}\right)^{-1}\left(I_{n}-P Q\right)^{-1} B\right) D_{1},
$$

where

$$
\begin{aligned}
& A_{0}=A-\Lambda\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right), \quad\left[A_{0} \text { is stable }\right] \\
& C_{1}=D^{*} C_{0}+B^{*} Q A_{0}, \\
& \quad \text { with } C_{0}:=\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right), \\
& D_{1}=\left(D^{*}-B^{*} Q \Lambda\right)\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}+C_{1}\left(I_{n}-P Q\right)^{-1} P C_{0}^{*} .
\end{aligned}
$$

Computing solutions by using state space methods (4)

THM 2. Assume the $A R E$ has a stabilizing solution Q and $I_{n}-P Q$ is non-singular. Then all solutions are given by $X=\Phi+\Theta F$. Here Φ is the least squares solution, the free parameter F is an arbitrary function in $R H_{(q-p) \times p}^{\infty}$ and $\Theta \in R H_{q \times(q-p)}^{\infty}$ is given by

$$
\Theta(z)=\left(I_{q}-z C_{1}\left(I_{n}-z A_{0}\right)^{-1}\left(I_{n}-P Q\right)^{-1} B\right) \hat{D}
$$

Here A_{0} and C_{1} are as on the previous slide, and \hat{D} is any one-to-one $q \times(q-p)$ matrix such that

$$
\begin{aligned}
& \hat{D} \hat{D}^{*}=I_{q}-\left(D^{*}-B^{*} Q \Lambda\right)\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(D-\Lambda^{*} Q B\right)+ \\
&-B^{*} Q B-C_{1}\left(I_{n}-P Q\right)^{-1} P C_{1}^{*} .
\end{aligned}
$$

Furthermore, \hat{D} is uniquely determined up to a constant unitary matrix on the right and Θ is inner.

Back to the example $G(z)=\left[\begin{array}{ll}1+z & -z\end{array}\right]$

$$
\left.G(z) X(z)=1 \Longleftrightarrow(1+z) x_{1}(z)-z x_{2}(z)=1 \quad \text { [classical Bezout }\right]
$$

We already know that $X(z)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is solution. Questions: what is the least square solution, all solutions?

We apply our theorems. A stable realization of G is given by

$$
A=0, \quad B=\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad C=1, \quad D=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

The solution P of the Stein equation $P-A P A^{*}=B B^{*}$ is given by $P=2$,

$$
R_{0}=D D^{*}+C P C^{*}=3 \quad \text { and } \quad \Lambda=B D^{*}+A P C^{*}=1
$$

The corresponding ARE is $Q=(3-Q)^{-1}$.

Example - cont'd

The corresponding ARE is $Q=(3-Q)^{-1}$, which has two solutions: $Q=\frac{1}{2}(3 \pm \sqrt{5})$. The stabilizing solution is given by $Q=\frac{1}{2}(3-\sqrt{5})$. Indeed, for this Q we have

$$
\begin{aligned}
& R_{0}-\Lambda^{*} Q \Lambda=3-Q=\frac{1}{2}(3+\sqrt{5})>0 \\
& A_{0}=A-\Lambda\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right)=Q, \text { and thus } A_{0} \text { is stable. }
\end{aligned}
$$

Furthermore, $I-P Q=\sqrt{5}-2 \neq 0$.
Then THM 1 shows that for $G(z)=\left[\begin{array}{ll}1+z & -z\end{array}\right]$ the least squares solution of $G(z) X(z)=1$ is given

$$
X(z)=\frac{Q}{1-2 Q}(1+z Q)^{-1}\left[\begin{array}{c}
1-Q \\
Q
\end{array}\right], \text { where } Q=\frac{1}{2}(3-\sqrt{5})
$$

Example - cont'd

Furthermore, THM 2 shows that for $G(z)=\left[\begin{array}{ll}1+z & -z\end{array}\right]$ all stable rational 2×1 matrix solutions Y of $G(z) Y(z)=1$ are given by

$$
Y(z)=X(z)+\Theta(z) \varphi(z),
$$

where φ is any scalar stable rational function and

$$
\Theta(z)=\sqrt{Q}(1+z Q)^{-1}\left[\begin{array}{c}
z \\
1+z
\end{array}\right] \text {, with } Q=\frac{1}{2}(3-\sqrt{5}) \text {. }
$$

Where does the ARE come from?

Put $R(z)=G(z) G\left(\bar{z}^{-1}\right)^{*}$. Let $\left\{R_{j}\right\}_{j \in \mathbb{Z}}$ be the Fourier coefficients of R.

$$
\begin{aligned}
& T_{R}:=\left[\begin{array}{cccc}
R_{0} & R_{-1} & R_{-2} & \cdots \\
R_{1} & R_{0} & R_{-1} & \cdots \\
R_{2} & R_{1} & R_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]: \ell_{+}^{2}\left(\mathbb{C}^{p}\right) \rightarrow \ell_{+}^{2}\left(\mathbb{C}^{p}\right) . \quad\left[T_{R} \neq T_{G} T_{G}^{*}\right] \\
& R(z)=z C(I-z A)^{-1} \Lambda+\left(D D^{*}+C P C^{*}\right)+\Lambda^{*}\left(z I-A^{*}\right)^{-1} C^{*} \quad(z \in \mathbb{T})
\end{aligned}
$$

THM. The operator T_{R} is invertible if and only if

$$
Q=A^{*} Q A+\left(C-\Lambda^{*} Q A\right)^{*}\left(R_{0}-\Lambda^{*} Q \Lambda\right)^{-1}\left(C-\Lambda^{*} Q A\right)
$$

has a stabilizing solution Q. Moreover in that case $Q:=W_{\text {obs }}^{*} T_{R}^{-1} W_{\text {obs }}$, where $W_{\text {obs }}=\operatorname{col}\left[C A^{j}\right]_{j=0}^{\infty}$.

Thank you for your attention!

