Pseudospectra and Kreiss Matrix Theorem on a General Domain

Samir Raouafi
University of Regina
Special Western Canada Linear Algebra Meeting
BIRS, 7-9 July 2017

Outline

(1) Introduction
(2) Pseudospectra
(3) Generalization of the Kreiss Matrix Theorem

Introduction

Given a square matrix $A \in \mathbb{C}^{N \times N}$. The spectrum of A is

$$
\sigma(A):=\{z \in \mathbb{C}: z l-A \text { not invertible }\} .
$$

We write $\|\cdot\|$ for the spectral norm on $\mathbb{C}^{N \times N}$, defined by $\|A\|:=\sup \left\{\|A x\|_{2}:\|x\|_{2}=1\right\}$, where $\|\cdot\|_{2}$ denotes the Euclidean norm on \mathbb{C}^{N}.
We say :

- A is power bounded if $\sup _{n \geq 0}\left\|A^{n}\right\|<\infty$.
- A is exponentially bounded if $\sup _{t \geq 0}\left\|e^{t A}\right\|<\infty$.

Power Bounded Matrices

KMT1 : A is power bounded if and only if

$$
\exists C>0 \text { such that }\left\|(z \mid-A)^{-1}\right\| \leq \frac{C}{|z|-1} \quad(|z|>1) .
$$

In particular, $\sigma(A) \subset \overline{\mathbb{D}}$ "the unit disc".
Kreiss Constant with respect to \mathbb{D} :

$$
\mathcal{K}(\mathbb{D}):=\sup _{|z|>1}(|z|-1)\left\|(z \mid-A)^{-1}\right\| .
$$

Kreiss Matrix Theorem (Power matrices)

$\mathcal{K}(A) \leq \sup _{n \geq 0}\left\|A^{n}\right\| \leq e N \mathcal{K}(A)$,

Exponentially Bounded Matrices

KMT2 : A is exponentially bounded if and only if

$$
\exists C>0 \text { such that }\left\|(z I-A)^{-1}\right\| \leq \frac{C}{\operatorname{Re}(z)} \quad(\operatorname{Re}(z)>0)
$$

In particular, $\sigma(A) \subset \mathcal{P}$ "the left-half plane".
Kreiss Constant with respect to \mathcal{P} :

$$
\mathcal{K}(\mathcal{P}):=\sup _{\operatorname{Re}(z)>0}(\operatorname{Re}(z))\left\|(z I-A)^{-1}\right\| .
$$

Kreiss Matrix Theorem ((Exponential matrices)
$\mathcal{K}(A) \leq \sup _{t \geq 0}\left\|e^{t A}\right\| \leq e N \mathcal{K}(A)$,

The constant $e N$ is the result of a large development following the original statement of the Kreiss matrix theorem.

- Kreiss (1962) : $\mathcal{K}(A)^{N^{N}}$
- Morton (1964) : $6^{N}(N+4)^{5 N} \mathcal{K}(A)$
- Miller and Strang (1966) : $N^{N} \mathcal{K}(A)$
- Miller (1967) : $e^{9 N^{2}} \mathcal{K}(A)$
- Strang and Laptev (1978) : $\frac{32}{\pi} e N^{2} \mathcal{K}(A)$
- Tadmor (1981) : $\frac{32}{\pi} e N K(A)$
- LeVeque and Trefethen (1984) : $2 e N \mathcal{K}(A)$ Conjoncture : The optimal bound is $e N K(A)$
- Smith (1985) : $\left(1+\frac{2}{\pi}\right) e N \mathcal{K}(A)$
- Spijker proved the conjoncture in 1991.

Goal of the Talk

Kreiss Matrix theorem provides estimates of upper bounds of $\left\|A^{n}\right\|$ and $\left\|e^{t A}\right\|$ according to the resolvent norm.
Question : What about the norm $\|f(A)\|$ for an arbitrary holomorphic function f on a neighborhood of $\sigma(A)$?
Cauchy Integral Formula :

$$
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z I-A)^{-1} \mathrm{~d} z
$$

To understand $\|f(A)\|$, it is interesting to study the resolvent norm $\left\|(z l-A)^{-1}\right\|$ of A.

Example (scholarpedia.org)

Consider the matrix

$$
A=\left(\begin{array}{ccc}
1+i & 0 & i \\
-i & 0.2 & 0 \\
0.7 i & 0.2 & 0.5
\end{array}\right)
$$

The ϵ-pseudospectrum of A is the set of all $z \in \mathbb{C}$ for which the graph of the function $z \mapsto\left\|(z \|-A)^{-1}\right\|$ lies above the level $\frac{1}{\epsilon}$.

The boundaries of the pseudospectra of A for the values $\epsilon=1,1 / 2,1 / 3,1 / 4,1 / 6,1 / 10,1 / 20$

500.000 random perturbations $A+E$ with $\|E\|<\epsilon$

University
orRegina

Pseudospectra

The $\epsilon-$ pseudospectrum of $A, \epsilon>0$, is

$$
\sigma_{\epsilon}(A):=\left\{z \in \mathbb{C}:\left\|(z l-A)^{-1}\right\|>\frac{1}{\epsilon}\right\} .
$$

Theorem

Let $A \in \mathbb{C}^{N \times N}$ and $\epsilon>0$ be arbitrary. TFSAE
(i) $z \in \sigma_{\epsilon}(A)$.
(ii) $\|(z l-A) V\|<\epsilon$ for some $V \in \mathbb{C}^{N}$ with $\|V\|=1$.
(iii) $z \in \sigma(A+E)$ for some $E \in \mathbb{C}^{N \times N}$ with $\|E\|<\epsilon$.
(iv) $s_{\min }(z l-A)>\epsilon$

Identical Pseudospectra

Let A, B be $N \times N$ matrices with identical pseudospectra, i. e.

$$
\left\|(z l-A)^{-1}\right\|=\left\|(z I-B)^{-1}\right\| \quad(\forall z \in \mathbb{C})
$$

- Must A, B be unitarily similar $\left(B=U^{*} A U\right)$?
- Must A, B have the same norm behavior? i.e.

$$
\|f(A)\|=\|f(B)\|
$$

for all holomorphic functions f on the spectrum of A and B.

Theorem

If A and B have identical pseudospectra, then they have the same spectrum and the same numerical range.

Theorem (Ransford-Raouafi, 2013)
Let A and B be $N \times N$ matrices with identical pseudospectra Then, for every Möbius transformation f holomorphic on the spectrum of A and B, we have
where $M:=\frac{5+\sqrt{33}}{2} \simeq 5,3723$

Theorem

If A and B have identical pseudospectra, then they have the same spectrum and the same numerical range.

Theorem (Ransford-Raouafi, 2013)

Let A and B be $N \times N$ matrices with identical pseudospectra. Then, for every Möbius transformation f holomorphic on the spectrum of A and B, we have

$$
\|f(A)\| \leq M\|f(B)\|
$$

where $M:=\frac{5+\sqrt{33}}{2} \simeq 5,3723$.

Theorem (Ransford-Raouafi, 2013)

Let f be a function holomorphic in a domain Ω, and suppose that f is neither constant nor a Möbius transformation. Then, given $N \geq 6$ and $M>1$, there exist $N \times N$ matrices A, B with spectra in Ω, such that

$$
\left\|(z I-A)^{-1}\right\|=\left\|(z I-B)^{-1}\right\| \quad(\forall z \in \mathbb{C})
$$

and

$$
\|f(A)\|>M\|f(B)\|
$$

Super-identical pseudospectra

Two matrices $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra if

$$
s_{k}(z I-A)=s_{k}(z I-B) \quad(\forall z \in \mathbb{C} \text { and } k=1, \ldots, N) .
$$

Theorem (Ransford, 2007)

If $A B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra, then, for any
function f holomorphic on their spectrum,

> Theorem (Armentia-Gracia-Velasco, 2012)
> If A, B have super-identical pseudospectra, then they are similar.

Super-identical pseudospectra

Two matrices $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra if

$$
s_{k}(z I-A)=s_{k}(z I-B) \quad(\forall z \in \mathbb{C} \text { and } k=1, \ldots, N) .
$$

Theorem (Ransford, 2007)

If $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra, then, for any function f holomorphic on their spectrum,

$$
\frac{1}{\sqrt{N}} \leq \frac{\|f(A)\|}{\|f(B)\|} \leq \sqrt{N}
$$

Theorem (Armentia-Gracia-Velasco, 2012)
If A, B have super-identical pseudospectra, then they are similar.

Super-identical pseudospectra

Two matrices $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra if

$$
s_{k}(z I-A)=s_{k}(z I-B) \quad(\forall z \in \mathbb{C} \text { and } k=1, \ldots, N)
$$

Theorem (Ransford, 2007)

If $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra, then, for any function f holomorphic on their spectrum,

$$
\frac{1}{\sqrt{N}} \leq \frac{\|f(A)\|}{\|f(B)\|} \leq \sqrt{N}
$$

Theorem (Armentia-Gracia-Velasco, 2012)

If A, B have super-identical pseudospectra, then they are similar.

Theorem (D. Farenick et al., 2011)

Let A be an upper triangular Toeplitz matrix with nonzero superdiagonal, and let B be any matrix of the same size. Then A and B are unitarily similar if and only if they have super-identical pseudospectra.

Theorem (D. Farenick et al., 2011)
Let A and B be an $N \times N$ upper triangular matrices that are indecomposable with respect to similarity. Then A and B are unitarily similar if and only if A_{k} and B_{k} have super-identical pseudospectra for all $k=1, \cdots, N$, where A_{k} and B_{k} are the leading principal $k \times k$ submatrices of A and B respectively.

Theorem (D. Farenick et al., 2011)

Let A be an upper triangular Toeplitz matrix with nonzero superdiagonal, and let B be any matrix of the same size. Then A and B are unitarily similar if and only if they have super-identical pseudospectra.

Theorem (D. Farenick et al., 2011)

Let A and B be an $N \times N$ upper triangular matrices that are indecomposable with respect to similarity. Then A and B are unitarily similar if and only if A_{k} and B_{k} have super-identical pseudospectra for all $k=1, \cdots, N$, where A_{k} and B_{k} are the leading principal $k \times k$ submatrices of A and B respectively.

Holomorphic Functions on the Unit Disc

Denote by $\mathcal{A}(\overline{\mathbb{D}})$ the set of holomorphic functions on \mathbb{D} and continuous on $\overline{\mathbb{D}}$.

Theorem (Vitse, 2005)

Suppose A is an $N \times N$ matrix such that $\sigma(A) \subset \mathbb{D}$ and $\mathcal{K}(\mathbb{D})<\infty$. Then, for all $f \in \mathcal{A}(\overline{\mathbb{D}})$,

$$
\|f(A)\| \leq \frac{16}{\pi} \mathcal{K}(\mathbb{D}) N\|f\|_{\mathbb{D}},
$$

where $\|f\|_{\mathbb{D}}:=\max _{|z|=1}|f(z)|$.

General Complex Domain

- Riemann Mapping Theorem : there is a unique conformal map ϕ from Ω^{c} to \mathbb{D}^{c} normalized by $\phi(\infty)=\infty$ and $\phi^{\prime}(\infty)>0$,

$$
w=\phi(z):=d z+d_{0}+\sum_{k=1}^{\infty} \frac{d_{k}}{z^{k}}, \quad(d>0), \quad z \in \Omega^{c} .
$$

- Kreiss Constant with respect to Ω :

$$
\mathcal{K}(\Omega):=\sup _{z \notin \Omega} \frac{|\phi(z)|-1}{\left|\phi^{\prime}(z)\right|}\left\|(z \mid-A)^{-1}\right\| .
$$

Arbitrary disc in the complex plane

Theorem

Let D be an arbitrary disc on the complex plane. Suppose A is an $N \times N$ matrix with $\sigma(A) \subset D$ and $\mathcal{K}(D)<\infty$. Then, for all function $f \in \mathcal{A}(D)$,

$$
\|f(A)\| \leq \frac{16}{\pi} \mathcal{K}(D) N\|f\|_{D},
$$

where $\|f\|_{D}:=\max _{z \in D}|f(z)|$.
What about general complex domains?

- The $n^{\text {th }}$ Faber polynomial $F_{n}(z)$, for $n=0,1,2, \cdots$, associated with Ω is the polynomial part of $[\phi(z)]^{n}$.
- $F_{n}(z)$ is a polynomial of degree n.
\square
Theorem (Toh-Trefethen, 1999)
Let Ω be a compact subset of the complex plane such that its
complementary Ω^{c} is simply connected in the extended complex
plane. Suppose A is an $N \times N$ complex matrix with $\sigma(A) \subset \Omega$ and
$\mathcal{K}(\Omega)<\infty$. If the boundary of Ω is twice continuously
differentiable, then for all $n \geq 0$,

$$
\left\|F_{n}(A)\right\| \leq C_{\Omega} \in N K(\Omega)
$$

where the constant C_{Ω} depends only on Ω.

- The $n^{\text {th }}$ Faber polynomial $F_{n}(z)$, for $n=0,1,2, \cdots$, associated with Ω is the polynomial part of $[\phi(z)]^{n}$.
- $F_{n}(z)$ is a polynomial of degree n.

Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its complementary Ω^{c} is simply connected in the extended complex plane. Suppose A is an $N \times N$ complex matrix with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega)<\infty$. If the boundary of Ω is twice continuously differentiable, then for all $n \geq 0$,

$$
\left\|F_{n}(A)\right\| \leq C_{\Omega} \text { e } N \mathcal{K}(\Omega)
$$

where the constant C_{Ω} depends only on Ω.
Note that if Ω is the unit disk, we have $F_{n}(A)=A^{n}$.

Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its complementary Ω^{c} is simply connected in the extended complex plane. Suppose A is a bounded linear operator in Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega)<\infty$. Then for all $n \geq 0$,

$$
\begin{equation*}
\left\|F_{n}(A)\right\| \leq e(n+1) \mathcal{K}(\Omega) \tag{1}
\end{equation*}
$$

Converely, if $\sup _{n \geq 0}\left\|F_{n}(A)\right\|<\infty$, then $\sigma(A) \subset \Omega, \mathcal{K}(\Omega)$ is finite, and

$$
\begin{equation*}
\mathcal{K}(\Omega) \leq \sup _{n \geq 0}\left\|F_{n}(A)\right\| \tag{2}
\end{equation*}
$$

A Markov function is a function of the form

$$
\begin{equation*}
f(z):=\int_{\alpha}^{\beta} \frac{d \mu(x)}{z-x} \tag{3}
\end{equation*}
$$

where μ is a positive measure with $\operatorname{supp}(\mu) \subset[\alpha, \beta]$ for $-\infty \leq \alpha<\beta<\infty$.
Example :

- $\frac{\log (1+z)}{z}=\int_{-\infty}^{-1} \frac{\frac{-1}{x} d x}{z-x} \quad(z \notin(-\infty,-1])$
- $z^{\gamma}=\int_{-\infty}^{0} \frac{-|x|^{\gamma} \mathrm{d} x}{z-x}, \quad-1<\gamma<0 \quad(z \notin(-\infty, 0])$.

Theorem

Let Ω be a symmetric compact subset of the complex plane such that its complementary Ω^{c} is simply connected in the extended complex plane. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega)<\infty$. If f is a Markov function defined by (3), then

$$
\|f(A)\| \leq \operatorname{e~} C_{\Omega}^{\alpha, \beta} \mathcal{K}(\Omega)\|f\|_{\Omega}
$$

where the constant $C_{\Omega}^{\alpha, \beta}$ depends only on Ω, α and β.

Example 1 : Let $\Omega=\overline{\mathbb{D}}$ the closed unit disc. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \overline{\mathbb{D}}$ and $\mathcal{K}(\overline{\mathbb{D}})<\infty$. If f is a Markov function defined by (3), with $\beta<-1$, then

$$
\|f(A)\| \leq \mathrm{e} \frac{\beta^{2}}{(1+\beta)^{2}} \mathcal{K}(\mathbb{D})\|f\|_{\mathbb{D}}
$$

Example 2: Let Ω the closed ellipse with foci at ± 1 and semi-axes $a=\frac{1}{2}\left(R+\frac{1}{R}\right)$ and $b=\frac{1}{2}\left(R-\frac{1}{R}\right)$ for some $R>1$. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \Omega$ and

University
orRegina

Example 1 : Let $\Omega=\overline{\mathbb{D}}$ the closed unit disc. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \overline{\mathbb{D}}$ and $\mathcal{K}(\overline{\mathbb{D}})<\infty$. If f is a Markov function defined by (3), with $\beta<-1$, then

$$
\|f(A)\| \leq \mathrm{e} \frac{\beta^{2}}{(1+\beta)^{2}} \mathcal{K}(\mathbb{D})\|f\|_{\mathbb{D}}
$$

Example 2 : Let Ω the closed ellipse with foci at ± 1 and semi-axes $a=\frac{1}{2}\left(R+\frac{1}{R}\right)$ and $b=\frac{1}{2}\left(R-\frac{1}{R}\right)$ for some $R>1$. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega)<\infty$. If f is a Markov function defined by (3), with $\beta<-a$, then

$$
\|f(A)\| \leq \mathrm{e} \frac{\left(\sqrt{\beta^{2}-1}-\beta\right)^{2}}{\left(\sqrt{\beta^{2}-1}-\beta-R\right)^{2}} \mathcal{K}(\Omega)\|f\|_{\Omega}
$$

Thank you for your attention!

