Pseudospectra and Kreiss Matrix Theorem on a General Domain

Samir Raouafi

University of Regina

Special Western Canada Linear Algebra Meeting BIRS, 7-9 July 2017

Outline

Generalization of the Kreiss Matrix Theorem

Э

《曰》《曰》《曰》《曰》

Introduction

Given a square matrix $A \in \mathbb{C}^{N \times N}$. The spectrum of A is

$$\sigma(A) := \{z \in \mathbb{C} : zI - A \text{ not invertible}\}.$$

We write $\|\cdot\|$ for the spectral norm on $\mathbb{C}^{N \times N}$, defined by $\|A\| := \sup \left\{ \|Ax\|_2 : \|x\|_2 = 1 \right\}$, where $\|\cdot\|_2$ denotes the Euclidean norm on \mathbb{C}^N . We say :

- A is power bounded if $\sup_{n\geq 0} ||A^n|| < \infty$.
- A is exponentially bounded if $\sup_{t\geq 0} \|e^{tA}\| < \infty$.

Power Bounded Matrices

KMT1 : A is power bounded if and only if

$$\exists \mathcal{C} > 0$$
 such that $ig\|ig(z l - \mathcal{A}ig)^{-1}ig\| \leq rac{\mathcal{C}}{|z|-1} \quad (|z|>1).$

In particular, $\sigma(A) \subset \overline{\mathbb{D}}$ "the unit disc". Kreiss Constant with respect to \mathbb{D} :

$$\mathcal{K}(\mathbb{D}) := \sup_{|z|>1} (|z|-1) \left\| (zI-A)^{-1} \right\|.$$

Kreiss Matrix Theorem (Power matrices) $\mathcal{K}(A) \leq \sup_{n \geq 0} ||A^n|| \leq e N \mathcal{K}(A),$ **Greening**

イロト イポト イヨト イヨト

Exponentially Bounded Matrices

KMT2 : A is exponentially bounded if and only if

$$\exists \mathcal{C} > 0 ext{ such that } ig\|ig(z l - oldsymbol{A}ig)^{-1}ig\| \leq rac{\mathcal{C}}{\operatorname{Re}(z)} \quad (\operatorname{Re}(z) > 0).$$

In particular, $\sigma(A) \subset \mathcal{P}$ "the left-half plane". Kreiss Constant with respect to \mathcal{P} :

$$\mathcal{K}(\mathcal{P}) := \sup_{\operatorname{Re}(z)>0} (\operatorname{Re}(z)) \| (zI - A)^{-1} \|.$$

Kreiss Matrix Theorem ((Exponential matrices)

 $\mathcal{K}(A) \leq \sup_{t \geq 0} \|e^{tA}\| \leq e N \mathcal{K}(A),$

The constant eN is the result of a large development following the original statement of the Kreiss matrix theorem.

- Kreiss (1962) : $\mathcal{K}(A)^{N^N}$
- Morton (1964) : $6^{N}(N+4)^{5N}\mathcal{K}(A)$
- Miller and Strang (1966) : $N^N \mathcal{K}(A)$
- Miller (1967) : $e^{9N^2} \mathcal{K}(A)$
- Strang and Laptev (1978) : $\frac{32}{\pi}eN^2\mathcal{K}(A)$
- Tadmor (1981) : $\frac{32}{\pi}eN\mathcal{K}(A)$
- LeVeque and Trefethen (1984) : 2eNK(A)
 Conjoncture : The optimal bound is eNK(A)
- Smith (1985) : $(1 + \frac{2}{\pi})eN\mathcal{K}(A)$
- Spijker proved the conjoncture in 1991.

Goal of the Talk

Kreiss Matrix theorem provides estimates of upper bounds of $||A^n||$ and $||e^{tA}||$ according to the resolvent norm. **Question**: What about the norm ||f(A)|| for an arbitrary holomorphic function f on a neighborhood of $\sigma(A)$? Cauchy Integral Formula :

$$f(A) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - A)^{-1} dz.$$

To understand ||f(A)||, it is interesting to study the resolvent norm $||(zI - A)^{-1}||$ of A.

Example (scholarpedia.org)

Consider the matrix

$$A = \left(\begin{array}{rrrr} 1+i & 0 & i \\ -i & 0.2 & 0 \\ 0.7i & 0.2 & 0.5 \end{array}\right)$$

The ϵ -pseudospectrum of A is the set of all $z \in \mathbb{C}$ for which the graph of the function $z \mapsto \left\| \left(zI - A \right)^{-1} \right\|$ lies above the level $\frac{1}{\epsilon}$.

The boundaries of the pseudospectra of A for the values $\epsilon=1,1/2,1/3,1/4,1/6,1/10,1/20$

Pseudospectra

Generalization of the Kreiss Matrix Theorem

500.000 random perturbations A + E with $||E|| < \epsilon$

ヘロト ヘロト ヘヨト ヘヨト

Pseudospectra

The ϵ -pseudospectrum of A, ϵ > 0, is

$$\sigma_{\epsilon}(\mathsf{A}) := \big\{ \mathsf{z} \in \mathbb{C} : \big\| (\mathsf{z}\mathsf{I} - \mathsf{A})^{-1} \big\| > \frac{1}{\epsilon} \big\}.$$

Theorem

Let
$$A \in \mathbb{C}^{N \times N}$$
 and $\epsilon > 0$ be arbitrary. TFSAE
(i) $z \in \sigma_{\epsilon}(A)$.
(ii) $||(zI - A)V|| < \epsilon$ for some $V \in \mathbb{C}^{N}$ with $||V|| = 1$.
(iii) $z \in \sigma(A + E)$ for some $E \in \mathbb{C}^{N \times N}$ with $||E|| < \epsilon$.
(iv) $s_{\min}(zI - A) > \epsilon$

University ^{of}Regina

E

3

・ロト ・日 ・ ・ モ ・ ・ モ ・

Identical Pseudospectra

Let A, B be $N \times N$ matrices with *identical pseudospectra*, i. e.

$$\|(zI - A)^{-1}\| = \|(zI - B)^{-1}\| \quad (\forall z \in \mathbb{C}).$$

- Must A, B be unitarily similar $(B = U^*AU)$?
- Must A, B have the same norm behavior? i.e.

$$\left\|f(A)\right\| = \left\|f(B)\right\|$$

for all holomorphic functions f on the spectrum of A and B.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem

If A and B have identical pseudospectra, then they have the same spectrum and the same numerical range.

Theorem (Ransford-Raouafi, 2013)

Let A and B be $N \times N$ matrices with identical pseudospectra. Then, for every Möbius transformation f holomorphic on the spectrum of A and B, we have

 $\left\|f(A)\right\| \le M\left\|f(B)\right\|$

where $M := \frac{5+\sqrt{33}}{2} \simeq 5,3723.$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B

Theorem

If A and B have identical pseudospectra, then they have the same spectrum and the same numerical range.

Theorem (Ransford-Raouafi, 2013)

Let A and B be $N \times N$ matrices with identical pseudospectra. Then, for every Möbius transformation f holomorphic on the spectrum of A and B, we have

 $\|f(A)\|\leq M\|f(B)\|,$

where $M := \frac{5+\sqrt{33}}{2} \simeq 5,3723.$

イロト イポト イヨト イヨト

Theorem (Ransford-Raouafi, 2013)

Let f be a function holomorphic in a domain Ω , and suppose that f is neither constant nor a Möbius transformation. Then, given $N \ge 6$ and M > 1, there exist $N \times N$ matrices A, B with spectra in Ω , such that

$$||(zI - A)^{-1}|| = ||(zI - B)^{-1}|| \quad (\forall z \in \mathbb{C})$$

and

 $\|f(A)\| > M\|f(B)\|.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Super-identical pseudospectra

Two matrices $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra if

$$s_k(zl-A)=s_k(zl-B) \quad (\forall z\in \mathbb{C} ext{ and } k=1,\ldots,N).$$

Theorem (Ransford, 2007)

If $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra, then, for any function f holomorphic on their spectrum,

$$\frac{1}{\sqrt{N}} \le \frac{\|f(A)\|}{\|f(B)\|} \le \sqrt{N}.$$

Theorem (Armentia–Gracia–Velasco, 2012)

If A, B have super-identical pseudospectra, then they are similar.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Super-identical pseudospectra

Two matrices $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra if

$$s_k(zl-A)=s_k(zl-B) \quad (\forall z\in \mathbb{C} ext{ and } k=1,\ldots,N).$$

Theorem (Ransford, 2007)

If $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra, then, for any function f holomorphic on their spectrum,

$$\frac{1}{\sqrt{N}} \leq \frac{\|f(A)\|}{\|f(B)\|} \leq \sqrt{N}.$$

Theorem (Armentia–Gracia–Velasco, 2012)

If A, B have super-identical pseudospectra, then they are similar.

Super-identical pseudospectra

Two matrices $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra if

$$s_k(zl-A)=s_k(zl-B) \quad (\forall z\in \mathbb{C} ext{ and } k=1,\ldots,N).$$

Theorem (Ransford, 2007)

If $A, B \in \mathbb{C}^{N \times N}$ have super-identical pseudospectra, then, for any function f holomorphic on their spectrum,

$$\frac{1}{\sqrt{N}} \leq \frac{\|f(A)\|}{\|f(B)\|} \leq \sqrt{N}.$$

Theorem (Armentia–Gracia–Velasco, 2012)

If A, B have super-identical pseudospectra, then they are similar.

イロト イポト イヨト イヨト

Theorem (D. Farenick et al., 2011)

Let A be an upper triangular Toeplitz matrix with nonzero superdiagonal, and let B be any matrix of the same size. Then A and B are unitarily similar if and only if they have super-identical pseudospectra.

Theorem (D. Farenick et al., 2011)

Let A and B be an $N \times N$ upper triangular matrices that are indecomposable with respect to similarity. Then A and B are unitarily similar if and only if A_k and B_k have super-identical pseudospectra for all $k = 1, \dots, N$, where A_k and B_k are the leading principal $k \times k$ submatrices of A and B respectively.

イロト イポト イヨト イヨト

Theorem (D. Farenick et al., 2011)

Let A be an upper triangular Toeplitz matrix with nonzero superdiagonal, and let B be any matrix of the same size. Then A and B are unitarily similar if and only if they have super-identical pseudospectra.

Theorem (D. Farenick et al., 2011)

Let A and B be an $N \times N$ upper triangular matrices that are indecomposable with respect to similarity. Then A and B are unitarily similar if and only if A_k and B_k have super-identical pseudospectra for all $k = 1, \dots, N$, where A_k and B_k are the leading principal $k \times k$ submatrices of A and B respectively.

・ロト ・ 同ト ・ ヨト ・ ヨト

Holomorphic Functions on the Unit Disc

Denote by $\mathcal{A}(\overline{\mathbb{D}})$ the set of holomorphic functions on \mathbb{D} and continuous on $\overline{\mathbb{D}}$.

Theorem (Vitse, 2005)

Suppose A is an $N \times N$ matrix such that $\sigma(A) \subset \mathbb{D}$ and $\mathcal{K}(\mathbb{D}) < \infty$. Then, for all $f \in \mathcal{A}(\overline{\mathbb{D}})$,

$$\|f(A)\| \leq \frac{16}{\pi} \mathcal{K}(\mathbb{D}) N \|f\|_{\mathbb{D}},$$

where $||f||_{\mathbb{D}} := \max_{|z|=1} |f(z)|$.

General Complex Domain

• Riemann Mapping Theorem : there is a unique conformal map ϕ from Ω^c to \mathbb{D}^c normalized by $\phi(\infty) = \infty$ and $\phi'(\infty) > 0$,

$$w=\phi(z):=dz+d_0+\sum_{k=1}^\infty rac{d_k}{z^k},\quad (d>0),\quad z\in\Omega^c.$$

• Kreiss Constant with respect to Ω :

$$\mathcal{K}(\Omega) := \sup_{z \notin \Omega} \frac{|\phi(z)| - 1}{|\phi'(z)|} \| (zI - A)^{-1} \|.$$
University
or Regina

イロト スポト イヨト イヨト

Arbitrary disc in the complex plane

Theorem

Let D be an arbitrary disc on the complex plane. Suppose A is an $N \times N$ matrix with $\sigma(A) \subset D$ and $\mathcal{K}(D) < \infty$. Then, for all function $f \in \mathcal{A}(D)$,

$$\|f(A)\|\leq \frac{16}{\pi}\,\mathcal{K}(D)\,N\|f\|_D,$$

where $||f||_D := \max_{z \in D} |f(z)|$.

What about general complex domains?

Pseudospectra

・ロト ・ 同ト ・ ヨト ・ ヨト

- The nth Faber polynomial F_n(z), for n = 0, 1, 2, · · ·, associated with Ω is the polynomial part of [φ(z)]ⁿ.
- $F_n(z)$ is a polynomial of degree n.

Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its complementary Ω^c is simply connected in the extended complex plane. Suppose A is an $N \times N$ complex matrix with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega) < \infty$. If the boundary of Ω is twice continuously differentiable, then for all $n \geq 0$,

$\|F_n(A)\| \leq C_{\Omega} e N \mathcal{K}(\Omega),$

where the constant C_{Ω} depends only on Ω .

Note that if Ω is the unit disk, we have $F_n(A) = A^n$.

・ロト ・ 同ト ・ ヨト ・ ヨト

- The nth Faber polynomial F_n(z), for n = 0, 1, 2, · · ·, associated with Ω is the polynomial part of [φ(z)]ⁿ.
- $F_n(z)$ is a polynomial of degree n.

Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its complementary Ω^c is simply connected in the extended complex plane. Suppose A is an $N \times N$ complex matrix with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega) < \infty$. If the boundary of Ω is twice continuously differentiable, then for all $n \geq 0$,

 $\|F_n(A)\| \leq C_{\Omega} e N \mathcal{K}(\Omega),$

where the constant C_{Ω} depends only on Ω .

Note that if Ω is the unit disk, we have $F_n(A) = A^n$.

Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its complementary Ω^c is simply connected in the extended complex plane. Suppose A is a bounded linear operator in Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega) < \infty$. Then for all $n \ge 0$,

$$\|F_n(A)\| \le e(n+1)\mathcal{K}(\Omega), \tag{1}$$

Converely, if $\sup_{n\geq 0} \|F_n(A)\| < \infty$, then $\sigma(A) \subset \Omega$, $\mathcal{K}(\Omega)$ is finite, and

$$\mathcal{K}(\Omega) \le \sup_{n \ge 0} \|F_n(A)\|.$$
(2)

イロト イポト イヨト イヨト

A Markov function is a function of the form

$$f(z) := \int_{\alpha}^{\beta} \frac{d\mu(x)}{z - x},$$
(3)

where μ is a positive measure with $supp(\mu) \subset [\alpha, \beta]$ for $-\infty \leq \alpha < \beta < \infty$. Example :

•
$$\frac{\log(1+z)}{z} = \int_{-\infty}^{-1} \frac{\frac{z}{x} \, \mathrm{d}x}{z-x} \quad (z \notin (-\infty, -1])$$

• $z^{\gamma} = \int_{-\infty}^{0} \frac{-|x|^{\gamma} \, \mathrm{d}x}{z-x}, \quad -1 < \gamma < 0 \quad (z \notin (-\infty, 0]).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

イロト スポト メヨト メヨト

Theorem

Let Ω be a symmetric compact subset of the complex plane such that its complementary Ω^c is simply connected in the extended complex plane. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega) < \infty$. If f is a Markov function defined by (3), then

 $\|f(A)\| \leq e C_{\Omega}^{\alpha,\beta} \mathcal{K}(\Omega) \|f\|_{\Omega},$

where the constant $C_{\Omega}^{\alpha,\beta}$ depends only on Ω, α and β .

^{of}Regina

Example 1: Let $\Omega = \overline{\mathbb{D}}$ the closed unit disc. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \overline{\mathbb{D}}$ and $\mathcal{K}(\overline{\mathbb{D}}) < \infty$. If f is a Markov function defined by (3), with $\beta < -1$, then

$$\|f(A)\| \leq \mathrm{e}\,rac{eta^2}{(1+eta)^2}\,\mathcal{K}(\mathbb{D})\,\|f\|_{\mathbb{D}},$$

Example 2: Let Ω the closed ellipse with foci at ± 1 and semi-axes $a = \frac{1}{2}(R + \frac{1}{R})$ and $b = \frac{1}{2}(R - \frac{1}{R})$ for some R > 1. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega) < \infty$. If f is a Markov function defined by (3), with $\beta < -a$, then

$$\|f(A)\| \le e \frac{(\sqrt{\beta^2 - 1} - \beta)^2}{(\sqrt{\beta^2 - 1} - \beta - R)^2} \mathcal{K}(\Omega) \|f\|_{\Omega},$$
University
CREGINA

Example 1: Let $\Omega = \overline{\mathbb{D}}$ the closed unit disc. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \overline{\mathbb{D}}$ and $\mathcal{K}(\overline{\mathbb{D}}) < \infty$. If f is a Markov function defined by (3), with $\beta < -1$, then

$$\|f(A)\| \leq \mathrm{e}\,rac{eta^2}{(1+eta)^2}\,\mathcal{K}(\mathbb{D})\,\|f\|_{\mathbb{D}},$$

Example 2: Let Ω the closed ellipse with foci at ± 1 and semi-axes $a = \frac{1}{2}(R + \frac{1}{R})$ and $b = \frac{1}{2}(R - \frac{1}{R})$ for some R > 1. Suppose A is a linear bounded operator in a Hilbert space, with $\sigma(A) \subset \Omega$ and $\mathcal{K}(\Omega) < \infty$. If f is a Markov function defined by (3), with $\beta < -a$, then

$$\|f(A)\| \leq \mathrm{e}\, rac{(\sqrt{eta^2 - 1} - eta)^2}{(\sqrt{eta^2 - 1} - eta - R)^2}\,\mathcal{K}(\Omega)\,\|f\|_{\Omega},$$

Thank you for your attention !

